Properties

Label 4-648675-1.1-c1e2-0-6
Degree $4$
Conductor $648675$
Sign $1$
Analytic cond. $41.3600$
Root an. cond. $2.53597$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3·4-s − 4·7-s + 9-s + 3·12-s + 5·16-s − 16·19-s + 4·21-s + 25-s − 27-s + 12·28-s + 2·31-s − 3·36-s + 16·37-s − 5·48-s − 2·49-s + 16·57-s − 28·61-s − 4·63-s − 3·64-s + 4·67-s − 32·73-s − 75-s + 48·76-s + 81-s − 12·84-s − 2·93-s + ⋯
L(s)  = 1  − 0.577·3-s − 3/2·4-s − 1.51·7-s + 1/3·9-s + 0.866·12-s + 5/4·16-s − 3.67·19-s + 0.872·21-s + 1/5·25-s − 0.192·27-s + 2.26·28-s + 0.359·31-s − 1/2·36-s + 2.63·37-s − 0.721·48-s − 2/7·49-s + 2.11·57-s − 3.58·61-s − 0.503·63-s − 3/8·64-s + 0.488·67-s − 3.74·73-s − 0.115·75-s + 5.50·76-s + 1/9·81-s − 1.30·84-s − 0.207·93-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 648675 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 648675 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(648675\)    =    \(3^{3} \cdot 5^{2} \cdot 31^{2}\)
Sign: $1$
Analytic conductor: \(41.3600\)
Root analytic conductor: \(2.53597\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 648675,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( 1 + T \)
5$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
31$C_1$ \( ( 1 - T )^{2} \)
good2$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
7$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
13$C_2$ \( ( 1 + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
19$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
61$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
73$C_2$ \( ( 1 + 16 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.84532589169742215840335224293, −7.68128969255594037111738820978, −6.77225946146642489618389989901, −6.36573875529349558957576705485, −6.13319511217733986766315838164, −5.87102863181679820049643029680, −4.85221518213525471918852830380, −4.62476804594428139253779251777, −4.15549500339935073670126654606, −3.85399261511576687175772764034, −2.96653770006789309828242375320, −2.48347553325427240017401962963, −1.38137651049014592943287717063, 0, 0, 1.38137651049014592943287717063, 2.48347553325427240017401962963, 2.96653770006789309828242375320, 3.85399261511576687175772764034, 4.15549500339935073670126654606, 4.62476804594428139253779251777, 4.85221518213525471918852830380, 5.87102863181679820049643029680, 6.13319511217733986766315838164, 6.36573875529349558957576705485, 6.77225946146642489618389989901, 7.68128969255594037111738820978, 7.84532589169742215840335224293

Graph of the $Z$-function along the critical line