Properties

Label 640.2.s.a.287.1
Level $640$
Weight $2$
Character 640.287
Analytic conductor $5.110$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [640,2,Mod(223,640)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(640, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("640.223");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 640 = 2^{7} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 640.s (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.11042572936\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 287.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 640.287
Dual form 640.2.s.a.223.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{3} +(2.00000 - 1.00000i) q^{5} +(3.00000 + 3.00000i) q^{7} +1.00000 q^{9} +(-1.00000 + 1.00000i) q^{11} -2.00000i q^{13} +(-4.00000 + 2.00000i) q^{15} +(1.00000 + 1.00000i) q^{17} +(-3.00000 + 3.00000i) q^{19} +(-6.00000 - 6.00000i) q^{21} +(1.00000 - 1.00000i) q^{23} +(3.00000 - 4.00000i) q^{25} +4.00000 q^{27} +(7.00000 + 7.00000i) q^{29} +2.00000i q^{31} +(2.00000 - 2.00000i) q^{33} +(9.00000 + 3.00000i) q^{35} +6.00000i q^{37} +4.00000i q^{39} +4.00000i q^{41} -4.00000i q^{43} +(2.00000 - 1.00000i) q^{45} +(7.00000 - 7.00000i) q^{47} +11.0000i q^{49} +(-2.00000 - 2.00000i) q^{51} +8.00000 q^{53} +(-1.00000 + 3.00000i) q^{55} +(6.00000 - 6.00000i) q^{57} +(3.00000 + 3.00000i) q^{59} +(1.00000 - 1.00000i) q^{61} +(3.00000 + 3.00000i) q^{63} +(-2.00000 - 4.00000i) q^{65} +4.00000i q^{67} +(-2.00000 + 2.00000i) q^{69} +(3.00000 + 3.00000i) q^{73} +(-6.00000 + 8.00000i) q^{75} -6.00000 q^{77} -8.00000 q^{79} -11.0000 q^{81} -2.00000 q^{83} +(3.00000 + 1.00000i) q^{85} +(-14.0000 - 14.0000i) q^{87} -6.00000 q^{89} +(6.00000 - 6.00000i) q^{91} -4.00000i q^{93} +(-3.00000 + 9.00000i) q^{95} +(-11.0000 - 11.0000i) q^{97} +(-1.00000 + 1.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{3} + 4 q^{5} + 6 q^{7} + 2 q^{9} - 2 q^{11} - 8 q^{15} + 2 q^{17} - 6 q^{19} - 12 q^{21} + 2 q^{23} + 6 q^{25} + 8 q^{27} + 14 q^{29} + 4 q^{33} + 18 q^{35} + 4 q^{45} + 14 q^{47} - 4 q^{51}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/640\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.00000 −1.15470 −0.577350 0.816497i \(-0.695913\pi\)
−0.577350 + 0.816497i \(0.695913\pi\)
\(4\) 0 0
\(5\) 2.00000 1.00000i 0.894427 0.447214i
\(6\) 0 0
\(7\) 3.00000 + 3.00000i 1.13389 + 1.13389i 0.989524 + 0.144370i \(0.0461154\pi\)
0.144370 + 0.989524i \(0.453885\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −1.00000 + 1.00000i −0.301511 + 0.301511i −0.841605 0.540094i \(-0.818389\pi\)
0.540094 + 0.841605i \(0.318389\pi\)
\(12\) 0 0
\(13\) 2.00000i 0.554700i −0.960769 0.277350i \(-0.910544\pi\)
0.960769 0.277350i \(-0.0894562\pi\)
\(14\) 0 0
\(15\) −4.00000 + 2.00000i −1.03280 + 0.516398i
\(16\) 0 0
\(17\) 1.00000 + 1.00000i 0.242536 + 0.242536i 0.817898 0.575363i \(-0.195139\pi\)
−0.575363 + 0.817898i \(0.695139\pi\)
\(18\) 0 0
\(19\) −3.00000 + 3.00000i −0.688247 + 0.688247i −0.961844 0.273597i \(-0.911786\pi\)
0.273597 + 0.961844i \(0.411786\pi\)
\(20\) 0 0
\(21\) −6.00000 6.00000i −1.30931 1.30931i
\(22\) 0 0
\(23\) 1.00000 1.00000i 0.208514 0.208514i −0.595121 0.803636i \(-0.702896\pi\)
0.803636 + 0.595121i \(0.202896\pi\)
\(24\) 0 0
\(25\) 3.00000 4.00000i 0.600000 0.800000i
\(26\) 0 0
\(27\) 4.00000 0.769800
\(28\) 0 0
\(29\) 7.00000 + 7.00000i 1.29987 + 1.29987i 0.928477 + 0.371391i \(0.121119\pi\)
0.371391 + 0.928477i \(0.378881\pi\)
\(30\) 0 0
\(31\) 2.00000i 0.359211i 0.983739 + 0.179605i \(0.0574821\pi\)
−0.983739 + 0.179605i \(0.942518\pi\)
\(32\) 0 0
\(33\) 2.00000 2.00000i 0.348155 0.348155i
\(34\) 0 0
\(35\) 9.00000 + 3.00000i 1.52128 + 0.507093i
\(36\) 0 0
\(37\) 6.00000i 0.986394i 0.869918 + 0.493197i \(0.164172\pi\)
−0.869918 + 0.493197i \(0.835828\pi\)
\(38\) 0 0
\(39\) 4.00000i 0.640513i
\(40\) 0 0
\(41\) 4.00000i 0.624695i 0.949968 + 0.312348i \(0.101115\pi\)
−0.949968 + 0.312348i \(0.898885\pi\)
\(42\) 0 0
\(43\) 4.00000i 0.609994i −0.952353 0.304997i \(-0.901344\pi\)
0.952353 0.304997i \(-0.0986555\pi\)
\(44\) 0 0
\(45\) 2.00000 1.00000i 0.298142 0.149071i
\(46\) 0 0
\(47\) 7.00000 7.00000i 1.02105 1.02105i 0.0212814 0.999774i \(-0.493225\pi\)
0.999774 0.0212814i \(-0.00677460\pi\)
\(48\) 0 0
\(49\) 11.0000i 1.57143i
\(50\) 0 0
\(51\) −2.00000 2.00000i −0.280056 0.280056i
\(52\) 0 0
\(53\) 8.00000 1.09888 0.549442 0.835532i \(-0.314840\pi\)
0.549442 + 0.835532i \(0.314840\pi\)
\(54\) 0 0
\(55\) −1.00000 + 3.00000i −0.134840 + 0.404520i
\(56\) 0 0
\(57\) 6.00000 6.00000i 0.794719 0.794719i
\(58\) 0 0
\(59\) 3.00000 + 3.00000i 0.390567 + 0.390567i 0.874889 0.484323i \(-0.160934\pi\)
−0.484323 + 0.874889i \(0.660934\pi\)
\(60\) 0 0
\(61\) 1.00000 1.00000i 0.128037 0.128037i −0.640184 0.768221i \(-0.721142\pi\)
0.768221 + 0.640184i \(0.221142\pi\)
\(62\) 0 0
\(63\) 3.00000 + 3.00000i 0.377964 + 0.377964i
\(64\) 0 0
\(65\) −2.00000 4.00000i −0.248069 0.496139i
\(66\) 0 0
\(67\) 4.00000i 0.488678i 0.969690 + 0.244339i \(0.0785709\pi\)
−0.969690 + 0.244339i \(0.921429\pi\)
\(68\) 0 0
\(69\) −2.00000 + 2.00000i −0.240772 + 0.240772i
