Properties

Label 640.2.j.a.607.1
Level $640$
Weight $2$
Character 640.607
Analytic conductor $5.110$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [640,2,Mod(543,640)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(640, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("640.543");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 640 = 2^{7} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 640.j (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.11042572936\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 607.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 640.607
Dual form 640.2.j.a.543.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000i q^{3} +(-1.00000 - 2.00000i) q^{5} +(-3.00000 - 3.00000i) q^{7} -1.00000 q^{9} +(1.00000 + 1.00000i) q^{11} +2.00000 q^{13} +(-4.00000 + 2.00000i) q^{15} +(1.00000 + 1.00000i) q^{17} +(-3.00000 - 3.00000i) q^{19} +(-6.00000 + 6.00000i) q^{21} +(-1.00000 + 1.00000i) q^{23} +(-3.00000 + 4.00000i) q^{25} -4.00000i q^{27} +(-7.00000 + 7.00000i) q^{29} +2.00000i q^{31} +(2.00000 - 2.00000i) q^{33} +(-3.00000 + 9.00000i) q^{35} +6.00000 q^{37} -4.00000i q^{39} -4.00000i q^{41} -4.00000 q^{43} +(1.00000 + 2.00000i) q^{45} +(7.00000 - 7.00000i) q^{47} +11.0000i q^{49} +(2.00000 - 2.00000i) q^{51} -8.00000i q^{53} +(1.00000 - 3.00000i) q^{55} +(-6.00000 + 6.00000i) q^{57} +(3.00000 - 3.00000i) q^{59} +(1.00000 + 1.00000i) q^{61} +(3.00000 + 3.00000i) q^{63} +(-2.00000 - 4.00000i) q^{65} -4.00000 q^{67} +(2.00000 + 2.00000i) q^{69} +(-3.00000 - 3.00000i) q^{73} +(8.00000 + 6.00000i) q^{75} -6.00000i q^{77} -8.00000 q^{79} -11.0000 q^{81} -2.00000i q^{83} +(1.00000 - 3.00000i) q^{85} +(14.0000 + 14.0000i) q^{87} +6.00000 q^{89} +(-6.00000 - 6.00000i) q^{91} +4.00000 q^{93} +(-3.00000 + 9.00000i) q^{95} +(-11.0000 - 11.0000i) q^{97} +(-1.00000 - 1.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{5} - 6 q^{7} - 2 q^{9} + 2 q^{11} + 4 q^{13} - 8 q^{15} + 2 q^{17} - 6 q^{19} - 12 q^{21} - 2 q^{23} - 6 q^{25} - 14 q^{29} + 4 q^{33} - 6 q^{35} + 12 q^{37} - 8 q^{43} + 2 q^{45} + 14 q^{47}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/640\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.00000i 1.15470i −0.816497 0.577350i \(-0.804087\pi\)
0.816497 0.577350i \(-0.195913\pi\)
\(4\) 0 0
\(5\) −1.00000 2.00000i −0.447214 0.894427i
\(6\) 0 0
\(7\) −3.00000 3.00000i −1.13389 1.13389i −0.989524 0.144370i \(-0.953885\pi\)
−0.144370 0.989524i \(-0.546115\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 1.00000 + 1.00000i 0.301511 + 0.301511i 0.841605 0.540094i \(-0.181611\pi\)
−0.540094 + 0.841605i \(0.681611\pi\)
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) −4.00000 + 2.00000i −1.03280 + 0.516398i
\(16\) 0 0
\(17\) 1.00000 + 1.00000i 0.242536 + 0.242536i 0.817898 0.575363i \(-0.195139\pi\)
−0.575363 + 0.817898i \(0.695139\pi\)
\(18\) 0 0
\(19\) −3.00000 3.00000i −0.688247 0.688247i 0.273597 0.961844i \(-0.411786\pi\)
−0.961844 + 0.273597i \(0.911786\pi\)
\(20\) 0 0
\(21\) −6.00000 + 6.00000i −1.30931 + 1.30931i
\(22\) 0 0
\(23\) −1.00000 + 1.00000i −0.208514 + 0.208514i −0.803636 0.595121i \(-0.797104\pi\)
0.595121 + 0.803636i \(0.297104\pi\)
\(24\) 0 0
\(25\) −3.00000 + 4.00000i −0.600000 + 0.800000i
\(26\) 0 0
\(27\) 4.00000i 0.769800i
\(28\) 0 0
\(29\) −7.00000 + 7.00000i −1.29987 + 1.29987i −0.371391 + 0.928477i \(0.621119\pi\)
−0.928477 + 0.371391i \(0.878881\pi\)
\(30\) 0 0
\(31\) 2.00000i 0.359211i 0.983739 + 0.179605i \(0.0574821\pi\)
−0.983739 + 0.179605i \(0.942518\pi\)
\(32\) 0 0
\(33\) 2.00000 2.00000i 0.348155 0.348155i
\(34\) 0 0
\(35\) −3.00000 + 9.00000i −0.507093 + 1.52128i
\(36\) 0 0
\(37\) 6.00000 0.986394 0.493197 0.869918i \(-0.335828\pi\)
0.493197 + 0.869918i \(0.335828\pi\)
\(38\) 0 0
\(39\) 4.00000i 0.640513i
\(40\) 0 0
\(41\) 4.00000i 0.624695i −0.949968 0.312348i \(-0.898885\pi\)
0.949968 0.312348i \(-0.101115\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 0 0
\(45\) 1.00000 + 2.00000i 0.149071 + 0.298142i
\(46\) 0 0
\(47\) 7.00000 7.00000i 1.02105 1.02105i 0.0212814 0.999774i \(-0.493225\pi\)
0.999774 0.0212814i \(-0.00677460\pi\)
\(48\) 0 0
\(49\) 11.0000i 1.57143i
\(50\) 0 0
\(51\) 2.00000 2.00000i 0.280056 0.280056i
\(52\) 0 0
\(53\) 8.00000i 1.09888i −0.835532 0.549442i \(-0.814840\pi\)
0.835532 0.549442i \(-0.185160\pi\)
\(54\) 0 0
\(55\) 1.00000 3.00000i 0.134840 0.404520i
\(56\) 0 0
\(57\) −6.00000 + 6.00000i −0.794719 + 0.794719i
\(58\) 0 0
\(59\) 3.00000 3.00000i 0.390567 0.390567i −0.484323 0.874889i \(-0.660934\pi\)
0.874889 + 0.484323i \(0.160934\pi\)
\(60\) 0 0
\(61\) 1.00000 + 1.00000i 0.128037 + 0.128037i 0.768221 0.640184i \(-0.221142\pi\)
−0.640184 + 0.768221i \(0.721142\pi\)
\(62\) 0 0
\(63\) 3.00000 + 3.00000i 0.377964 + 0.377964i
\(64\) 0 0
\(65\) −2.00000 4.00000i −0.248069 0.496139i
\(66\) 0 0
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) 0 0
\(69\) 2.00000 + 2.00000i 0.240772 + 0.240772i
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −3.00000 3.00000i −0.351123 0.351123i 0.509404 0.860527i \(-0.329866\pi\)
−0.860527 + 0.509404i \(0.829866\pi\)
