L(s) = 1 | − 14·7-s − 48·9-s + 48·11-s + 28·13-s + 28·17-s − 88·19-s − 28·23-s − 140·29-s + 104·31-s + 364·37-s + 180·41-s + 392·43-s + 56·47-s + 147·49-s + 924·53-s + 568·59-s − 468·61-s + 672·63-s + 224·67-s − 972·71-s + 1.31e3·73-s − 672·77-s + 964·79-s + 1.57e3·81-s + 672·83-s − 1.65e3·89-s − 392·91-s + ⋯ |
L(s) = 1 | − 0.755·7-s − 1.77·9-s + 1.31·11-s + 0.597·13-s + 0.399·17-s − 1.06·19-s − 0.253·23-s − 0.896·29-s + 0.602·31-s + 1.61·37-s + 0.685·41-s + 1.39·43-s + 0.173·47-s + 3/7·49-s + 2.39·53-s + 1.25·59-s − 0.982·61-s + 1.34·63-s + 0.408·67-s − 1.62·71-s + 2.10·73-s − 0.994·77-s + 1.37·79-s + 2.16·81-s + 0.888·83-s − 1.96·89-s − 0.451·91-s + ⋯ |
Λ(s)=(=(490000s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(490000s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
490000
= 24⋅54⋅72
|
Sign: |
1
|
Analytic conductor: |
1705.80 |
Root analytic conductor: |
6.42661 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 490000, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
2.562443816 |
L(21) |
≈ |
2.562443816 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | | 1 |
| 7 | C1 | (1+pT)2 |
good | 3 | C22 | 1+16pT2+p6T4 |
| 11 | D4 | 1−48T+2062T2−48p3T3+p6T4 |
| 13 | D4 | 1−28T+1416T2−28p3T3+p6T4 |
| 17 | D4 | 1−28T+6566T2−28p3T3+p6T4 |
| 19 | D4 | 1+88T+15360T2+88p3T3+p6T4 |
| 23 | D4 | 1+28T+24506T2+28p3T3+p6T4 |
| 29 | D4 | 1+140T+52502T2+140p3T3+p6T4 |
| 31 | D4 | 1−104T+61110T2−104p3T3+p6T4 |
| 37 | D4 | 1−364T+120606T2−364p3T3+p6T4 |
| 41 | D4 | 1−180T+3646T2−180p3T3+p6T4 |
| 43 | D4 | 1−392T+144414T2−392p3T3+p6T4 |
| 47 | D4 | 1−56T+179030T2−56p3T3+p6T4 |
| 53 | D4 | 1−924T+496198T2−924p3T3+p6T4 |
| 59 | D4 | 1−568T+335888T2−568p3T3+p6T4 |
| 61 | D4 | 1+468T+353192T2+468p3T3+p6T4 |
| 67 | D4 | 1−224T+116406T2−224p3T3+p6T4 |
| 71 | D4 | 1+972T+950842T2+972p3T3+p6T4 |
| 73 | D4 | 1−1316T+1153374T2−1316p3T3+p6T4 |
| 79 | D4 | 1−964T+483402T2−964p3T3+p6T4 |
| 83 | D4 | 1−672T+762256T2−672p3T3+p6T4 |
| 89 | D4 | 1+1652T+1922870T2+1652p3T3+p6T4 |
| 97 | D4 | 1−1428T+2332742T2−1428p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.14690380272769903734412310835, −9.878476075799528725119323553421, −9.269297340248471613425645332889, −8.888353985389832936604863886299, −8.719077325368560915412978530928, −8.290177435948289459891489228221, −7.46642677453915107889095411878, −7.42950945932524763171549843435, −6.38157856652778788813751105292, −6.33336649154832467263341022022, −5.87985077051909231196385910517, −5.59547321506238545669936287696, −4.71180909429618519957168465504, −4.19631100585705602211265960483, −3.56915392624490267661698196495, −3.37891067844283899104707359869, −2.32244297973380705804394497343, −2.29476537170809633670083383789, −0.906490646171834012620050779679, −0.58064542603283174191661162934,
0.58064542603283174191661162934, 0.906490646171834012620050779679, 2.29476537170809633670083383789, 2.32244297973380705804394497343, 3.37891067844283899104707359869, 3.56915392624490267661698196495, 4.19631100585705602211265960483, 4.71180909429618519957168465504, 5.59547321506238545669936287696, 5.87985077051909231196385910517, 6.33336649154832467263341022022, 6.38157856652778788813751105292, 7.42950945932524763171549843435, 7.46642677453915107889095411878, 8.290177435948289459891489228221, 8.719077325368560915412978530928, 8.888353985389832936604863886299, 9.269297340248471613425645332889, 9.878476075799528725119323553421, 10.14690380272769903734412310835