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 3.00000 + 3.00000i 0.351123 + 0.351123i 0.860527 0.509404i \(-0.170134\pi\)
−0.509404 + 0.860527i \(0.670134\pi\)
\(74\) 0 0
\(75\) −6.00000 + 8.00000i −0.692820 + 0.923760i
\(76\) 0 0
\(77\) −6.00000 −0.683763
\(78\) 0 0
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) 0 0
\(81\) −11.0000 −1.22222
\(82\) 0 0
\(83\) −2.00000 −0.219529 −0.109764 0.993958i \(-0.535010\pi\)
−0.109764 + 0.993958i \(0.535010\pi\)
\(84\) 0 0
\(85\) 3.00000 + 1.00000i 0.325396 + 0.108465i
\(86\) 0 0
\(87\) −14.0000 14.0000i −1.50096 1.50096i
\(88\) 0 0
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) 6.00000 6.00000i 0.628971 0.628971i
\(92\) 0 0
\(93\) 4.00000i 0.414781i
\(94\) 0 0
\(95\) −3.00000 + 9.00000i −0.307794 + 0.923381i
\(96\) 0 0
\(97\) −11.0000 11.0000i −1.11688 1.11688i −0.992196 0.124684i \(-0.960208\pi\)
−0.124684 0.992196i \(-0.539792\pi\)
\(98\) 0 0
\(99\) −1.00000 + 1.00000i −0.100504 + 0.100504i
\(100\) 0 0
\(101\) 5.00000 + 5.00000i 0.497519 + 0.497519i 0.910665 0.413146i \(-0.135570\pi\)
−0.413146 + 0.910665i \(0.635570\pi\)
\(102\) 0 0
\(103\) 5.00000 5.00000i 0.492665 0.492665i −0.416480 0.909145i \(-0.636736\pi\)
0.909145 + 0.416480i \(0.136736\pi\)
\(104\) 0 0
\(105\) −18.0000 6.00000i −1.75662 0.585540i
\(106\) 0 0
\(107\) −6.00000 −0.580042 −0.290021 0.957020i \(-0.593662\pi\)
−0.290021 + 0.957020i \(0.593662\pi\)
\(108\) 0 0
\(109\) −5.00000 5.00000i −0.478913 0.478913i 0.425871 0.904784i \(-0.359968\pi\)
−0.904784 + 0.425871i \(0.859968\pi\)
\(110\) 0 0
\(111\) 12.0000i 1.13899i
\(112\) 0 0
\(113\) 13.0000 13.0000i 1.22294 1.22294i 0.256354 0.966583i \(-0.417479\pi\)
0.966583 0.256354i \(-0.0825214\pi\)
\(114\) 0 0
\(115\) 1.00000 3.00000i 0.0932505 0.279751i
\(116\) 0 0
\(117\) 2.00000i 0.184900i
\(118\) 0 0
\(119\) 6.00000i 0.550019i
\(120\) 0 0
\(121\) 9.00000i 0.818182i
\(122\) 0 0
\(123\) 8.00000i 0.721336i
\(124\) 0 0
\(125\) 2.00000 11.0000i 0.178885 0.983870i
\(126\) 0 0
\(127\) 7.00000 7.00000i 0.621150 0.621150i −0.324676 0.945825i \(-0.605255\pi\)
0.945825 + 0.324676i \(0.105255\pi\)
\(128\) 0 0
\(129\) 8.00000i 0.704361i
\(130\) 0 0
\(131\) −7.00000 7.00000i −0.611593 0.611593i 0.331768 0.943361i \(-0.392355\pi\)
−0.943361 + 0.331768i \(0.892355\pi\)
\(132\) 0 0
\(133\) −18.0000 −1.56080
\(134\) 0 0
\(135\) 8.00000 4.00000i 0.688530 0.344265i
\(136\) 0 0
\(137\) −9.00000 + 9.00000i −0.768922 + 0.768922i −0.977917 0.208995i \(-0.932981\pi\)
0.208995 + 0.977917i \(0.432981\pi\)
\(138\) 0 0
\(139\) −9.00000 9.00000i −0.763370 0.763370i 0.213560 0.976930i \(-0.431494\pi\)
−0.976930 + 0.213560i \(0.931494\pi\)
\(140\) 0 0
\(141\) −14.0000 + 14.0000i −1.17901 + 1.17901i
\(142\) 0 0
\(143\) 2.00000 + 2.00000i 0.167248 + 0.167248i
\(144\) 0 0
\(145\) 21.0000 + 7.00000i 1.74396 + 0.581318i
\(146\) 0 0
\(147\) 22.0000i 1.81453i
\(148\) 0 0
\(149\) −1.00000 + 1.00000i −0.0819232 + 0.0819232i −0.746881 0.664958i \(-0.768450\pi\)
0.664958 + 0.746881i \(0.268450\pi\)
\(150\) 0 0
\(151\) −8.00000 −0.651031 −0.325515 0.945537i \(-0.605538\pi\)
−0.325515 + 0.945537i \(0.605538\pi\)
\(152\) 0 0
\(153\) 1.00000 + 1.00000i 0.0808452 + 0.0808452i
\(154\) 0 0
\(155\) 2.00000 + 4.00000i 0.160644 + 0.321288i
\(156\) 0 0
\(157\) −20.0000 −1.59617 −0.798087 0.602542i \(-0.794154\pi\)
−0.798087 + 0.602542i \(0.794154\pi\)
\(158\) 0 0
\(159\) −16.0000 −1.26888
\(160\) 0 0
\(161\) 6.00000 0.472866
\(162\) 0 0
\(163\) 14.0000 1.09656 0.548282 0.836293i \(-0.315282\pi\)
0.548282 + 0.836293i \(0.315282\pi\)
\(164\) 0 0
\(165\) 2.00000 6.00000i 0.155700 0.467099i
\(166\) 0 0
\(167\) 3.00000 + 3.00000i 0.232147 + 0.232147i 0.813588 0.581441i \(-0.197511\pi\)
−0.581441 + 0.813588i \(0.697511\pi\)
\(168\) 0 0
\(169\) 9.00000 0.692308
\(170\) 0 0
\(171\) −3.00000 + 3.00000i −0.229416 + 0.229416i
\(172\) 0 0
\(173\) 6.00000i 0.456172i −0.973641 0.228086i \(-0.926753\pi\)
0.973641 0.228086i \(-0.0732467\pi\)
\(174\) 0 0
\(175\) 21.0000 3.00000i 1.58745 0.226779i
\(176\) 0 0
\(177\) −6.00000 6.00000i −0.450988 0.450988i
\(178\) 0 0
\(179\) 5.00000 5.00000i 0.373718 0.373718i −0.495112 0.868829i \(-0.664873\pi\)
0.868829 + 0.495112i \(0.164873\pi\)
\(180\) 0 0
\(181\) −3.00000 3.00000i −0.222988 0.222988i 0.586767 0.809756i \(-0.300400\pi\)
−0.809756 + 0.586767i \(0.800400\pi\)
\(182\) 0 0
\(183\) −2.00000 + 2.00000i −0.147844 + 0.147844i
\(184\) 0 0
\(185\) 6.00000 + 12.0000i 0.441129 + 0.882258i
\(186\) 0 0
\(187\) −2.00000 −0.146254
\(188\) 0 0
\(189\) 12.0000 + 12.0000i 0.872872 + 0.872872i
\(190\) 0 0
\(191\) 18.0000i 1.30243i 0.758891 + 0.651217i \(0.225741\pi\)
−0.758891 + 0.651217i \(0.774259\pi\)
\(192\) 0 0
\(193\) −15.0000 + 15.0000i −1.07972 + 1.07972i −0.0831899 + 0.996534i \(0.526511\pi\)
−0.996534 + 0.0831899i \(0.973489\pi\)
\(194\) 0 0
\(195\) 4.00000 + 8.00000i 0.286446 + 0.572892i
\(196\) 0 0
\(197\) 6.00000i 0.427482i −0.976890 0.213741i \(-0.931435\pi\)
0.976890 0.213741i \(-0.0685649\pi\)
\(198\) 0 0
\(199\) 10.0000i 0.708881i −0.935079 0.354441i \(-0.884671\pi\)
0.935079 0.354441i \(-0.115329\pi\)
\(200\) 0 0
\(201\) 8.00000i 0.564276i
\(202\) 0 0
\(203\) 42.0000i 2.94782i
\(204\) 0 0