\(74\) 0 0
\(75\) 8.00000 + 6.00000i 0.923760 + 0.692820i
\(76\) 0 0
\(77\) 6.00000i 0.683763i
\(78\) 0 0
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) 0 0
\(81\) −11.0000 −1.22222
\(82\) 0 0
\(83\) 2.00000i 0.219529i −0.993958 0.109764i \(-0.964990\pi\)
0.993958 0.109764i \(-0.0350096\pi\)
\(84\) 0 0
\(85\) 1.00000 3.00000i 0.108465 0.325396i
\(86\) 0 0
\(87\) 14.0000 + 14.0000i 1.50096 + 1.50096i
\(88\) 0 0
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) −6.00000 6.00000i −0.628971 0.628971i
\(92\) 0 0
\(93\) 4.00000 0.414781
\(94\) 0 0
\(95\) −3.00000 + 9.00000i −0.307794 + 0.923381i
\(96\) 0 0
\(97\) −11.0000 11.0000i −1.11688 1.11688i −0.992196 0.124684i \(-0.960208\pi\)
−0.124684 0.992196i \(-0.539792\pi\)
\(98\) 0 0
\(99\) −1.00000 1.00000i −0.100504 0.100504i
\(100\) 0 0
\(101\) 5.00000 5.00000i 0.497519 0.497519i −0.413146 0.910665i \(-0.635570\pi\)
0.910665 + 0.413146i \(0.135570\pi\)
\(102\) 0 0
\(103\) −5.00000 + 5.00000i −0.492665 + 0.492665i −0.909145 0.416480i \(-0.863264\pi\)
0.416480 + 0.909145i \(0.363264\pi\)
\(104\) 0 0
\(105\) 18.0000 + 6.00000i 1.75662 + 0.585540i
\(106\) 0 0
\(107\) 6.00000i 0.580042i 0.957020 + 0.290021i \(0.0936623\pi\)
−0.957020 + 0.290021i \(0.906338\pi\)
\(108\) 0 0
\(109\) 5.00000 5.00000i 0.478913 0.478913i −0.425871 0.904784i \(-0.640032\pi\)
0.904784 + 0.425871i \(0.140032\pi\)
\(110\) 0 0
\(111\) 12.0000i 1.13899i
\(112\) 0 0
\(113\) 13.0000 13.0000i 1.22294 1.22294i 0.256354 0.966583i \(-0.417479\pi\)
0.966583 0.256354i \(-0.0825214\pi\)
\(114\) 0 0
\(115\) 3.00000 + 1.00000i 0.279751 + 0.0932505i
\(116\) 0 0
\(117\) −2.00000 −0.184900
\(118\) 0 0
\(119\) 6.00000i 0.550019i
\(120\) 0 0
\(121\) 9.00000i 0.818182i
\(122\) 0 0
\(123\) −8.00000 −0.721336
\(124\) 0 0
\(125\) 11.0000 + 2.00000i 0.983870 + 0.178885i
\(126\) 0 0
\(127\) 7.00000 7.00000i 0.621150 0.621150i −0.324676 0.945825i \(-0.605255\pi\)
0.945825 + 0.324676i \(0.105255\pi\)
\(128\) 0 0
\(129\) 8.00000i 0.704361i
\(130\) 0 0
\(131\) 7.00000 7.00000i 0.611593 0.611593i −0.331768 0.943361i \(-0.607645\pi\)
0.943361 + 0.331768i \(0.107645\pi\)
\(132\) 0 0
\(133\) 18.0000i 1.56080i
\(134\) 0 0
\(135\) −8.00000 + 4.00000i −0.688530 + 0.344265i
\(136\) 0 0
\(137\) 9.00000 9.00000i 0.768922 0.768922i −0.208995 0.977917i \(-0.567019\pi\)
0.977917 + 0.208995i \(0.0670192\pi\)
\(138\) 0 0
\(139\) −9.00000 + 9.00000i −0.763370 + 0.763370i −0.976930 0.213560i \(-0.931494\pi\)
0.213560 + 0.976930i \(0.431494\pi\)
\(140\) 0 0
\(141\) −14.0000 14.0000i −1.17901 1.17901i
\(142\) 0 0
\(143\) 2.00000 + 2.00000i 0.167248 + 0.167248i
\(144\) 0 0
\(145\) 21.0000 + 7.00000i 1.74396 + 0.581318i
\(146\) 0 0
\(147\) 22.0000 1.81453
\(148\) 0 0
\(149\) 1.00000 + 1.00000i 0.0819232 + 0.0819232i 0.746881 0.664958i \(-0.231550\pi\)
−0.664958 + 0.746881i \(0.731550\pi\)
\(150\) 0 0
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) 0 0
\(153\) −1.00000 1.00000i −0.0808452 0.0808452i
\(154\) 0 0
\(155\) 4.00000 2.00000i 0.321288 0.160644i
\(156\) 0 0
\(157\) 20.0000i 1.59617i −0.602542 0.798087i \(-0.705846\pi\)
0.602542 0.798087i \(-0.294154\pi\)
\(158\) 0 0
\(159\) −16.0000 −1.26888
\(160\) 0 0
\(161\) 6.00000 0.472866
\(162\) 0 0
\(163\) 14.0000i 1.09656i 0.836293 + 0.548282i \(0.184718\pi\)
−0.836293 + 0.548282i \(0.815282\pi\)
\(164\) 0 0
\(165\) −6.00000 2.00000i −0.467099 0.155700i
\(166\) 0 0
\(167\) −3.00000 3.00000i −0.232147 0.232147i 0.581441 0.813588i \(-0.302489\pi\)
−0.813588 + 0.581441i \(0.802489\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 3.00000 + 3.00000i 0.229416 + 0.229416i
\(172\) 0 0
\(173\) 6.00000 0.456172 0.228086 0.973641i \(-0.426753\pi\)
0.228086 + 0.973641i \(0.426753\pi\)
\(174\) 0 0
\(175\) 21.0000 3.00000i 1.58745 0.226779i
\(176\) 0 0
\(177\) −6.00000 6.00000i −0.450988 0.450988i
\(178\) 0 0
\(179\) 5.00000 + 5.00000i 0.373718 + 0.373718i 0.868829 0.495112i \(-0.164873\pi\)
−0.495112 + 0.868829i \(0.664873\pi\)
\(180\) 0 0
\(181\) −3.00000 + 3.00000i −0.222988 + 0.222988i −0.809756 0.586767i \(-0.800400\pi\)
0.586767 + 0.809756i \(0.300400\pi\)
\(182\) 0 0
\(183\) 2.00000 2.00000i 0.147844 0.147844i
\(184\) 0 0
\(185\) −6.00000 12.0000i −0.441129 0.882258i
\(186\) 0 0
\(187\) 2.00000i 0.146254i
\(188\) 0 0
\(189\) −12.0000 + 12.0000i −0.872872 + 0.872872i
\(190\) 0 0
\(191\) 18.0000i 1.30243i 0.758891 + 0.651217i \(0.225741\pi\)
−0.758891 + 0.651217i \(0.774259\pi\)
\(192\) 0 0
\(193\) −15.0000 + 15.0000i −1.07972 + 1.07972i −0.0831899 + 0.996534i \(0.526511\pi\)
−0.996534 + 0.0831899i \(0.973489\pi\)
\(194\) 0 0
\(195\) −8.00000 + 4.00000i −0.572892 + 0.286446i
\(196\) 0 0
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 0 0
\(199\) 10.0000i 0.708881i 0.935079 + 0.354441i \(0.115329\pi\)
−0.935079 + 0.354441i \(0.884671\pi\)
\(200\) 0 0
\(201\) 8.00000i 0.564276i
\(202\) 0 0
\(203\) 42.0000 2.94782
\(204\) 0 0
\(205\) −8.00000 + 4.00000i −0.558744 + 0.279372i
\(206\) 0 0
\(207\) 1.00000 1.00000i 0.0695048 0.0695048i
\(208\) 0 0
\(209\) 6.00000i 0.415029i
\(210\) 0 0
\(211\) 19.0000 19.0000i 1.30801 1.30801i 0.385167 0.922847i \(-0.374144\pi\)
