L(s) = 1 | − 3-s − 3·4-s − 4·7-s + 9-s + 3·12-s + 5·16-s − 16·19-s + 4·21-s + 25-s − 27-s + 12·28-s + 2·31-s − 3·36-s + 16·37-s − 5·48-s − 2·49-s + 16·57-s − 28·61-s − 4·63-s − 3·64-s + 4·67-s − 32·73-s − 75-s + 48·76-s + 81-s − 12·84-s − 2·93-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 3/2·4-s − 1.51·7-s + 1/3·9-s + 0.866·12-s + 5/4·16-s − 3.67·19-s + 0.872·21-s + 1/5·25-s − 0.192·27-s + 2.26·28-s + 0.359·31-s − 1/2·36-s + 2.63·37-s − 0.721·48-s − 2/7·49-s + 2.11·57-s − 3.58·61-s − 0.503·63-s − 3/8·64-s + 0.488·67-s − 3.74·73-s − 0.115·75-s + 5.50·76-s + 1/9·81-s − 1.30·84-s − 0.207·93-s + ⋯ |
Λ(s)=(=(648675s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(648675s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
648675
= 33⋅52⋅312
|
Sign: |
1
|
Analytic conductor: |
41.3600 |
Root analytic conductor: |
2.53597 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 648675, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C1 | 1+T |
| 5 | C1×C1 | (1−T)(1+T) |
| 31 | C1 | (1−T)2 |
good | 2 | C2 | (1−T+pT2)(1+T+pT2) |
| 7 | C2 | (1+2T+pT2)2 |
| 11 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 13 | C2 | (1+pT2)2 |
| 17 | C2 | (1−2T+pT2)(1+2T+pT2) |
| 19 | C2 | (1+8T+pT2)2 |
| 23 | C2 | (1−8T+pT2)(1+8T+pT2) |
| 29 | C2 | (1+pT2)2 |
| 37 | C2 | (1−8T+pT2)2 |
| 41 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 43 | C2 | (1+pT2)2 |
| 47 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 53 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 59 | C2 | (1−10T+pT2)(1+10T+pT2) |
| 61 | C2 | (1+14T+pT2)2 |
| 67 | C2 | (1−2T+pT2)2 |
| 71 | C2 | (1−6T+pT2)(1+6T+pT2) |
| 73 | C2 | (1+16T+pT2)2 |
| 79 | C2 | (1+pT2)2 |
| 83 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 89 | C2 | (1−4T+pT2)(1+4T+pT2) |
| 97 | C2 | (1−6T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.84532589169742215840335224293, −7.68128969255594037111738820978, −6.77225946146642489618389989901, −6.36573875529349558957576705485, −6.13319511217733986766315838164, −5.87102863181679820049643029680, −4.85221518213525471918852830380, −4.62476804594428139253779251777, −4.15549500339935073670126654606, −3.85399261511576687175772764034, −2.96653770006789309828242375320, −2.48347553325427240017401962963, −1.38137651049014592943287717063, 0, 0,
1.38137651049014592943287717063, 2.48347553325427240017401962963, 2.96653770006789309828242375320, 3.85399261511576687175772764034, 4.15549500339935073670126654606, 4.62476804594428139253779251777, 4.85221518213525471918852830380, 5.87102863181679820049643029680, 6.13319511217733986766315838164, 6.36573875529349558957576705485, 6.77225946146642489618389989901, 7.68128969255594037111738820978, 7.84532589169742215840335224293