\(205\) 4.00000 + 8.00000i 0.279372 + 0.558744i
\(206\) 0 0
\(207\) 1.00000 1.00000i 0.0695048 0.0695048i
\(208\) 0 0
\(209\) 6.00000i 0.415029i
\(210\) 0 0
\(211\) −19.0000 19.0000i −1.30801 1.30801i −0.922847 0.385167i \(-0.874144\pi\)
−0.385167 0.922847i \(-0.625856\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −4.00000 8.00000i −0.272798 0.545595i
\(216\) 0 0
\(217\) −6.00000 + 6.00000i −0.407307 + 0.407307i
\(218\) 0 0
\(219\) −6.00000 6.00000i −0.405442 0.405442i
\(220\) 0 0
\(221\) 2.00000 2.00000i 0.134535 0.134535i
\(222\) 0 0
\(223\) 9.00000 + 9.00000i 0.602685 + 0.602685i 0.941024 0.338340i \(-0.109865\pi\)
−0.338340 + 0.941024i \(0.609865\pi\)
\(224\) 0 0
\(225\) 3.00000 4.00000i 0.200000 0.266667i
\(226\) 0 0
\(227\) 12.0000i 0.796468i 0.917284 + 0.398234i \(0.130377\pi\)
−0.917284 + 0.398234i \(0.869623\pi\)
\(228\) 0 0
\(229\) −1.00000 + 1.00000i −0.0660819 + 0.0660819i −0.739375 0.673293i \(-0.764879\pi\)
0.673293 + 0.739375i \(0.264879\pi\)
\(230\) 0 0
\(231\) 12.0000 0.789542
\(232\) 0 0
\(233\) −9.00000 9.00000i −0.589610 0.589610i 0.347916 0.937526i \(-0.386889\pi\)
−0.937526 + 0.347916i \(0.886889\pi\)
\(234\) 0 0
\(235\) 7.00000 21.0000i 0.456630 1.36989i
\(236\) 0 0
\(237\) 16.0000 1.03931
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −14.0000 −0.901819 −0.450910 0.892570i \(-0.648900\pi\)
−0.450910 + 0.892570i \(0.648900\pi\)
\(242\) 0 0
\(243\) 10.0000 0.641500
\(244\) 0 0
\(245\) 11.0000 + 22.0000i 0.702764 + 1.40553i
\(246\) 0 0
\(247\) 6.00000 + 6.00000i 0.381771 + 0.381771i
\(248\) 0 0
\(249\) 4.00000 0.253490
\(250\) 0 0
\(251\) 11.0000 11.0000i 0.694314 0.694314i −0.268864 0.963178i \(-0.586648\pi\)
0.963178 + 0.268864i \(0.0866483\pi\)
\(252\) 0 0
\(253\) 2.00000i 0.125739i
\(254\) 0 0
\(255\) −6.00000 2.00000i −0.375735 0.125245i
\(256\) 0 0
\(257\) 13.0000 + 13.0000i 0.810918 + 0.810918i 0.984771 0.173854i \(-0.0556220\pi\)
−0.173854 + 0.984771i \(0.555622\pi\)
\(258\) 0 0
\(259\) −18.0000 + 18.0000i −1.11847 + 1.11847i
\(260\) 0 0
\(261\) 7.00000 + 7.00000i 0.433289 + 0.433289i
\(262\) 0 0
\(263\) −7.00000 + 7.00000i −0.431638 + 0.431638i −0.889185 0.457547i \(-0.848728\pi\)
0.457547 + 0.889185i \(0.348728\pi\)
\(264\) 0 0
\(265\) 16.0000 8.00000i 0.982872 0.491436i
\(266\) 0 0
\(267\) 12.0000 0.734388
\(268\) 0 0
\(269\) −1.00000 1.00000i −0.0609711 0.0609711i 0.675964 0.736935i \(-0.263728\pi\)
−0.736935 + 0.675964i \(0.763728\pi\)
\(270\) 0 0
\(271\) 30.0000i 1.82237i −0.411997 0.911185i \(-0.635169\pi\)
0.411997 0.911185i \(-0.364831\pi\)
\(272\) 0 0
\(273\) −12.0000 + 12.0000i −0.726273 + 0.726273i
\(274\) 0 0
\(275\) 1.00000 + 7.00000i 0.0603023 + 0.422116i
\(276\) 0 0
\(277\) 18.0000i 1.08152i −0.841178 0.540758i \(-0.818138\pi\)
0.841178 0.540758i \(-0.181862\pi\)
\(278\) 0 0
\(279\) 2.00000i 0.119737i
\(280\) 0 0
\(281\) 16.0000i 0.954480i −0.878773 0.477240i \(-0.841637\pi\)
0.878773 0.477240i \(-0.158363\pi\)
\(282\) 0 0
\(283\) 12.0000i 0.713326i −0.934233 0.356663i \(-0.883914\pi\)
0.934233 0.356663i \(-0.116086\pi\)
\(284\) 0 0
\(285\) 6.00000 18.0000i 0.355409 1.06623i
\(286\) 0 0
\(287\) −12.0000 + 12.0000i −0.708338 + 0.708338i
\(288\) 0 0
\(289\) 15.0000i 0.882353i
\(290\) 0 0
\(291\) 22.0000 + 22.0000i 1.28966 + 1.28966i
\(292\) 0 0
\(293\) 12.0000 0.701047 0.350524 0.936554i \(-0.386004\pi\)
0.350524 + 0.936554i \(0.386004\pi\)
\(294\) 0 0
\(295\) 9.00000 + 3.00000i 0.524000 + 0.174667i
\(296\) 0 0
\(297\) −4.00000 + 4.00000i −0.232104 + 0.232104i
\(298\) 0 0
\(299\) −2.00000 2.00000i −0.115663 0.115663i
\(300\) 0 0
\(301\) 12.0000 12.0000i 0.691669 0.691669i
\(302\) 0 0
\(303\) −10.0000 10.0000i −0.574485 0.574485i
\(304\) 0 0
\(305\) 1.00000 3.00000i 0.0572598 0.171780i
\(306\) 0 0
\(307\) 4.00000i 0.228292i −0.993464 0.114146i \(-0.963587\pi\)
0.993464 0.114146i \(-0.0364132\pi\)
\(308\) 0 0
\(309\) −10.0000 + 10.0000i −0.568880 + 0.568880i
\(310\) 0 0
\(311\) −16.0000 −0.907277 −0.453638 0.891186i \(-0.649874\pi\)
−0.453638 + 0.891186i \(0.649874\pi\)
\(312\) 0 0
\(313\) −13.0000 13.0000i −0.734803 0.734803i 0.236764 0.971567i \(-0.423913\pi\)
−0.971567 + 0.236764i \(0.923913\pi\)
\(314\) 0 0
\(315\) 9.00000 + 3.00000i 0.507093 + 0.169031i
\(316\) 0 0
\(317\) −8.00000 −0.449325 −0.224662 0.974437i \(-0.572128\pi\)
−0.224662 + 0.974437i \(0.572128\pi\)
\(318\) 0 0
\(319\) −14.0000 −0.783850
\(320\) 0 0
\(321\) 12.0000 0.669775
\(322\) 0 0
\(323\) −6.00000 −0.333849
\(324\) 0 0
\(325\) −8.00000 6.00000i −0.443760 0.332820i
\(326\) 0 0
\(327\) 10.0000 + 10.0000i 0.553001 + 0.553001i
\(328\) 0 0
\(329\) 42.0000 2.31553
\(330\) 0 0
\(331\) −21.0000 + 21.0000i −1.15426 + 1.15426i −0.168576 + 0.985689i \(0.553917\pi\)
−0.985689 + 0.168576i \(0.946083\pi\)
\(332\) 0 0
\(333\) 6.00000i 0.328798i
\(334\) 0 0
\(335\) 4.00000 + 8.00000i 0.218543 + 0.437087i
\(336\) 0 0
\(337\) −11.0000 11.0000i −0.599208 0.599208i 0.340894 0.940102i \(-0.389270\pi\)
−0.940102 + 0.340894i \(0.889270\pi\)
\(338\) 0 0
\(339\) −26.0000 + 26.0000i −1.41213 + 1.41213i
\(340\) 0 0
\(341\) −2.00000 2.00000i −0.108306 0.108306i
\(342\) 0 0
\(343\) −12.0000 + 12.0000i −0.647939 + 0.647939i