0.922847 0.385167i \(-0.125856\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4.00000 + 8.00000i 0.272798 + 0.545595i
\(216\) 0 0
\(217\) 6.00000 6.00000i 0.407307 0.407307i
\(218\) 0 0
\(219\) −6.00000 + 6.00000i −0.405442 + 0.405442i
\(220\) 0 0
\(221\) 2.00000 + 2.00000i 0.134535 + 0.134535i
\(222\) 0 0
\(223\) 9.00000 + 9.00000i 0.602685 + 0.602685i 0.941024 0.338340i \(-0.109865\pi\)
−0.338340 + 0.941024i \(0.609865\pi\)
\(224\) 0 0
\(225\) 3.00000 4.00000i 0.200000 0.266667i
\(226\) 0 0
\(227\) −12.0000 −0.796468 −0.398234 0.917284i \(-0.630377\pi\)
−0.398234 + 0.917284i \(0.630377\pi\)
\(228\) 0 0
\(229\) 1.00000 + 1.00000i 0.0660819 + 0.0660819i 0.739375 0.673293i \(-0.235121\pi\)
−0.673293 + 0.739375i \(0.735121\pi\)
\(230\) 0 0
\(231\) −12.0000 −0.789542
\(232\) 0 0
\(233\) 9.00000 + 9.00000i 0.589610 + 0.589610i 0.937526 0.347916i \(-0.113111\pi\)
−0.347916 + 0.937526i \(0.613111\pi\)
\(234\) 0 0
\(235\) −21.0000 7.00000i −1.36989 0.456630i
\(236\) 0 0
\(237\) 16.0000i 1.03931i
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −14.0000 −0.901819 −0.450910 0.892570i \(-0.648900\pi\)
−0.450910 + 0.892570i \(0.648900\pi\)
\(242\) 0 0
\(243\) 10.0000i 0.641500i
\(244\) 0 0
\(245\) 22.0000 11.0000i 1.40553 0.702764i
\(246\) 0 0
\(247\) −6.00000 6.00000i −0.381771 0.381771i
\(248\) 0 0
\(249\) −4.00000 −0.253490
\(250\) 0 0
\(251\) −11.0000 11.0000i −0.694314 0.694314i 0.268864 0.963178i \(-0.413352\pi\)
−0.963178 + 0.268864i \(0.913352\pi\)
\(252\) 0 0
\(253\) −2.00000 −0.125739
\(254\) 0 0
\(255\) −6.00000 2.00000i −0.375735 0.125245i
\(256\) 0 0
\(257\) 13.0000 + 13.0000i 0.810918 + 0.810918i 0.984771 0.173854i \(-0.0556220\pi\)
−0.173854 + 0.984771i \(0.555622\pi\)
\(258\) 0 0
\(259\) −18.0000 18.0000i −1.11847 1.11847i
\(260\) 0 0
\(261\) 7.00000 7.00000i 0.433289 0.433289i
\(262\) 0 0
\(263\) 7.00000 7.00000i 0.431638 0.431638i −0.457547 0.889185i \(-0.651272\pi\)
0.889185 + 0.457547i \(0.151272\pi\)
\(264\) 0 0
\(265\) −16.0000 + 8.00000i −0.982872 + 0.491436i
\(266\) 0 0
\(267\) 12.0000i 0.734388i
\(268\) 0 0
\(269\) 1.00000 1.00000i 0.0609711 0.0609711i −0.675964 0.736935i \(-0.736272\pi\)
0.736935 + 0.675964i \(0.236272\pi\)
\(270\) 0 0
\(271\) 30.0000i 1.82237i −0.411997 0.911185i \(-0.635169\pi\)
0.411997 0.911185i \(-0.364831\pi\)
\(272\) 0 0
\(273\) −12.0000 + 12.0000i −0.726273 + 0.726273i
\(274\) 0 0
\(275\) −7.00000 + 1.00000i −0.422116 + 0.0603023i
\(276\) 0 0
\(277\) −18.0000 −1.08152 −0.540758 0.841178i \(-0.681862\pi\)
−0.540758 + 0.841178i \(0.681862\pi\)
\(278\) 0 0
\(279\) 2.00000i 0.119737i
\(280\) 0 0
\(281\) 16.0000i 0.954480i 0.878773 + 0.477240i \(0.158363\pi\)
−0.878773 + 0.477240i \(0.841637\pi\)
\(282\) 0 0
\(283\) −12.0000 −0.713326 −0.356663 0.934233i \(-0.616086\pi\)
−0.356663 + 0.934233i \(0.616086\pi\)
\(284\) 0 0
\(285\) 18.0000 + 6.00000i 1.06623 + 0.355409i
\(286\) 0 0
\(287\) −12.0000 + 12.0000i −0.708338 + 0.708338i
\(288\) 0 0
\(289\) 15.0000i 0.882353i
\(290\) 0 0
\(291\) −22.0000 + 22.0000i −1.28966 + 1.28966i
\(292\) 0 0
\(293\) 12.0000i 0.701047i −0.936554 0.350524i \(-0.886004\pi\)
0.936554 0.350524i \(-0.113996\pi\)
\(294\) 0 0
\(295\) −9.00000 3.00000i −0.524000 0.174667i
\(296\) 0 0
\(297\) 4.00000 4.00000i 0.232104 0.232104i
\(298\) 0 0
\(299\) −2.00000 + 2.00000i −0.115663 + 0.115663i
\(300\) 0 0
\(301\) 12.0000 + 12.0000i 0.691669 + 0.691669i
\(302\) 0 0
\(303\) −10.0000 10.0000i −0.574485 0.574485i
\(304\) 0 0
\(305\) 1.00000 3.00000i 0.0572598 0.171780i
\(306\) 0 0
\(307\) 4.00000 0.228292 0.114146 0.993464i \(-0.463587\pi\)
0.114146 + 0.993464i \(0.463587\pi\)
\(308\) 0 0
\(309\) 10.0000 + 10.0000i 0.568880 + 0.568880i
\(310\) 0 0
\(311\) 16.0000 0.907277 0.453638 0.891186i \(-0.350126\pi\)
0.453638 + 0.891186i \(0.350126\pi\)
\(312\) 0 0
\(313\) 13.0000 + 13.0000i 0.734803 + 0.734803i 0.971567 0.236764i \(-0.0760868\pi\)
−0.236764 + 0.971567i \(0.576087\pi\)
\(314\) 0 0
\(315\) 3.00000 9.00000i 0.169031 0.507093i
\(316\) 0 0
\(317\) 8.00000i 0.449325i −0.974437 0.224662i \(-0.927872\pi\)
0.974437 0.224662i \(-0.0721279\pi\)
\(318\) 0 0
\(319\) −14.0000 −0.783850
\(320\) 0 0
\(321\) 12.0000 0.669775
\(322\) 0 0
\(323\) 6.00000i 0.333849i
\(324\) 0 0
\(325\) −6.00000 + 8.00000i −0.332820 + 0.443760i
\(326\) 0 0
\(327\) −10.0000 10.0000i −0.553001 0.553001i
\(328\) 0 0
\(329\) −42.0000 −2.31553
\(330\) 0 0
\(331\) 21.0000 + 21.0000i 1.15426 + 1.15426i 0.985689 + 0.168576i \(0.0539168\pi\)
0.168576 + 0.985689i \(0.446083\pi\)
\(332\) 0 0
\(333\) −6.00000 −0.328798
\(334\) 0 0
\(335\) 4.00000 + 8.00000i 0.218543 + 0.437087i
\(336\) 0 0
\(337\) −11.0000 11.0000i −0.599208 0.599208i 0.340894 0.940102i \(-0.389270\pi\)
−0.940102 + 0.340894i \(0.889270\pi\)
\(338\) 0 0
\(339\) −26.0000 26.0000i −1.41213 1.41213i
\(340\) 0 0
\(341\) −2.00000 + 2.00000i −0.108306 + 0.108306i
\(342\) 0 0
\(343\) 12.0000 12.0000i 0.647939 0.647939i
\(344\) 0 0
\(345\) 2.00000 6.00000i 0.107676 0.323029i
\(346\) 0 0
\(347\) 2.00000i 0.107366i −0.998558 0.0536828i \(-0.982904\pi\)
0.998558 0.0536828i \(-0.0170960\pi\)
\(348\) 0 0
