Properties

Label 700.4.a.p
Level $700$
Weight $4$
Character orbit 700.a
Self dual yes
Analytic conductor $41.301$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [700,4,Mod(1,700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(700, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("700.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 700.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.3013370040\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{6}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 140)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{3} - 7 q^{7} - 21 q^{9} + (14 \beta + 24) q^{11} + (23 \beta + 14) q^{13} + ( - 24 \beta + 14) q^{17} + (7 \beta - 44) q^{19} - 7 \beta q^{21} + ( - 2 \beta - 14) q^{23} - 48 \beta q^{27} + \cdots + ( - 294 \beta - 504) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 14 q^{7} - 42 q^{9} + 48 q^{11} + 28 q^{13} + 28 q^{17} - 88 q^{19} - 28 q^{23} - 140 q^{29} + 104 q^{31} + 168 q^{33} + 364 q^{37} + 276 q^{39} + 180 q^{41} + 392 q^{43} + 56 q^{47} + 98 q^{49} - 288 q^{51}+ \cdots - 1008 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.44949
2.44949
0 −2.44949 0 0 0 −7.00000 0 −21.0000 0
1.2 0 2.44949 0 0 0 −7.00000 0 −21.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 700.4.a.p 2
5.b even 2 1 700.4.a.q 2
5.c odd 4 2 140.4.e.c 4
15.e even 4 2 1260.4.k.d 4
20.e even 4 2 560.4.g.d 4
35.f even 4 2 980.4.e.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.4.e.c 4 5.c odd 4 2
560.4.g.d 4 20.e even 4 2
700.4.a.p 2 1.a even 1 1 trivial
700.4.a.q 2 5.b even 2 1
980.4.e.d 4 35.f even 4 2
1260.4.k.d 4 15.e even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(700))\):

\( T_{3}^{2} - 6 \) Copy content Toggle raw display
\( T_{11}^{2} - 48T_{11} - 600 \) Copy content Toggle raw display
\( T_{13}^{2} - 28T_{13} - 2978 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 6 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( (T + 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 48T - 600 \) Copy content Toggle raw display
$13$ \( T^{2} - 28T - 2978 \) Copy content Toggle raw display
$17$ \( T^{2} - 28T - 3260 \) Copy content Toggle raw display
$19$ \( T^{2} + 88T + 1642 \) Copy content Toggle raw display
$23$ \( T^{2} + 28T + 172 \) Copy content Toggle raw display
$29$ \( T^{2} + 140T + 3724 \) Copy content Toggle raw display
$31$ \( T^{2} - 104T + 1528 \) Copy content Toggle raw display
$37$ \( T^{2} - 364T + 19300 \) Copy content Toggle raw display
$41$ \( T^{2} - 180T - 134196 \) Copy content Toggle raw display
$43$ \( T^{2} - 392T - 14600 \) Copy content Toggle raw display
$47$ \( T^{2} - 56T - 28616 \) Copy content Toggle raw display
$53$ \( T^{2} - 924T + 198444 \) Copy content Toggle raw display
$59$ \( T^{2} - 568T - 74870 \) Copy content Toggle raw display
$61$ \( T^{2} + 468T - 100770 \) Copy content Toggle raw display
$67$ \( T^{2} - 224T - 485120 \) Copy content Toggle raw display
$71$ \( T^{2} + 972T + 235020 \) Copy content Toggle raw display
$73$ \( T^{2} - 1316 T + 375340 \) Copy content Toggle raw display
$79$ \( T^{2} - 964T - 502676 \) Copy content Toggle raw display
$83$ \( T^{2} - 672T - 381318 \) Copy content Toggle raw display
$89$ \( T^{2} + 1652 T + 512932 \) Copy content Toggle raw display
$97$ \( T^{2} - 1428 T + 507396 \) Copy content Toggle raw display
show more
show less