\(344\) 0 0
\(345\) −2.00000 + 6.00000i −0.107676 + 0.323029i
\(346\) 0 0
\(347\) 2.00000 0.107366 0.0536828 0.998558i \(-0.482904\pi\)
0.0536828 + 0.998558i \(0.482904\pi\)
\(348\) 0 0
\(349\) 3.00000 + 3.00000i 0.160586 + 0.160586i 0.782826 0.622240i \(-0.213777\pi\)
−0.622240 + 0.782826i \(0.713777\pi\)
\(350\) 0 0
\(351\) 8.00000i 0.427008i
\(352\) 0 0
\(353\) 13.0000 13.0000i 0.691920 0.691920i −0.270734 0.962654i \(-0.587266\pi\)
0.962654 + 0.270734i \(0.0872664\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 12.0000i 0.635107i
\(358\) 0 0
\(359\) 14.0000i 0.738892i 0.929252 + 0.369446i \(0.120452\pi\)
−0.929252 + 0.369446i \(0.879548\pi\)
\(360\) 0 0
\(361\) 1.00000i 0.0526316i
\(362\) 0 0
\(363\) 18.0000i 0.944755i
\(364\) 0 0
\(365\) 9.00000 + 3.00000i 0.471082 + 0.157027i
\(366\) 0 0
\(367\) −21.0000 + 21.0000i −1.09619 + 1.09619i −0.101339 + 0.994852i \(0.532313\pi\)
−0.994852 + 0.101339i \(0.967687\pi\)
\(368\) 0 0
\(369\) 4.00000i 0.208232i
\(370\) 0 0
\(371\) 24.0000 + 24.0000i 1.24602 + 1.24602i
\(372\) 0 0
\(373\) 4.00000 0.207112 0.103556 0.994624i \(-0.466978\pi\)
0.103556 + 0.994624i \(0.466978\pi\)
\(374\) 0 0
\(375\) −4.00000 + 22.0000i −0.206559 + 1.13608i
\(376\) 0 0
\(377\) 14.0000 14.0000i 0.721037 0.721037i
\(378\) 0 0
\(379\) 15.0000 + 15.0000i 0.770498 + 0.770498i 0.978194 0.207695i \(-0.0665963\pi\)
−0.207695 + 0.978194i \(0.566596\pi\)
\(380\) 0 0
\(381\) −14.0000 + 14.0000i −0.717242 + 0.717242i
\(382\) 0 0
\(383\) 5.00000 + 5.00000i 0.255488 + 0.255488i 0.823216 0.567728i \(-0.192177\pi\)
−0.567728 + 0.823216i \(0.692177\pi\)
\(384\) 0 0
\(385\) −12.0000 + 6.00000i −0.611577 + 0.305788i
\(386\) 0 0
\(387\) 4.00000i 0.203331i
\(388\) 0 0
\(389\) 23.0000 23.0000i 1.16615 1.16615i 0.183041 0.983105i \(-0.441406\pi\)
0.983105 0.183041i \(-0.0585941\pi\)
\(390\) 0 0
\(391\) 2.00000 0.101144
\(392\) 0 0
\(393\) 14.0000 + 14.0000i 0.706207 + 0.706207i
\(394\) 0 0
\(395\) −16.0000 + 8.00000i −0.805047 + 0.402524i
\(396\) 0 0
\(397\) 32.0000 1.60603 0.803017 0.595956i \(-0.203227\pi\)
0.803017 + 0.595956i \(0.203227\pi\)
\(398\) 0 0
\(399\) 36.0000 1.80225
\(400\) 0 0
\(401\) −2.00000 −0.0998752 −0.0499376 0.998752i \(-0.515902\pi\)
−0.0499376 + 0.998752i \(0.515902\pi\)
\(402\) 0 0
\(403\) 4.00000 0.199254
\(404\) 0 0
\(405\) −22.0000 + 11.0000i −1.09319 + 0.546594i
\(406\) 0 0
\(407\) −6.00000 6.00000i −0.297409 0.297409i
\(408\) 0 0
\(409\) −38.0000 −1.87898 −0.939490 0.342578i \(-0.888700\pi\)
−0.939490 + 0.342578i \(0.888700\pi\)
\(410\) 0 0
\(411\) 18.0000 18.0000i 0.887875 0.887875i
\(412\) 0 0
\(413\) 18.0000i 0.885722i
\(414\) 0 0
\(415\) −4.00000 + 2.00000i −0.196352 + 0.0981761i
\(416\) 0 0
\(417\) 18.0000 + 18.0000i 0.881464 + 0.881464i
\(418\) 0 0
\(419\) 17.0000 17.0000i 0.830504 0.830504i −0.157081 0.987586i \(-0.550208\pi\)
0.987586 + 0.157081i \(0.0502085\pi\)
\(420\) 0 0
\(421\) 5.00000 + 5.00000i 0.243685 + 0.243685i 0.818373 0.574688i \(-0.194876\pi\)
−0.574688 + 0.818373i \(0.694876\pi\)
\(422\) 0 0
\(423\) 7.00000 7.00000i 0.340352 0.340352i
\(424\) 0 0
\(425\) 7.00000 1.00000i 0.339550 0.0485071i
\(426\) 0 0
\(427\) 6.00000 0.290360
\(428\) 0 0
\(429\) −4.00000 4.00000i −0.193122 0.193122i
\(430\) 0 0
\(431\) 2.00000i 0.0963366i 0.998839 + 0.0481683i \(0.0153384\pi\)
−0.998839 + 0.0481683i \(0.984662\pi\)
\(432\) 0 0
\(433\) 5.00000 5.00000i 0.240285 0.240285i −0.576683 0.816968i \(-0.695653\pi\)
0.816968 + 0.576683i \(0.195653\pi\)
\(434\) 0 0
\(435\) −42.0000 14.0000i −2.01375 0.671249i
\(436\) 0 0
\(437\) 6.00000i 0.287019i
\(438\) 0 0
\(439\) 26.0000i 1.24091i −0.784241 0.620456i \(-0.786947\pi\)
0.784241 0.620456i \(-0.213053\pi\)
\(440\) 0 0
\(441\) 11.0000i 0.523810i
\(442\) 0 0
\(443\) 4.00000i 0.190046i 0.995475 + 0.0950229i \(0.0302924\pi\)
−0.995475 + 0.0950229i \(0.969708\pi\)
\(444\) 0 0
\(445\) −12.0000 + 6.00000i −0.568855 + 0.284427i
\(446\) 0 0
\(447\) 2.00000 2.00000i 0.0945968 0.0945968i
\(448\) 0 0
\(449\) 24.0000i 1.13263i 0.824189 + 0.566315i \(0.191631\pi\)
−0.824189 + 0.566315i \(0.808369\pi\)
\(450\) 0 0
\(451\) −4.00000 4.00000i −0.188353 0.188353i
\(452\) 0 0
\(453\) 16.0000 0.751746
\(454\) 0 0
\(455\) 6.00000 18.0000i 0.281284 0.843853i
\(456\) 0 0
\(457\) 7.00000 7.00000i 0.327446 0.327446i −0.524168 0.851615i \(-0.675624\pi\)
0.851615 + 0.524168i \(0.175624\pi\)
\(458\) 0 0
\(459\) 4.00000 + 4.00000i 0.186704 + 0.186704i
\(460\) 0 0
\(461\) 21.0000 21.0000i 0.978068 0.978068i −0.0216971 0.999765i \(-0.506907\pi\)
0.999765 + 0.0216971i \(0.00690694\pi\)
\(462\) 0 0
\(463\) −19.0000 19.0000i −0.883005 0.883005i 0.110834 0.993839i \(-0.464648\pi\)
−0.993839 + 0.110834i \(0.964648\pi\)
\(464\) 0 0
\(465\) −4.00000 8.00000i −0.185496 0.370991i
\(466\) 0 0
\(467\) 28.0000i 1.29569i −0.761774 0.647843i \(-0.775671\pi\)
0.761774 0.647843i \(-0.224329\pi\)
\(468\) 0 0
\(469\) −12.0000 + 12.0000i −0.554109 + 0.554109i
\(470\) 0 0
\(471\) 40.0000 1.84310
\(472\) 0 0
\(473\) 4.00000 + 4.00000i 0.183920 + 0.183920i
\(474\) 0 0
\(475\) 3.00000 + 21.0000i 0.137649 + 0.963546i
\(476\) 0 0
\(477\) 8.00000 0.366295
\(478\) 0 0
\(479\) 32.0000 1.46212 0.731059 0.682315i \(-0.239027\pi\)