\(349\) −3.00000 + 3.00000i −0.160586 + 0.160586i −0.782826 0.622240i \(-0.786223\pi\)
0.622240 + 0.782826i \(0.286223\pi\)
\(350\) 0 0
\(351\) 8.00000i 0.427008i
\(352\) 0 0
\(353\) 13.0000 13.0000i 0.691920 0.691920i −0.270734 0.962654i \(-0.587266\pi\)
0.962654 + 0.270734i \(0.0872664\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −12.0000 −0.635107
\(358\) 0 0
\(359\) 14.0000i 0.738892i −0.929252 0.369446i \(-0.879548\pi\)
0.929252 0.369446i \(-0.120452\pi\)
\(360\) 0 0
\(361\) 1.00000i 0.0526316i
\(362\) 0 0
\(363\) −18.0000 −0.944755
\(364\) 0 0
\(365\) −3.00000 + 9.00000i −0.157027 + 0.471082i
\(366\) 0 0
\(367\) −21.0000 + 21.0000i −1.09619 + 1.09619i −0.101339 + 0.994852i \(0.532313\pi\)
−0.994852 + 0.101339i \(0.967687\pi\)
\(368\) 0 0
\(369\) 4.00000i 0.208232i
\(370\) 0 0
\(371\) −24.0000 + 24.0000i −1.24602 + 1.24602i
\(372\) 0 0
\(373\) 4.00000i 0.207112i −0.994624 0.103556i \(-0.966978\pi\)
0.994624 0.103556i \(-0.0330221\pi\)
\(374\) 0 0
\(375\) 4.00000 22.0000i 0.206559 1.13608i
\(376\) 0 0
\(377\) −14.0000 + 14.0000i −0.721037 + 0.721037i
\(378\) 0 0
\(379\) 15.0000 15.0000i 0.770498 0.770498i −0.207695 0.978194i \(-0.566596\pi\)
0.978194 + 0.207695i \(0.0665963\pi\)
\(380\) 0 0
\(381\) −14.0000 14.0000i −0.717242 0.717242i
\(382\) 0 0
\(383\) 5.00000 + 5.00000i 0.255488 + 0.255488i 0.823216 0.567728i \(-0.192177\pi\)
−0.567728 + 0.823216i \(0.692177\pi\)
\(384\) 0 0
\(385\) −12.0000 + 6.00000i −0.611577 + 0.305788i
\(386\) 0 0
\(387\) 4.00000 0.203331
\(388\) 0 0
\(389\) −23.0000 23.0000i −1.16615 1.16615i −0.983105 0.183041i \(-0.941406\pi\)
−0.183041 0.983105i \(-0.558594\pi\)
\(390\) 0 0
\(391\) −2.00000 −0.101144
\(392\) 0 0
\(393\) −14.0000 14.0000i −0.706207 0.706207i
\(394\) 0 0
\(395\) 8.00000 + 16.0000i 0.402524 + 0.805047i
\(396\) 0 0
\(397\) 32.0000i 1.60603i 0.595956 + 0.803017i \(0.296773\pi\)
−0.595956 + 0.803017i \(0.703227\pi\)
\(398\) 0 0
\(399\) 36.0000 1.80225
\(400\) 0 0
\(401\) −2.00000 −0.0998752 −0.0499376 0.998752i \(-0.515902\pi\)
−0.0499376 + 0.998752i \(0.515902\pi\)
\(402\) 0 0
\(403\) 4.00000i 0.199254i
\(404\) 0 0
\(405\) 11.0000 + 22.0000i 0.546594 + 1.09319i
\(406\) 0 0
\(407\) 6.00000 + 6.00000i 0.297409 + 0.297409i
\(408\) 0 0
\(409\) 38.0000 1.87898 0.939490 0.342578i \(-0.111300\pi\)
0.939490 + 0.342578i \(0.111300\pi\)
\(410\) 0 0
\(411\) −18.0000 18.0000i −0.887875 0.887875i
\(412\) 0 0
\(413\) −18.0000 −0.885722
\(414\) 0 0
\(415\) −4.00000 + 2.00000i −0.196352 + 0.0981761i
\(416\) 0 0
\(417\) 18.0000 + 18.0000i 0.881464 + 0.881464i
\(418\) 0 0
\(419\) 17.0000 + 17.0000i 0.830504 + 0.830504i 0.987586 0.157081i \(-0.0502085\pi\)
−0.157081 + 0.987586i \(0.550208\pi\)
\(420\) 0 0
\(421\) 5.00000 5.00000i 0.243685 0.243685i −0.574688 0.818373i \(-0.694876\pi\)
0.818373 + 0.574688i \(0.194876\pi\)
\(422\) 0 0
\(423\) −7.00000 + 7.00000i −0.340352 + 0.340352i
\(424\) 0 0
\(425\) −7.00000 + 1.00000i −0.339550 + 0.0485071i
\(426\) 0 0
\(427\) 6.00000i 0.290360i
\(428\) 0 0
\(429\) 4.00000 4.00000i 0.193122 0.193122i
\(430\) 0 0
\(431\) 2.00000i 0.0963366i 0.998839 + 0.0481683i \(0.0153384\pi\)
−0.998839 + 0.0481683i \(0.984662\pi\)
\(432\) 0 0
\(433\) 5.00000 5.00000i 0.240285 0.240285i −0.576683 0.816968i \(-0.695653\pi\)
0.816968 + 0.576683i \(0.195653\pi\)
\(434\) 0 0
\(435\) 14.0000 42.0000i 0.671249 2.01375i
\(436\) 0 0
\(437\) 6.00000 0.287019
\(438\) 0 0
\(439\) 26.0000i 1.24091i 0.784241 + 0.620456i \(0.213053\pi\)
−0.784241 + 0.620456i \(0.786947\pi\)
\(440\) 0 0
\(441\) 11.0000i 0.523810i
\(442\) 0 0
\(443\) 4.00000 0.190046 0.0950229 0.995475i \(-0.469708\pi\)
0.0950229 + 0.995475i \(0.469708\pi\)
\(444\) 0 0
\(445\) −6.00000 12.0000i −0.284427 0.568855i
\(446\) 0 0
\(447\) 2.00000 2.00000i 0.0945968 0.0945968i
\(448\) 0 0
\(449\) 24.0000i 1.13263i 0.824189 + 0.566315i \(0.191631\pi\)
−0.824189 + 0.566315i \(0.808369\pi\)
\(450\) 0 0
\(451\) 4.00000 4.00000i 0.188353 0.188353i
\(452\) 0 0
\(453\) 16.0000i 0.751746i
\(454\) 0 0
\(455\) −6.00000 + 18.0000i −0.281284 + 0.843853i
\(456\) 0 0
\(457\) −7.00000 + 7.00000i −0.327446 + 0.327446i −0.851615 0.524168i \(-0.824376\pi\)
0.524168 + 0.851615i \(0.324376\pi\)
\(458\) 0 0
\(459\) 4.00000 4.00000i 0.186704 0.186704i
\(460\) 0 0
\(461\) 21.0000 + 21.0000i 0.978068 + 0.978068i 0.999765 0.0216971i \(-0.00690694\pi\)
−0.0216971 + 0.999765i \(0.506907\pi\)
\(462\) 0 0
\(463\) −19.0000 19.0000i −0.883005 0.883005i 0.110834 0.993839i \(-0.464648\pi\)
−0.993839 + 0.110834i \(0.964648\pi\)
\(464\) 0 0
\(465\) −4.00000 8.00000i −0.185496 0.370991i
\(466\) 0 0
\(467\) 28.0000 1.29569 0.647843 0.761774i \(-0.275671\pi\)
0.647843 + 0.761774i \(0.275671\pi\)
\(468\) 0 0
\(469\) 12.0000 + 12.0000i 0.554109 + 0.554109i
\(470\) 0 0
\(471\) −40.0000 −1.84310
\(472\) 0 0
\(473\) −4.00000 4.00000i −0.183920 0.183920i
\(474\) 0 0
\(475\) 21.0000 3.00000i 0.963546 0.137649i
\(476\) 0 0
\(477\) 8.00000i 0.366295i
\(478\) 0 0
\(479\) 32.0000 1.46212 0.731059 0.682315i \(-0.239027\pi\)
0.731059 + 0.682315i \(0.239027\pi\)
\(480\) 0 0
\(481\) 12.0000 0.547153
\(482\) 0 0
\(483\) 12.0000i 0.546019i
\(484\) 0 0
\(485\) −11.0000 + 33.0000i −0.499484 + 1.49845i