0.731059 + 0.682315i \(0.239027\pi\)
\(480\) 0 0
\(481\) 12.0000 0.547153
\(482\) 0 0
\(483\) −12.0000 −0.546019
\(484\) 0 0
\(485\) −33.0000 11.0000i −1.49845 0.499484i
\(486\) 0 0
\(487\) 15.0000 + 15.0000i 0.679715 + 0.679715i 0.959936 0.280221i \(-0.0904077\pi\)
−0.280221 + 0.959936i \(0.590408\pi\)
\(488\) 0 0
\(489\) −28.0000 −1.26620
\(490\) 0 0
\(491\) −9.00000 + 9.00000i −0.406164 + 0.406164i −0.880399 0.474234i \(-0.842725\pi\)
0.474234 + 0.880399i \(0.342725\pi\)
\(492\) 0 0
\(493\) 14.0000i 0.630528i
\(494\) 0 0
\(495\) −1.00000 + 3.00000i −0.0449467 + 0.134840i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 29.0000 29.0000i 1.29822 1.29822i 0.368650 0.929568i \(-0.379820\pi\)
0.929568 0.368650i \(-0.120180\pi\)
\(500\) 0 0
\(501\) −6.00000 6.00000i −0.268060 0.268060i
\(502\) 0 0
\(503\) 29.0000 29.0000i 1.29305 1.29305i 0.360153 0.932893i \(-0.382725\pi\)
0.932893 0.360153i \(-0.117275\pi\)
\(504\) 0 0
\(505\) 15.0000 + 5.00000i 0.667491 + 0.222497i
\(506\) 0 0
\(507\) −18.0000 −0.799408
\(508\) 0 0
\(509\) −17.0000 17.0000i −0.753512 0.753512i 0.221621 0.975133i \(-0.428865\pi\)
−0.975133 + 0.221621i \(0.928865\pi\)
\(510\) 0 0
\(511\) 18.0000i 0.796273i
\(512\) 0 0
\(513\) −12.0000 + 12.0000i −0.529813 + 0.529813i
\(514\) 0 0
\(515\) 5.00000 15.0000i 0.220326 0.660979i
\(516\) 0 0
\(517\) 14.0000i 0.615719i
\(518\) 0 0
\(519\) 12.0000i 0.526742i
\(520\) 0 0
\(521\) 16.0000i 0.700973i 0.936568 + 0.350486i \(0.113984\pi\)
−0.936568 + 0.350486i \(0.886016\pi\)
\(522\) 0 0
\(523\) 20.0000i 0.874539i −0.899331 0.437269i \(-0.855946\pi\)
0.899331 0.437269i \(-0.144054\pi\)
\(524\) 0 0
\(525\) −42.0000 + 6.00000i −1.83303 + 0.261861i
\(526\) 0 0
\(527\) −2.00000 + 2.00000i −0.0871214 + 0.0871214i
\(528\) 0 0
\(529\) 21.0000i 0.913043i
\(530\) 0 0
\(531\) 3.00000 + 3.00000i 0.130189 + 0.130189i
\(532\) 0 0
\(533\) 8.00000 0.346518
\(534\) 0 0
\(535\) −12.0000 + 6.00000i −0.518805 + 0.259403i
\(536\) 0 0
\(537\) −10.0000 + 10.0000i −0.431532 + 0.431532i
\(538\) 0 0
\(539\) −11.0000 11.0000i −0.473804 0.473804i
\(540\) 0 0
\(541\) −15.0000 + 15.0000i −0.644900 + 0.644900i −0.951756 0.306856i \(-0.900723\pi\)
0.306856 + 0.951756i \(0.400723\pi\)
\(542\) 0 0
\(543\) 6.00000 + 6.00000i 0.257485 + 0.257485i
\(544\) 0 0
\(545\) −15.0000 5.00000i −0.642529 0.214176i
\(546\) 0 0
\(547\) 28.0000i 1.19719i 0.801050 + 0.598597i \(0.204275\pi\)
−0.801050 + 0.598597i \(0.795725\pi\)
\(548\) 0 0
\(549\) 1.00000 1.00000i 0.0426790 0.0426790i
\(550\) 0 0
\(551\) −42.0000 −1.78926
\(552\) 0 0
\(553\) −24.0000 24.0000i −1.02058 1.02058i
\(554\) 0 0
\(555\) −12.0000 24.0000i −0.509372 1.01874i
\(556\) 0 0
\(557\) −28.0000 −1.18640 −0.593199 0.805056i \(-0.702135\pi\)
−0.593199 + 0.805056i \(0.702135\pi\)
\(558\) 0 0
\(559\) −8.00000 −0.338364
\(560\) 0 0
\(561\) 4.00000 0.168880
\(562\) 0 0
\(563\) −18.0000 −0.758610 −0.379305 0.925272i \(-0.623837\pi\)
−0.379305 + 0.925272i \(0.623837\pi\)
\(564\) 0 0
\(565\) 13.0000 39.0000i 0.546914 1.64074i
\(566\) 0 0
\(567\) −33.0000 33.0000i −1.38587 1.38587i
\(568\) 0 0
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) −25.0000 + 25.0000i −1.04622 + 1.04622i −0.0473385 + 0.998879i \(0.515074\pi\)
−0.998879 + 0.0473385i \(0.984926\pi\)
\(572\) 0 0
\(573\) 36.0000i 1.50392i
\(574\) 0 0
\(575\) −1.00000 7.00000i −0.0417029 0.291920i
\(576\) 0 0
\(577\) 9.00000 + 9.00000i 0.374675 + 0.374675i 0.869177 0.494502i \(-0.164649\pi\)
−0.494502 + 0.869177i \(0.664649\pi\)
\(578\) 0 0
\(579\) 30.0000 30.0000i 1.24676 1.24676i
\(580\) 0 0
\(581\) −6.00000 6.00000i −0.248922 0.248922i
\(582\) 0 0
\(583\) −8.00000 + 8.00000i −0.331326 + 0.331326i
\(584\) 0 0
\(585\) −2.00000 4.00000i −0.0826898 0.165380i
\(586\) 0 0
\(587\) 2.00000 0.0825488 0.0412744 0.999148i \(-0.486858\pi\)
0.0412744 + 0.999148i \(0.486858\pi\)
\(588\) 0 0
\(589\) −6.00000 6.00000i −0.247226 0.247226i
\(590\) 0 0
\(591\) 12.0000i 0.493614i
\(592\) 0 0
\(593\) 17.0000 17.0000i 0.698106 0.698106i −0.265896 0.964002i \(-0.585668\pi\)
0.964002 + 0.265896i \(0.0856676\pi\)
\(594\) 0 0
\(595\) 6.00000 + 12.0000i 0.245976 + 0.491952i
\(596\) 0 0
\(597\) 20.0000i 0.818546i
\(598\) 0 0
\(599\) 30.0000i 1.22577i 0.790173 + 0.612883i \(0.209990\pi\)
−0.790173 + 0.612883i \(0.790010\pi\)
\(600\) 0 0
\(601\) 16.0000i 0.652654i −0.945257 0.326327i \(-0.894189\pi\)
0.945257 0.326327i \(-0.105811\pi\)
\(602\) 0 0
\(603\) 4.00000i 0.162893i
\(604\) 0 0
\(605\) 9.00000 + 18.0000i 0.365902 + 0.731804i
\(606\) 0 0
\(607\) 23.0000 23.0000i 0.933541 0.933541i −0.0643840 0.997925i \(-0.520508\pi\)
0.997925 + 0.0643840i \(0.0205082\pi\)
\(608\) 0 0
\(609\) 84.0000i 3.40385i
\(610\) 0 0
\(611\) −14.0000 14.0000i −0.566379 0.566379i
\(612\) 0 0
\(613\) −8.00000 −0.323117 −0.161558 0.986863i \(-0.551652\pi\)
−0.161558 + 0.986863i \(0.551652\pi\)
\(614\) 0 0
\(615\) −8.00000 16.0000i −0.322591 0.645182i
\(616\) 0 0
\(617\) −25.0000 + 25.0000i −1.00646 + 1.00646i −0.00648312 + 0.999979i \(0.502064\pi\)
−0.999979 + 0.00648312i \(0.997936\pi\)
\(618\) 0 0
\(619\) 7.00000 + 7.00000i 0.281354 + 0.281354i 0.833649 0.552295i \(-0.186248\pi\)
−0.552295 + 0.833649i \(0.686248\pi\)
\(620\) 0 0
\(621\) 4.00000 4.00000i 0.160514 0.160514i
\(622\) 0 0
\(623\) −18.0000 18.0000i −0.721155 0.721155i
\(624\) 0 0
\(625\) −7.00000 24.0000i −0.280000 0.960000i
\(626\) 0 0
\(627\) 12.0000i 0.479234i
\(628\) 0 0
\(629\) −6.00000 + 6.00000i −0.239236 + 0.239236i
\(630\) 0 0
\(631\) −24.0000 −0.955425 −0.477712 0.878516i \(-0.658534\pi\)
−0.477712 + 0.878516i \(0.658534\pi\)
\(632\) 0 0
\(633\) 38.0000 + 38.0000i 1.51036 + 1.51036i
\(634\) 0 0
\(635\) 7.00000 21.0000i 0.277787 0.833360i
\(636\) 0 0
\(637\) 22.0000 0.871672
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −30.0000 −1.18493 −0.592464 0.805597i \(-0.701845\pi\)
−0.592464 + 0.805597i \(0.701845\pi\)
\(642\) 0 0
\(643\) −26.0000 −1.02534 −0.512670 0.858586i \(-0.671344\pi\)
−0.512670 + 0.858586i \(0.671344\pi\)
\(644\) 0 0
\(645\) 8.00000 + 16.0000i 0.315000 + 0.629999i
\(646\) 0 0
\(647\) 15.0000 + 15.0000i 0.589711 + 0.589711i 0.937553 0.347842i \(-0.113086\pi\)
−0.347842 + 0.937553i \(0.613086\pi\)
\(648\) 0 0
\(649\) −6.00000 −0.235521
\(650\) 0 0
\(651\) 12.0000 12.0000i 0.470317 0.470317i
\(652\) 0 0
\(653\) 2.00000i 0.0782660i −0.999234 0.0391330i \(-0.987540\pi\)
0.999234 0.0391330i \(-0.0124596\pi\)
\(654\) 0 0
\(655\) −21.0000 7.00000i −0.820538 0.273513i
\(656\) 0 0
\(657\) 3.00000 + 3.00000i 0.117041 + 0.117041i
\(658\) 0 0
\(659\) −11.0000 + 11.0000i −0.428499 + 0.428499i −0.888117 0.459618i \(-0.847986\pi\)
0.459618 + 0.888117i \(0.347986\pi\)
\(660\) 0 0
\(661\) 25.0000 + 25.0000i 0.972387 + 0.972387i 0.999629 0.0272416i \(-0.00867234\pi\)
−0.0272416 + 0.999629i \(0.508672\pi\)
\(662\) 0 0
\(663\) −4.00000 + 4.00000i −0.155347 + 0.155347i
\(664\) 0 0
\(665\) −36.0000 + 18.0000i −1.39602 + 0.698010i
\(666\) 0 0
\(667\) 14.0000 0.542082
\(668\) 0 0
\(669\) −18.0000 18.0000i −0.695920 0.695920i
\(670\) 0 0
\(671\) 2.00000i 0.0772091i
\(672\) 0 0
\(673\) 1.00000 1.00000i 0.0385472 0.0385472i −0.687570 0.726118i \(-0.741323\pi\)
0.726118 + 0.687570i \(0.241323\pi\)
\(674\) 0 0
\(675\) 12.0000 16.0000i 0.461880 0.615840i
\(676\) 0 0
\(677\) 42.0000i 1.61419i 0.590421 + 0.807096i \(0.298962\pi\)
−0.590421 + 0.807096i \(0.701038\pi\)
\(678\) 0 0
\(679\) 66.0000i 2.53285i
\(680\) 0 0
\(681\) 24.0000i 0.919682i
\(682\) 0 0
\(683\) 4.00000i 0.153056i 0.997067 + 0.0765279i \(0.0243834\pi\)
−0.997067 + 0.0765279i \(0.975617\pi\)
\(684\) 0 0
\(685\) −9.00000 + 27.0000i −0.343872 + 1.03162i
\(686\) 0 0
\(687\) 2.00000 2.00000i 0.0763048 0.0763048i
\(688\) 0 0
\(689\) 16.0000i 0.609551i
\(690\) 0 0
\(691\) 21.0000 + 21.0000i 0.798878 + 0.798878i 0.982919 0.184041i \(-0.0589179\pi\)
−0.184041 + 0.982919i \(0.558918\pi\)
\(692\) 0 0
\(693\) −6.00000 −0.227921
\(694\) 0 0
\(695\) −27.0000 9.00000i −1.02417 0.341389i
\(696\) 0 0
\(697\) −4.00000 + 4.00000i −0.151511 + 0.151511i
\(698\) 0 0
\(699\) 18.0000 + 18.0000i 0.680823 + 0.680823i
\(700\) 0 0
\(701\) 13.0000 13.0000i 0.491003 0.491003i −0.417619 0.908622i \(-0.637135\pi\)
0.908622 + 0.417619i \(0.137135\pi\)
\(702\) 0 0
\(703\) −18.0000 18.0000i −0.678883 0.678883i
\(704\) 0 0
\(705\) −14.0000 + 42.0000i −0.527271 + 1.58181i
\(706\) 0 0
\(707\) 30.0000i 1.12827i
\(708\) 0 0
\(709\) −1.00000 + 1.00000i −0.0375558 + 0.0375558i −0.725635 0.688080i \(-0.758454\pi\)
0.688080 + 0.725635i \(0.258454\pi\)
\(710\) 0 0
\(711\) −8.00000 −0.300023
\(712\) 0 0
\(713\) 2.00000 + 2.00000i 0.0749006 + 0.0749006i
\(714\) 0 0
\(715\) 6.00000 + 2.00000i 0.224387 + 0.0747958i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 32.0000 1.19340 0.596699 0.802465i \(-0.296479\pi\)
0.596699 + 0.802465i \(0.296479\pi\)
\(720\) 0 0
\(721\) 30.0000 1.11726
\(722\) 0 0
\(723\) 28.0000 1.04133
\(724\) 0 0
\(725\) 49.0000 7.00000i 1.81981 0.259973i
\(726\) 0 0
\(727\) 7.00000 + 7.00000i 0.259616 + 0.259616i 0.824898 0.565282i \(-0.191233\pi\)
−0.565282 + 0.824898i \(0.691233\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 4.00000 4.00000i 0.147945 0.147945i
\(732\) 0 0
\(733\) 30.0000i 1.10808i −0.832492 0.554038i \(-0.813086\pi\)
0.832492 0.554038i \(-0.186914\pi\)
\(734\) 0 0
\(735\) −22.0000 44.0000i −0.811482 1.62296i
\(736\) 0 0
\(737\) −4.00000 4.00000i −0.147342 0.147342i
\(738\) 0 0
\(739\) 21.0000 21.0000i 0.772497 0.772497i −0.206045 0.978543i \(-0.566059\pi\)
0.978543 + 0.206045i \(0.0660593\pi\)
\(740\) 0 0
\(741\) −12.0000 12.0000i −0.440831 0.440831i
\(742\) 0 0
\(743\) −31.0000 + 31.0000i −1.13728 + 1.13728i −0.148344 + 0.988936i \(0.547394\pi\)
−0.988936 + 0.148344i \(0.952606\pi\)
\(744\) 0 0
\(745\) −1.00000 + 3.00000i −0.0366372 + 0.109911i
\(746\) 0 0
\(747\) −2.00000 −0.0731762
\(748\) 0 0
\(749\) −18.0000 18.0000i −0.657706 0.657706i
\(750\) 0 0
\(751\) 50.0000i 1.82453i 0.409605 + 0.912263i \(0.365667\pi\)
−0.409605 + 0.912263i \(0.634333\pi\)
\(752\) 0 0
\(753\) −22.0000 + 22.0000i −0.801725 + 0.801725i
\(754\) 0 0
\(755\) −16.0000 + 8.00000i −0.582300 + 0.291150i
\(756\) 0 0
\(757\) 2.00000i 0.0726912i −0.999339 0.0363456i \(-0.988428\pi\)
0.999339 0.0363456i \(-0.0115717\pi\)
\(758\) 0 0
\(759\) 4.00000i 0.145191i
\(760\) 0 0
\(761\) 40.0000i 1.45000i −0.688749 0.724999i \(-0.741840\pi\)