\(486\) 0 0
\(487\) −15.0000 15.0000i −0.679715 0.679715i 0.280221 0.959936i \(-0.409592\pi\)
−0.959936 + 0.280221i \(0.909592\pi\)
\(488\) 0 0
\(489\) 28.0000 1.26620
\(490\) 0 0
\(491\) 9.00000 + 9.00000i 0.406164 + 0.406164i 0.880399 0.474234i \(-0.157275\pi\)
−0.474234 + 0.880399i \(0.657275\pi\)
\(492\) 0 0
\(493\) −14.0000 −0.630528
\(494\) 0 0
\(495\) −1.00000 + 3.00000i −0.0449467 + 0.134840i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 29.0000 + 29.0000i 1.29822 + 1.29822i 0.929568 + 0.368650i \(0.120180\pi\)
0.368650 + 0.929568i \(0.379820\pi\)
\(500\) 0 0
\(501\) −6.00000 + 6.00000i −0.268060 + 0.268060i
\(502\) 0 0
\(503\) −29.0000 + 29.0000i −1.29305 + 1.29305i −0.360153 + 0.932893i \(0.617275\pi\)
−0.932893 + 0.360153i \(0.882725\pi\)
\(504\) 0 0
\(505\) −15.0000 5.00000i −0.667491 0.222497i
\(506\) 0 0
\(507\) 18.0000i 0.799408i
\(508\) 0 0
\(509\) 17.0000 17.0000i 0.753512 0.753512i −0.221621 0.975133i \(-0.571135\pi\)
0.975133 + 0.221621i \(0.0711348\pi\)
\(510\) 0 0
\(511\) 18.0000i 0.796273i
\(512\) 0 0
\(513\) −12.0000 + 12.0000i −0.529813 + 0.529813i
\(514\) 0 0
\(515\) 15.0000 + 5.00000i 0.660979 + 0.220326i
\(516\) 0 0
\(517\) 14.0000 0.615719
\(518\) 0 0
\(519\) 12.0000i 0.526742i
\(520\) 0 0
\(521\) 16.0000i 0.700973i −0.936568 0.350486i \(-0.886016\pi\)
0.936568 0.350486i \(-0.113984\pi\)
\(522\) 0 0
\(523\) −20.0000 −0.874539 −0.437269 0.899331i \(-0.644054\pi\)
−0.437269 + 0.899331i \(0.644054\pi\)
\(524\) 0 0
\(525\) −6.00000 42.0000i −0.261861 1.83303i
\(526\) 0 0
\(527\) −2.00000 + 2.00000i −0.0871214 + 0.0871214i
\(528\) 0 0
\(529\) 21.0000i 0.913043i
\(530\) 0 0
\(531\) −3.00000 + 3.00000i −0.130189 + 0.130189i
\(532\) 0 0
\(533\) 8.00000i 0.346518i
\(534\) 0 0
\(535\) 12.0000 6.00000i 0.518805 0.259403i
\(536\) 0 0
\(537\) 10.0000 10.0000i 0.431532 0.431532i
\(538\) 0 0
\(539\) −11.0000 + 11.0000i −0.473804 + 0.473804i
\(540\) 0 0
\(541\) −15.0000 15.0000i −0.644900 0.644900i 0.306856 0.951756i \(-0.400723\pi\)
−0.951756 + 0.306856i \(0.900723\pi\)
\(542\) 0 0
\(543\) 6.00000 + 6.00000i 0.257485 + 0.257485i
\(544\) 0 0
\(545\) −15.0000 5.00000i −0.642529 0.214176i
\(546\) 0 0
\(547\) −28.0000 −1.19719 −0.598597 0.801050i \(-0.704275\pi\)
−0.598597 + 0.801050i \(0.704275\pi\)
\(548\) 0 0
\(549\) −1.00000 1.00000i −0.0426790 0.0426790i
\(550\) 0 0
\(551\) 42.0000 1.78926
\(552\) 0 0
\(553\) 24.0000 + 24.0000i 1.02058 + 1.02058i
\(554\) 0 0
\(555\) −24.0000 + 12.0000i −1.01874 + 0.509372i
\(556\) 0 0
\(557\) 28.0000i 1.18640i −0.805056 0.593199i \(-0.797865\pi\)
0.805056 0.593199i \(-0.202135\pi\)
\(558\) 0 0
\(559\) −8.00000 −0.338364
\(560\) 0 0
\(561\) 4.00000 0.168880
\(562\) 0 0
\(563\) 18.0000i 0.758610i −0.925272 0.379305i \(-0.876163\pi\)
0.925272 0.379305i \(-0.123837\pi\)
\(564\) 0 0
\(565\) −39.0000 13.0000i −1.64074 0.546914i
\(566\) 0 0
\(567\) 33.0000 + 33.0000i 1.38587 + 1.38587i
\(568\) 0 0
\(569\) 6.00000 0.251533 0.125767 0.992060i \(-0.459861\pi\)
0.125767 + 0.992060i \(0.459861\pi\)
\(570\) 0 0
\(571\) 25.0000 + 25.0000i 1.04622 + 1.04622i 0.998879 + 0.0473385i \(0.0150740\pi\)
0.0473385 + 0.998879i \(0.484926\pi\)
\(572\) 0 0
\(573\) 36.0000 1.50392
\(574\) 0 0
\(575\) −1.00000 7.00000i −0.0417029 0.291920i
\(576\) 0 0
\(577\) 9.00000 + 9.00000i 0.374675 + 0.374675i 0.869177 0.494502i \(-0.164649\pi\)
−0.494502 + 0.869177i \(0.664649\pi\)
\(578\) 0 0
\(579\) 30.0000 + 30.0000i 1.24676 + 1.24676i
\(580\) 0 0
\(581\) −6.00000 + 6.00000i −0.248922 + 0.248922i
\(582\) 0 0
\(583\) 8.00000 8.00000i 0.331326 0.331326i
\(584\) 0 0
\(585\) 2.00000 + 4.00000i 0.0826898 + 0.165380i
\(586\) 0 0
\(587\) 2.00000i 0.0825488i −0.999148 0.0412744i \(-0.986858\pi\)
0.999148 0.0412744i \(-0.0131418\pi\)
\(588\) 0 0
\(589\) 6.00000 6.00000i 0.247226 0.247226i
\(590\) 0 0
\(591\) 12.0000i 0.493614i
\(592\) 0 0
\(593\) 17.0000 17.0000i 0.698106 0.698106i −0.265896 0.964002i \(-0.585668\pi\)
0.964002 + 0.265896i \(0.0856676\pi\)
\(594\) 0 0
\(595\) −12.0000 + 6.00000i −0.491952 + 0.245976i
\(596\) 0 0
\(597\) 20.0000 0.818546
\(598\) 0 0
\(599\) 30.0000i 1.22577i −0.790173 0.612883i \(-0.790010\pi\)
0.790173 0.612883i \(-0.209990\pi\)
\(600\) 0 0
\(601\) 16.0000i 0.652654i 0.945257 + 0.326327i \(0.105811\pi\)
−0.945257 + 0.326327i \(0.894189\pi\)
\(602\) 0 0
\(603\) 4.00000 0.162893
\(604\) 0 0
\(605\) −18.0000 + 9.00000i −0.731804 + 0.365902i
\(606\) 0 0
\(607\) 23.0000 23.0000i 0.933541 0.933541i −0.0643840 0.997925i \(-0.520508\pi\)
0.997925 + 0.0643840i \(0.0205082\pi\)
\(608\) 0 0
\(609\) 84.0000i 3.40385i
\(610\) 0 0
\(611\) 14.0000 14.0000i 0.566379 0.566379i
\(612\) 0 0
\(613\) 8.00000i 0.323117i 0.986863 + 0.161558i \(0.0516520\pi\)
−0.986863 + 0.161558i \(0.948348\pi\)
\(614\) 0 0
\(615\) 8.00000 + 16.0000i 0.322591 + 0.645182i
\(616\) 0 0
\(617\) 25.0000 25.0000i 1.00646 1.00646i 0.00648312 0.999979i \(-0.497936\pi\)
0.999979 0.00648312i \(-0.00206366\pi\)
\(618\) 0 0
\(619\) 7.00000 7.00000i 0.281354 0.281354i −0.552295 0.833649i \(-0.686248\pi\)
0.833649 + 0.552295i \(0.186248\pi\)
\(620\) 0 0
\(621\) 4.00000 + 4.00000i 0.160514 + 0.160514i