0.688749 0.724999i \(-0.258160\pi\)
\(762\) 0 0
\(763\) 30.0000i 1.08607i
\(764\) 0 0
\(765\) 3.00000 + 1.00000i 0.108465 + 0.0361551i
\(766\) 0 0
\(767\) 6.00000 6.00000i 0.216647 0.216647i
\(768\) 0 0
\(769\) 4.00000i 0.144244i 0.997396 + 0.0721218i \(0.0229770\pi\)
−0.997396 + 0.0721218i \(0.977023\pi\)
\(770\) 0 0
\(771\) −26.0000 26.0000i −0.936367 0.936367i
\(772\) 0 0
\(773\) −48.0000 −1.72644 −0.863220 0.504828i \(-0.831556\pi\)
−0.863220 + 0.504828i \(0.831556\pi\)
\(774\) 0 0
\(775\) 8.00000 + 6.00000i 0.287368 + 0.215526i
\(776\) 0 0
\(777\) 36.0000 36.0000i 1.29149 1.29149i
\(778\) 0 0
\(779\) −12.0000 12.0000i −0.429945 0.429945i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 28.0000 + 28.0000i 1.00064 + 1.00064i
\(784\) 0 0
\(785\) −40.0000 + 20.0000i −1.42766 + 0.713831i
\(786\) 0 0
\(787\) 4.00000i 0.142585i −0.997455 0.0712923i \(-0.977288\pi\)
0.997455 0.0712923i \(-0.0227123\pi\)
\(788\) 0 0
\(789\) 14.0000 14.0000i 0.498413 0.498413i
\(790\) 0 0
\(791\) 78.0000 2.77336
\(792\) 0 0
\(793\) −2.00000 2.00000i −0.0710221 0.0710221i
\(794\) 0 0
\(795\) −32.0000 + 16.0000i −1.13492 + 0.567462i
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 14.0000 0.495284
\(800\) 0 0
\(801\) −6.00000 −0.212000
\(802\) 0 0
\(803\) −6.00000 −0.211735
\(804\) 0 0
\(805\) 12.0000 6.00000i 0.422944 0.211472i
\(806\) 0 0
\(807\) 2.00000 + 2.00000i 0.0704033 + 0.0704033i
\(808\) 0 0
\(809\) −26.0000 −0.914111 −0.457056 0.889438i \(-0.651096\pi\)
−0.457056 + 0.889438i \(0.651096\pi\)
\(810\) 0 0
\(811\) −9.00000 + 9.00000i −0.316033 + 0.316033i −0.847241 0.531208i \(-0.821738\pi\)
0.531208 + 0.847241i \(0.321738\pi\)
\(812\) 0 0
\(813\) 60.0000i 2.10429i
\(814\) 0 0
\(815\) 28.0000 14.0000i 0.980797 0.490399i
\(816\) 0 0
\(817\) 12.0000 + 12.0000i 0.419827 + 0.419827i
\(818\) 0 0
\(819\) 6.00000 6.00000i 0.209657 0.209657i
\(820\) 0 0
\(821\) −15.0000 15.0000i −0.523504 0.523504i 0.395124 0.918628i \(-0.370702\pi\)
−0.918628 + 0.395124i \(0.870702\pi\)
\(822\) 0 0
\(823\) 21.0000 21.0000i 0.732014 0.732014i −0.239004 0.971018i \(-0.576821\pi\)
0.971018 + 0.239004i \(0.0768211\pi\)
\(824\) 0 0
\(825\) −2.00000 14.0000i −0.0696311 0.487417i
\(826\) 0 0
\(827\) −54.0000 −1.87776 −0.938882 0.344239i \(-0.888137\pi\)
−0.938882 + 0.344239i \(0.888137\pi\)
\(828\) 0 0
\(829\) 27.0000 + 27.0000i 0.937749 + 0.937749i 0.998173 0.0604240i \(-0.0192453\pi\)
−0.0604240 + 0.998173i \(0.519245\pi\)
\(830\) 0 0
\(831\) 36.0000i 1.24883i
\(832\) 0 0
\(833\) −11.0000 + 11.0000i −0.381127 + 0.381127i
\(834\) 0 0
\(835\) 9.00000 + 3.00000i 0.311458 + 0.103819i
\(836\) 0 0
\(837\) 8.00000i 0.276520i
\(838\) 0 0
\(839\) 18.0000i 0.621429i −0.950503 0.310715i \(-0.899432\pi\)
0.950503 0.310715i \(-0.100568\pi\)
\(840\) 0 0
\(841\) 69.0000i 2.37931i
\(842\) 0 0
\(843\) 32.0000i 1.10214i
\(844\) 0 0
\(845\) 18.0000 9.00000i 0.619219 0.309609i
\(846\) 0 0
\(847\) −27.0000 + 27.0000i −0.927731 + 0.927731i
\(848\) 0 0
\(849\) 24.0000i 0.823678i
\(850\) 0 0
\(851\) 6.00000 + 6.00000i 0.205677 + 0.205677i
\(852\) 0 0
\(853\) −16.0000 −0.547830 −0.273915 0.961754i \(-0.588319\pi\)
−0.273915 + 0.961754i \(0.588319\pi\)
\(854\) 0 0
\(855\) −3.00000 + 9.00000i −0.102598 + 0.307794i
\(856\) 0 0
\(857\) 27.0000 27.0000i 0.922302 0.922302i −0.0748894 0.997192i \(-0.523860\pi\)
0.997192 + 0.0748894i \(0.0238604\pi\)
\(858\) 0 0
\(859\) 19.0000 + 19.0000i 0.648272 + 0.648272i 0.952575 0.304303i \(-0.0984237\pi\)
−0.304303 + 0.952575i \(0.598424\pi\)
\(860\) 0 0
\(861\) 24.0000 24.0000i 0.817918 0.817918i
\(862\) 0 0
\(863\) 5.00000 + 5.00000i 0.170202 + 0.170202i 0.787068 0.616866i \(-0.211598\pi\)
−0.616866 + 0.787068i \(0.711598\pi\)
\(864\) 0 0
\(865\) −6.00000 12.0000i −0.204006 0.408012i
\(866\) 0 0
\(867\) 30.0000i 1.01885i
\(868\) 0 0
\(869\) 8.00000 8.00000i 0.271381 0.271381i
\(870\) 0 0
\(871\) 8.00000 0.271070
\(872\) 0 0
\(873\) −11.0000 11.0000i −0.372294 0.372294i
\(874\) 0 0
\(875\) 39.0000 27.0000i 1.31844 0.912767i
\(876\) 0 0
\(877\) −4.00000 −0.135070 −0.0675352 0.997717i \(-0.521513\pi\)
−0.0675352 + 0.997717i \(0.521513\pi\)
\(878\) 0 0
\(879\) −24.0000 −0.809500
\(880\) 0 0
\(881\) 46.0000 1.54978 0.774890 0.632096i \(-0.217805\pi\)
0.774890 + 0.632096i \(0.217805\pi\)
\(882\) 0 0
\(883\) 6.00000 0.201916 0.100958 0.994891i \(-0.467809\pi\)
0.100958 + 0.994891i \(0.467809\pi\)
\(884\) 0 0
\(885\) −18.0000 6.00000i −0.605063 0.201688i
\(886\) 0 0
\(887\) 23.0000 + 23.0000i 0.772264 + 0.772264i 0.978502 0.206238i \(-0.0661220\pi\)
−0.206238 + 0.978502i \(0.566122\pi\)
\(888\) 0 0
\(889\) 42.0000 1.40863
\(890\) 0 0
\(891\) 11.0000 11.0000i 0.368514 0.368514i
\(892\) 0 0
\(893\) 42.0000i 1.40548i
\(894\) 0 0
\(895\) 5.00000 15.0000i 0.167132 0.501395i
\(896\) 0 0
\(897\) 4.00000 + 4.00000i 0.133556 + 0.133556i
\(898\) 0 0
\(899\) −14.0000 + 14.0000i −0.466926 + 0.466926i
\(900\) 0 0
\(901\) 8.00000 + 8.00000i 0.266519 + 0.266519i
\(902\) 0 0
\(903\) −24.0000 + 24.0000i −0.798670 + 0.798670i
\(904\) 0 0
\(905\) −9.00000 3.00000i −0.299170 0.0997234i
\(906\) 0 0
\(907\) 50.0000 1.66022 0.830111 0.557598i \(-0.188277\pi\)