\(622\) 0 0
\(623\) −18.0000 18.0000i −0.721155 0.721155i
\(624\) 0 0
\(625\) −7.00000 24.0000i −0.280000 0.960000i
\(626\) 0 0
\(627\) −12.0000 −0.479234
\(628\) 0 0
\(629\) 6.00000 + 6.00000i 0.239236 + 0.239236i
\(630\) 0 0
\(631\) 24.0000 0.955425 0.477712 0.878516i \(-0.341466\pi\)
0.477712 + 0.878516i \(0.341466\pi\)
\(632\) 0 0
\(633\) −38.0000 38.0000i −1.51036 1.51036i
\(634\) 0 0
\(635\) −21.0000 7.00000i −0.833360 0.277787i
\(636\) 0 0
\(637\) 22.0000i 0.871672i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −30.0000 −1.18493 −0.592464 0.805597i \(-0.701845\pi\)
−0.592464 + 0.805597i \(0.701845\pi\)
\(642\) 0 0
\(643\) 26.0000i 1.02534i −0.858586 0.512670i \(-0.828656\pi\)
0.858586 0.512670i \(-0.171344\pi\)
\(644\) 0 0
\(645\) 16.0000 8.00000i 0.629999 0.315000i
\(646\) 0 0
\(647\) −15.0000 15.0000i −0.589711 0.589711i 0.347842 0.937553i \(-0.386914\pi\)
−0.937553 + 0.347842i \(0.886914\pi\)
\(648\) 0 0
\(649\) 6.00000 0.235521
\(650\) 0 0
\(651\) −12.0000 12.0000i −0.470317 0.470317i
\(652\) 0 0
\(653\) 2.00000 0.0782660 0.0391330 0.999234i \(-0.487540\pi\)
0.0391330 + 0.999234i \(0.487540\pi\)
\(654\) 0 0
\(655\) −21.0000 7.00000i −0.820538 0.273513i
\(656\) 0 0
\(657\) 3.00000 + 3.00000i 0.117041 + 0.117041i
\(658\) 0 0
\(659\) −11.0000 11.0000i −0.428499 0.428499i 0.459618 0.888117i \(-0.347986\pi\)
−0.888117 + 0.459618i \(0.847986\pi\)
\(660\) 0 0
\(661\) 25.0000 25.0000i 0.972387 0.972387i −0.0272416 0.999629i \(-0.508672\pi\)
0.999629 + 0.0272416i \(0.00867234\pi\)
\(662\) 0 0
\(663\) 4.00000 4.00000i 0.155347 0.155347i
\(664\) 0 0
\(665\) 36.0000 18.0000i 1.39602 0.698010i
\(666\) 0 0
\(667\) 14.0000i 0.542082i
\(668\) 0 0
\(669\) 18.0000 18.0000i 0.695920 0.695920i
\(670\) 0 0
\(671\) 2.00000i 0.0772091i
\(672\) 0 0
\(673\) 1.00000 1.00000i 0.0385472 0.0385472i −0.687570 0.726118i \(-0.741323\pi\)
0.726118 + 0.687570i \(0.241323\pi\)
\(674\) 0 0
\(675\) 16.0000 + 12.0000i 0.615840 + 0.461880i
\(676\) 0 0
\(677\) 42.0000 1.61419 0.807096 0.590421i \(-0.201038\pi\)
0.807096 + 0.590421i \(0.201038\pi\)
\(678\) 0 0
\(679\) 66.0000i 2.53285i
\(680\) 0 0
\(681\) 24.0000i 0.919682i
\(682\) 0 0
\(683\) 4.00000 0.153056 0.0765279 0.997067i \(-0.475617\pi\)
0.0765279 + 0.997067i \(0.475617\pi\)
\(684\) 0 0
\(685\) −27.0000 9.00000i −1.03162 0.343872i
\(686\) 0 0
\(687\) 2.00000 2.00000i 0.0763048 0.0763048i
\(688\) 0 0
\(689\) 16.0000i 0.609551i
\(690\) 0 0
\(691\) −21.0000 + 21.0000i −0.798878 + 0.798878i −0.982919 0.184041i \(-0.941082\pi\)
0.184041 + 0.982919i \(0.441082\pi\)
\(692\) 0 0
\(693\) 6.00000i 0.227921i
\(694\) 0 0
\(695\) 27.0000 + 9.00000i 1.02417 + 0.341389i
\(696\) 0 0
\(697\) 4.00000 4.00000i 0.151511 0.151511i
\(698\) 0 0
\(699\) 18.0000 18.0000i 0.680823 0.680823i
\(700\) 0 0
\(701\) 13.0000 + 13.0000i 0.491003 + 0.491003i 0.908622 0.417619i \(-0.137135\pi\)
−0.417619 + 0.908622i \(0.637135\pi\)
\(702\) 0 0
\(703\) −18.0000 18.0000i −0.678883 0.678883i
\(704\) 0 0
\(705\) −14.0000 + 42.0000i −0.527271 + 1.58181i
\(706\) 0 0
\(707\) −30.0000 −1.12827
\(708\) 0 0
\(709\) 1.00000 + 1.00000i 0.0375558 + 0.0375558i 0.725635 0.688080i \(-0.241546\pi\)
−0.688080 + 0.725635i \(0.741546\pi\)
\(710\) 0 0
\(711\) 8.00000 0.300023
\(712\) 0 0
\(713\) −2.00000 2.00000i −0.0749006 0.0749006i
\(714\) 0 0
\(715\) 2.00000 6.00000i 0.0747958 0.224387i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 32.0000 1.19340 0.596699 0.802465i \(-0.296479\pi\)
0.596699 + 0.802465i \(0.296479\pi\)
\(720\) 0 0
\(721\) 30.0000 1.11726
\(722\) 0 0
\(723\) 28.0000i 1.04133i
\(724\) 0 0
\(725\) −7.00000 49.0000i −0.259973 1.81981i
\(726\) 0 0
\(727\) −7.00000 7.00000i −0.259616 0.259616i 0.565282 0.824898i \(-0.308767\pi\)
−0.824898 + 0.565282i \(0.808767\pi\)
\(728\) 0 0
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) −4.00000 4.00000i −0.147945 0.147945i
\(732\) 0 0
\(733\) 30.0000 1.10808 0.554038 0.832492i \(-0.313086\pi\)
0.554038 + 0.832492i \(0.313086\pi\)
\(734\) 0 0
\(735\) −22.0000 44.0000i −0.811482 1.62296i
\(736\) 0 0
\(737\) −4.00000 4.00000i −0.147342 0.147342i
\(738\) 0 0
\(739\) 21.0000 + 21.0000i 0.772497 + 0.772497i 0.978543 0.206045i \(-0.0660593\pi\)
−0.206045 + 0.978543i \(0.566059\pi\)
\(740\) 0 0
\(741\) −12.0000 + 12.0000i −0.440831 + 0.440831i
\(742\) 0 0
\(743\) 31.0000 31.0000i 1.13728 1.13728i 0.148344 0.988936i \(-0.452606\pi\)
0.988936 0.148344i \(-0.0473942\pi\)
\(744\) 0 0
\(745\) 1.00000 3.00000i 0.0366372 0.109911i
\(746\) 0 0
\(747\) 2.00000i 0.0731762i
\(748\) 0 0
\(749\) 18.0000 18.0000i 0.657706 0.657706i
\(750\) 0 0
\(751\) 50.0000i 1.82453i 0.409605 + 0.912263i \(0.365667\pi\)
−0.409605 + 0.912263i \(0.634333\pi\)
\(752\) 0 0
\(753\) −22.0000 + 22.0000i −0.801725 + 0.801725i
\(754\) 0 0
\(755\) −8.00000 16.0000i −0.291150 0.582300i
\(756\) 0 0
\(757\) −2.00000 −0.0726912 −0.0363456 0.999339i \(-0.511572\pi\)
−0.0363456 + 0.999339i \(0.511572\pi\)
\(758\) 0 0
\(759\) 4.00000i 0.145191i
\(760\) 0 0
\(761\) 40.0000i 1.45000i 0.688749 + 0.724999i \(0.258160\pi\)
−0.688749 + 0.724999i \(0.741840\pi\)
\(762\) 0 0
\(763\) −30.0000 −1.08607
\(764\) 0 0
\(765\) −1.00000 + 3.00000i −0.0361551 + 0.108465i
\(766\) 0 0
\(767\) 6.00000 6.00000i 0.216647 0.216647i
\(768\) 0 0
\(769\) 4.00000i 0.144244i 0.997396 + 0.0721218i \(0.0229770\pi\)
−0.997396 + 0.0721218i \(0.977023\pi\)
\(770\) 0 0
\(771\) 26.0000 26.0000i 0.936367 0.936367i
\(772\) 0 0
\(773\) 48.0000i 1.72644i 0.504828 + 0.863220i \(0.331556\pi\)
−0.504828 + 0.863220i \(0.668444\pi\)
\(774\) 0 0
\(775\) −8.00000 6.00000i −0.287368 0.215526i
\(776\) 0 0
\(777\) −36.0000 + 36.0000i −1.29149 + 1.29149i
\(778\) 0 0
\(779\) −12.0000 + 12.0000i −0.429945 + 0.429945i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 28.0000 + 28.0000i 1.00064 + 1.00064i
\(784\) 0 0
\(785\) −40.0000 + 20.0000i −1.42766 + 0.713831i
\(786\) 0 0
\(787\) 4.00000 0.142585 0.0712923 0.997455i \(-0.477288\pi\)
0.0712923 + 0.997455i \(0.477288\pi\)
\(788\) 0 0
\(789\) −14.0000 14.0000i −0.498413 0.498413i
\(790\) 0 0
\(791\) −78.0000 −2.77336
\(792\) 0 0
\(793\) 2.00000 + 2.00000i 0.0710221 + 0.0710221i
\(794\) 0 0
\(795\) 16.0000 + 32.0000i 0.567462 + 1.13492i
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 14.0000 0.495284
\(800\) 0 0
\(801\) −6.00000 −0.212000
\(802\) 0 0
\(803\) 6.00000i 0.211735i
\(804\) 0 0
\(805\) −6.00000 12.0000i −0.211472 0.422944i
\(806\) 0 0
\(807\) −2.00000 2.00000i −0.0704033 0.0704033i
\(808\) 0 0
\(809\) 26.0000 0.914111 0.457056 0.889438i \(-0.348904\pi\)
0.457056 + 0.889438i \(0.348904\pi\)
\(810\) 0 0
\(811\) 9.00000 + 9.00000i 0.316033 + 0.316033i 0.847241 0.531208i \(-0.178262\pi\)
−0.531208 + 0.847241i \(0.678262\pi\)
\(812\) 0 0
\(813\) −60.0000 −2.10429
\(814\) 0 0
\(815\) 28.0000 14.0000i 0.980797 0.490399i
\(816\) 0 0
\(817\) 12.0000 + 12.0000i 0.419827 + 0.419827i
\(818\) 0 0
\(819\) 6.00000 + 6.00000i 0.209657 + 0.209657i
\(820\) 0 0
\(821\) −15.0000 + 15.0000i −0.523504 + 0.523504i −0.918628 0.395124i \(-0.870702\pi\)
0.395124 + 0.918628i \(0.370702\pi\)
\(822\) 0 0
\(823\) −21.0000 + 21.0000i −0.732014 + 0.732014i −0.971018 0.239004i \(-0.923179\pi\)
0.239004 + 0.971018i \(0.423179\pi\)
\(824\) 0 0
\(825\) 2.00000 + 14.0000i 0.0696311 + 0.487417i
\(826\) 0 0
\(827\) 54.0000i 1.87776i 0.344239 + 0.938882i \(0.388137\pi\)
−0.344239 + 0.938882i \(0.611863\pi\)
\(828\) 0 0
\(829\) −27.0000 + 27.0000i −0.937749 + 0.937749i −0.998173 0.0604240i \(-0.980755\pi\)
0.0604240 + 0.998173i \(0.480755\pi\)
\(830\) 0 0
\(831\) 36.0000i 1.24883i
\(832\) 0 0
\(833\) −11.0000 + 11.0000i −0.381127 + 0.381127i
\(834\) 0 0
\(835\) −3.00000 + 9.00000i −0.103819 + 0.311458i
\(836\) 0 0
\(837\) 8.00000 0.276520
\(838\) 0 0
\(839\) 18.0000i 0.621429i 0.950503 + 0.310715i \(0.100568\pi\)
−0.950503 + 0.310715i \(0.899432\pi\)
\(840\) 0 0
\(841\) 69.0000i 2.37931i
\(842\) 0 0
\(843\) 32.0000 1.10214
\(844\) 0 0
\(845\) 9.00000 + 18.0000i 0.309609 + 0.619219i
\(846\) 0 0
\(847\) −27.0000 + 27.0000i −0.927731 + 0.927731i
\(848\) 0 0
\(849\) 24.0000i 0.823678i
\(850\) 0 0
\(851\) −6.00000 + 6.00000i −0.205677 + 0.205677i
\(852\) 0 0
\(853\) 16.0000i 0.547830i 0.961754 + 0.273915i \(0.0883186\pi\)
−0.961754 + 0.273915i \(0.911681\pi\)
\(854\) 0 0
\(855\) 3.00000 9.00000i 0.102598 0.307794i
\(856\) 0 0
\(857\) −27.0000 + 27.0000i −0.922302 + 0.922302i −0.997192 0.0748894i \(-0.976140\pi\)
0.0748894 + 0.997192i \(0.476140\pi\)
\(858\) 0 0
\(859\) 19.0000 19.0000i 0.648272 0.648272i −0.304303 0.952575i \(-0.598424\pi\)
0.952575 + 0.304303i \(0.0984237\pi\)
\(860\) 0 0
\(861\) 24.0000 + 24.0000i 0.817918 + 0.817918i
\(862\) 0 0
\(863\) 5.00000 + 5.00000i 0.170202 + 0.170202i 0.787068 0.616866i \(-0.211598\pi\)
−0.616866 + 0.787068i \(0.711598\pi\)
\(864\) 0 0
\(865\) −6.00000 12.0000i −0.204006 0.408012i
\(866\) 0 0
\(867\) −30.0000 −1.01885
\(868\) 0 0
\(869\) −8.00000 8.00000i −0.271381 0.271381i
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) 0 0
\(873\) 11.0000 + 11.0000i 0.372294 + 0.372294i
\(874\) 0 0
\(875\) −27.0000 39.0000i −0.912767 1.31844i
\(876\) 0 0
\(877\) 4.00000i 0.135070i −0.997717 0.0675352i \(-0.978487\pi\)
0.997717 0.0675352i \(-0.0215135\pi\)
\(878\) 0 0
\(879\) −24.0000 −0.809500
\(880\) 0 0
\(881\) 46.0000 1.54978 0.774890 0.632096i \(-0.217805\pi\)
0.774890 + 0.632096i \(0.217805\pi\)
\(882\) 0 0
\(883\) 6.00000i 0.201916i 0.994891 + 0.100958i \(0.0321908\pi\)
−0.994891 + 0.100958i \(0.967809\pi\)
\(884\) 0 0
\(885\) −6.00000 + 18.0000i −0.201688 + 0.605063i
\(886\) 0 0
\(887\) −23.0000 23.0000i −0.772264 0.772264i 0.206238 0.978502i \(-0.433878\pi\)
−0.978502 + 0.206238i \(0.933878\pi\)
\(888\) 0 0
\(889\) −42.0000 −1.40863
\(890\) 0 0
\(891\) −11.0000 11.0000i −0.368514 0.368514i
\(892\) 0 0
\(893\) −42.0000 −1.40548
\(894\) 0 0
\(895\) 5.00000 15.0000i 0.167132 0.501395i
\(896\) 0 0
\(897\) 4.00000 + 4.00000i 0.133556 + 0.133556i
\(898\) 0 0
\(899\) −14.0000 14.0000i −0.466926 0.466926i
\(900\) 0 0
\(901\) 8.00000 8.00000i 0.266519 0.266519i
\(902\) 0 0
\(903\) 24.0000 24.0000i 0.798670 0.798670i
\(904\) 0 0
\(905\) 9.00000 + 3.00000i 0.299170 + 0.0997234i
\(906\) 0 0
\(907\) 50.0000i 1.66022i −0.557598 0.830111i \(-0.688277\pi\)
0.557598 0.830111i \(-0.311723\pi\)