0.830111 + 0.557598i \(0.188277\pi\)
\(908\) 0 0
\(909\) 5.00000 + 5.00000i 0.165840 + 0.165840i
\(910\) 0 0
\(911\) 38.0000i 1.25900i −0.777002 0.629498i \(-0.783261\pi\)
0.777002 0.629498i \(-0.216739\pi\)
\(912\) 0 0
\(913\) 2.00000 2.00000i 0.0661903 0.0661903i
\(914\) 0 0
\(915\) −2.00000 + 6.00000i −0.0661180 + 0.198354i
\(916\) 0 0
\(917\) 42.0000i 1.38696i
\(918\) 0 0
\(919\) 46.0000i 1.51740i 0.651440 + 0.758700i \(0.274165\pi\)
−0.651440 + 0.758700i \(0.725835\pi\)
\(920\) 0 0
\(921\) 8.00000i 0.263609i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 24.0000 + 18.0000i 0.789115 + 0.591836i
\(926\) 0 0
\(927\) 5.00000 5.00000i 0.164222 0.164222i
\(928\) 0 0
\(929\) 16.0000i 0.524943i −0.964940 0.262471i \(-0.915462\pi\)
0.964940 0.262471i \(-0.0845376\pi\)
\(930\) 0 0
\(931\) −33.0000 33.0000i −1.08153 1.08153i
\(932\) 0 0
\(933\) 32.0000 1.04763
\(934\) 0 0
\(935\) −4.00000 + 2.00000i −0.130814 + 0.0654070i
\(936\) 0 0
\(937\) 3.00000 3.00000i 0.0980057 0.0980057i −0.656404 0.754410i \(-0.727923\pi\)
0.754410 + 0.656404i \(0.227923\pi\)
\(938\) 0 0
\(939\) 26.0000 + 26.0000i 0.848478 + 0.848478i
\(940\) 0 0
\(941\) 1.00000 1.00000i 0.0325991 0.0325991i −0.690619 0.723218i \(-0.742662\pi\)
0.723218 + 0.690619i \(0.242662\pi\)
\(942\) 0 0
\(943\) 4.00000 + 4.00000i 0.130258 + 0.130258i
\(944\) 0 0
\(945\) 36.0000 + 12.0000i 1.17108 + 0.390360i
\(946\) 0 0
\(947\) 28.0000i 0.909878i 0.890523 + 0.454939i \(0.150339\pi\)
−0.890523 + 0.454939i \(0.849661\pi\)
\(948\) 0 0
\(949\) 6.00000 6.00000i 0.194768 0.194768i
\(950\) 0 0
\(951\) 16.0000 0.518836
\(952\) 0 0
\(953\) 31.0000 + 31.0000i 1.00419 + 1.00419i 0.999991 + 0.00419731i \(0.00133605\pi\)
0.00419731 + 0.999991i \(0.498664\pi\)
\(954\) 0 0
\(955\) 18.0000 + 36.0000i 0.582466 + 1.16493i
\(956\) 0 0
\(957\) 28.0000 0.905111
\(958\) 0 0
\(959\) −54.0000 −1.74375
\(960\) 0 0
\(961\) 27.0000 0.870968
\(962\) 0 0
\(963\) −6.00000 −0.193347
\(964\) 0 0
\(965\) −15.0000 + 45.0000i −0.482867 + 1.44860i
\(966\) 0 0
\(967\) −33.0000 33.0000i −1.06121 1.06121i −0.998000 0.0632081i \(-0.979867\pi\)
−0.0632081 0.998000i \(-0.520133\pi\)
\(968\) 0 0
\(969\) 12.0000 0.385496
\(970\) 0 0
\(971\) 31.0000 31.0000i 0.994837 0.994837i −0.00514940 0.999987i \(-0.501639\pi\)
0.999987 + 0.00514940i \(0.00163911\pi\)
\(972\) 0 0
\(973\) 54.0000i 1.73116i
\(974\) 0 0
\(975\) 16.0000 + 12.0000i 0.512410 + 0.384308i
\(976\) 0 0
\(977\) 17.0000 + 17.0000i 0.543878 + 0.543878i 0.924663 0.380785i \(-0.124346\pi\)
−0.380785 + 0.924663i \(0.624346\pi\)
\(978\) 0 0
\(979\) 6.00000 6.00000i 0.191761 0.191761i
\(980\) 0 0
\(981\) −5.00000 5.00000i −0.159638 0.159638i
\(982\) 0 0
\(983\) 5.00000 5.00000i 0.159475 0.159475i −0.622859 0.782334i \(-0.714029\pi\)
0.782334 + 0.622859i \(0.214029\pi\)
\(984\) 0 0
\(985\) −6.00000 12.0000i −0.191176 0.382352i
\(986\) 0 0
\(987\) −84.0000 −2.67375
\(988\) 0 0
\(989\) −4.00000 4.00000i −0.127193 0.127193i
\(990\) 0 0
\(991\) 10.0000i 0.317660i 0.987306 + 0.158830i \(0.0507723\pi\)
−0.987306 + 0.158830i \(0.949228\pi\)
\(992\) 0 0
\(993\) 42.0000 42.0000i 1.33283 1.33283i
\(994\) 0 0
\(995\) −10.0000 20.0000i −0.317021 0.634043i
\(996\) 0 0
\(997\) 22.0000i 0.696747i −0.937356 0.348373i \(-0.886734\pi\)
0.937356 0.348373i \(-0.113266\pi\)
\(998\) 0 0
\(999\) 24.0000i 0.759326i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 640.2.s.a.287.1 2
4.3 odd 2 640.2.s.b.287.1 2
5.3 odd 4 640.2.j.b.543.1 2
8.3 odd 2 80.2.s.a.27.1 yes 2
8.5 even 2 320.2.s.a.207.1 2
16.3 odd 4 640.2.j.b.607.1 2
16.5 even 4 80.2.j.a.67.1 yes 2
16.11 odd 4 320.2.j.a.47.1 2
16.13 even 4 640.2.j.a.607.1 2
20.3 even 4 640.2.j.a.543.1 2
24.11 even 2 720.2.z.d.667.1 2
40.3 even 4 80.2.j.a.43.1 2
40.13 odd 4 320.2.j.a.143.1 2
40.19 odd 2 400.2.s.a.107.1 2
40.27 even 4 400.2.j.a.43.1 2
40.29 even 2 1600.2.s.a.207.1 2
40.37 odd 4 1600.2.j.a.143.1 2
48.5 odd 4 720.2.bd.a.307.1 2
80.3 even 4 inner 640.2.s.a.223.1 2
80.13 odd 4 640.2.s.b.223.1 2
80.27 even 4 1600.2.s.a.943.1 2
80.37 odd 4 400.2.s.a.243.1 2
80.43 even 4 320.2.s.a.303.1 2
80.53 odd 4 80.2.s.a.3.1 yes 2
80.59 odd 4 1600.2.j.a.1007.1 2
80.69 even 4 400.2.j.a.307.1 2
120.83 odd 4 720.2.bd.a.523.1 2
240.53 even 4 720.2.z.d.163.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
80.2.j.a.43.1 2 40.3 even 4
80.2.j.a.67.1 yes 2 16.5 even 4
80.2.s.a.3.1 yes 2 80.53 odd 4
80.2.s.a.27.1 yes 2 8.3 odd 2
320.2.j.a.47.1 2 16.11 odd 4
320.2.j.a.143.1 2 40.13 odd 4
320.2.s.a.207.1 2 8.5 even 2
320.2.s.a.303.1 2 80.43 even 4
400.2.j.a.43.1 2 40.27 even 4
400.2.j.a.307.1 2 80.69 even 4
400.2.s.a.107.1 2 40.19 odd 2
400.2.s.a.243.1 2 80.37 odd 4
640.2.j.a.543.1 2 20.3 even 4
640.2.j.a.607.1 2 16.13 even 4
640.2.j.b.543.1 2 5.3 odd 4
640.2.j.b.607.1 2 16.3 odd 4
640.2.s.a.223.1 2 80.3 even 4 inner
640.2.s.a.287.1 2 1.1 even 1 trivial
640.2.s.b.223.1 2 80.13 odd 4
640.2.s.b.287.1 2 4.3 odd 2
720.2.z.d.163.1 2 240.53 even 4
720.2.z.d.667.1 2 24.11 even 2
720.2.bd.a.307.1 2 48.5 odd 4
720.2.bd.a.523.1 2 120.83 odd 4
1600.2.j.a.143.1 2 40.37 odd 4
1600.2.j.a.1007.1 2 80.59 odd 4
1600.2.s.a.207.1 2 40.29 even 2
1600.2.s.a.943.1 2 80.27 even 4