\(908\) 0 0
\(909\) −5.00000 + 5.00000i −0.165840 + 0.165840i
\(910\) 0 0
\(911\) 38.0000i 1.25900i −0.777002 0.629498i \(-0.783261\pi\)
0.777002 0.629498i \(-0.216739\pi\)
\(912\) 0 0
\(913\) 2.00000 2.00000i 0.0661903 0.0661903i
\(914\) 0 0
\(915\) −6.00000 2.00000i −0.198354 0.0661180i
\(916\) 0 0
\(917\) −42.0000 −1.38696
\(918\) 0 0
\(919\) 46.0000i 1.51740i −0.651440 0.758700i \(-0.725835\pi\)
0.651440 0.758700i \(-0.274165\pi\)
\(920\) 0 0
\(921\) 8.00000i 0.263609i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −18.0000 + 24.0000i −0.591836 + 0.789115i
\(926\) 0 0
\(927\) 5.00000 5.00000i 0.164222 0.164222i
\(928\) 0 0
\(929\) 16.0000i 0.524943i −0.964940 0.262471i \(-0.915462\pi\)
0.964940 0.262471i \(-0.0845376\pi\)
\(930\) 0 0
\(931\) 33.0000 33.0000i 1.08153 1.08153i
\(932\) 0 0
\(933\) 32.0000i 1.04763i
\(934\) 0 0
\(935\) 4.00000 2.00000i 0.130814 0.0654070i
\(936\) 0 0
\(937\) −3.00000 + 3.00000i −0.0980057 + 0.0980057i −0.754410 0.656404i \(-0.772077\pi\)
0.656404 + 0.754410i \(0.272077\pi\)
\(938\) 0 0
\(939\) 26.0000 26.0000i 0.848478 0.848478i
\(940\) 0 0
\(941\) 1.00000 + 1.00000i 0.0325991 + 0.0325991i 0.723218 0.690619i \(-0.242662\pi\)
−0.690619 + 0.723218i \(0.742662\pi\)
\(942\) 0 0
\(943\) 4.00000 + 4.00000i 0.130258 + 0.130258i
\(944\) 0 0
\(945\) 36.0000 + 12.0000i 1.17108 + 0.390360i
\(946\) 0 0
\(947\) −28.0000 −0.909878 −0.454939 0.890523i \(-0.650339\pi\)
−0.454939 + 0.890523i \(0.650339\pi\)
\(948\) 0 0
\(949\) −6.00000 6.00000i −0.194768 0.194768i
\(950\) 0 0
\(951\) −16.0000 −0.518836
\(952\) 0 0
\(953\) −31.0000 31.0000i −1.00419 1.00419i −0.999991 0.00419731i \(-0.998664\pi\)
−0.00419731 0.999991i \(-0.501336\pi\)
\(954\) 0 0
\(955\) 36.0000 18.0000i 1.16493 0.582466i
\(956\) 0 0
\(957\) 28.0000i 0.905111i
\(958\) 0 0
\(959\) −54.0000 −1.74375
\(960\) 0 0
\(961\) 27.0000 0.870968
\(962\) 0 0
\(963\) 6.00000i 0.193347i
\(964\) 0 0
\(965\) 45.0000 + 15.0000i 1.44860 + 0.482867i
\(966\) 0 0
\(967\) 33.0000 + 33.0000i 1.06121 + 1.06121i 0.998000 + 0.0632081i \(0.0201332\pi\)
0.0632081 + 0.998000i \(0.479867\pi\)
\(968\) 0 0
\(969\) −12.0000 −0.385496
\(970\) 0 0
\(971\) −31.0000 31.0000i −0.994837 0.994837i 0.00514940 0.999987i \(-0.498361\pi\)
−0.999987 + 0.00514940i \(0.998361\pi\)
\(972\) 0 0
\(973\) 54.0000 1.73116
\(974\) 0 0
\(975\) 16.0000 + 12.0000i 0.512410 + 0.384308i
\(976\) 0 0
\(977\) 17.0000 + 17.0000i 0.543878 + 0.543878i 0.924663 0.380785i \(-0.124346\pi\)
−0.380785 + 0.924663i \(0.624346\pi\)
\(978\) 0 0
\(979\) 6.00000 + 6.00000i 0.191761 + 0.191761i
\(980\) 0 0
\(981\) −5.00000 + 5.00000i −0.159638 + 0.159638i
\(982\) 0 0
\(983\) −5.00000 + 5.00000i −0.159475 + 0.159475i −0.782334 0.622859i \(-0.785971\pi\)
0.622859 + 0.782334i \(0.285971\pi\)
\(984\) 0 0
\(985\) 6.00000 + 12.0000i 0.191176 + 0.382352i
\(986\) 0 0
\(987\) 84.0000i 2.67375i
\(988\) 0 0
\(989\) 4.00000 4.00000i 0.127193 0.127193i
\(990\) 0 0
\(991\) 10.0000i 0.317660i 0.987306 + 0.158830i \(0.0507723\pi\)
−0.987306 + 0.158830i \(0.949228\pi\)
\(992\) 0 0
\(993\) 42.0000 42.0000i 1.33283 1.33283i
\(994\) 0 0
\(995\) 20.0000 10.0000i 0.634043 0.317021i
\(996\) 0 0
\(997\) −22.0000 −0.696747 −0.348373 0.937356i \(-0.613266\pi\)
−0.348373 + 0.937356i \(0.613266\pi\)
\(998\) 0 0
\(999\) 24.0000i 0.759326i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 640.2.j.a.607.1 2
4.3 odd 2 640.2.j.b.607.1 2
5.3 odd 4 640.2.s.b.223.1 2
8.3 odd 2 320.2.j.a.47.1 2
8.5 even 2 80.2.j.a.67.1 yes 2
16.3 odd 4 80.2.s.a.27.1 yes 2
16.5 even 4 640.2.s.a.287.1 2
16.11 odd 4 640.2.s.b.287.1 2
16.13 even 4 320.2.s.a.207.1 2
20.3 even 4 640.2.s.a.223.1 2
24.5 odd 2 720.2.bd.a.307.1 2
40.3 even 4 320.2.s.a.303.1 2
40.13 odd 4 80.2.s.a.3.1 yes 2
40.19 odd 2 1600.2.j.a.1007.1 2
40.27 even 4 1600.2.s.a.943.1 2
40.29 even 2 400.2.j.a.307.1 2
40.37 odd 4 400.2.s.a.243.1 2
48.35 even 4 720.2.z.d.667.1 2
80.3 even 4 80.2.j.a.43.1 2
80.13 odd 4 320.2.j.a.143.1 2
80.19 odd 4 400.2.s.a.107.1 2
80.29 even 4 1600.2.s.a.207.1 2
80.43 even 4 inner 640.2.j.a.543.1 2
80.53 odd 4 640.2.j.b.543.1 2
80.67 even 4 400.2.j.a.43.1 2
80.77 odd 4 1600.2.j.a.143.1 2
120.53 even 4 720.2.z.d.163.1 2
240.83 odd 4 720.2.bd.a.523.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
80.2.j.a.43.1 2 80.3 even 4
80.2.j.a.67.1 yes 2 8.5 even 2
80.2.s.a.3.1 yes 2 40.13 odd 4
80.2.s.a.27.1 yes 2 16.3 odd 4
320.2.j.a.47.1 2 8.3 odd 2
320.2.j.a.143.1 2 80.13 odd 4
320.2.s.a.207.1 2 16.13 even 4
320.2.s.a.303.1 2 40.3 even 4
400.2.j.a.43.1 2 80.67 even 4
400.2.j.a.307.1 2 40.29 even 2
400.2.s.a.107.1 2 80.19 odd 4
400.2.s.a.243.1 2 40.37 odd 4
640.2.j.a.543.1 2 80.43 even 4 inner
640.2.j.a.607.1 2 1.1 even 1 trivial
640.2.j.b.543.1 2 80.53 odd 4
640.2.j.b.607.1 2 4.3 odd 2
640.2.s.a.223.1 2 20.3 even 4
640.2.s.a.287.1 2 16.5 even 4
640.2.s.b.223.1 2 5.3 odd 4
640.2.s.b.287.1 2 16.11 odd 4
720.2.z.d.163.1 2 120.53 even 4
720.2.z.d.667.1 2 48.35 even 4
720.2.bd.a.307.1 2 24.5 odd 2
720.2.bd.a.523.1 2 240.83 odd 4
1600.2.j.a.143.1 2 80.77 odd 4
1600.2.j.a.1007.1 2 40.19 odd 2
1600.2.s.a.207.1 2 80.29 even 4
1600.2.s.a.943.1 2 40.27 even 4