Properties

Label 700.4.a.p
Level 700700
Weight 44
Character orbit 700.a
Self dual yes
Analytic conductor 41.30141.301
Analytic rank 00
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [700,4,Mod(1,700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(700, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("700.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 700=22527 700 = 2^{2} \cdot 5^{2} \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 700.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 41.301337004041.3013370040
Analytic rank: 00
Dimension: 22
Coefficient field: Q(6)\Q(\sqrt{6})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x26 x^{2} - 6 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 140)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=6\beta = \sqrt{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+βq37q721q9+(14β+24)q11+(23β+14)q13+(24β+14)q17+(7β44)q197βq21+(2β14)q2348βq27++(294β504)q99+O(q100) q + \beta q^{3} - 7 q^{7} - 21 q^{9} + (14 \beta + 24) q^{11} + (23 \beta + 14) q^{13} + ( - 24 \beta + 14) q^{17} + (7 \beta - 44) q^{19} - 7 \beta q^{21} + ( - 2 \beta - 14) q^{23} - 48 \beta q^{27} + \cdots + ( - 294 \beta - 504) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q14q742q9+48q11+28q13+28q1788q1928q23140q29+104q31+168q33+364q37+276q39+180q41+392q43+56q47+98q49288q51+1008q99+O(q100) 2 q - 14 q^{7} - 42 q^{9} + 48 q^{11} + 28 q^{13} + 28 q^{17} - 88 q^{19} - 28 q^{23} - 140 q^{29} + 104 q^{31} + 168 q^{33} + 364 q^{37} + 276 q^{39} + 180 q^{41} + 392 q^{43} + 56 q^{47} + 98 q^{49} - 288 q^{51}+ \cdots - 1008 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−2.44949
2.44949
0 −2.44949 0 0 0 −7.00000 0 −21.0000 0
1.2 0 2.44949 0 0 0 −7.00000 0 −21.0000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
55 1 -1
77 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 700.4.a.p 2
5.b even 2 1 700.4.a.q 2
5.c odd 4 2 140.4.e.c 4
15.e even 4 2 1260.4.k.d 4
20.e even 4 2 560.4.g.d 4
35.f even 4 2 980.4.e.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.4.e.c 4 5.c odd 4 2
560.4.g.d 4 20.e even 4 2
700.4.a.p 2 1.a even 1 1 trivial
700.4.a.q 2 5.b even 2 1
980.4.e.d 4 35.f even 4 2
1260.4.k.d 4 15.e even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(700))S_{4}^{\mathrm{new}}(\Gamma_0(700)):

T326 T_{3}^{2} - 6 Copy content Toggle raw display
T11248T11600 T_{11}^{2} - 48T_{11} - 600 Copy content Toggle raw display
T13228T132978 T_{13}^{2} - 28T_{13} - 2978 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T26 T^{2} - 6 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 (T+7)2 (T + 7)^{2} Copy content Toggle raw display
1111 T248T600 T^{2} - 48T - 600 Copy content Toggle raw display
1313 T228T2978 T^{2} - 28T - 2978 Copy content Toggle raw display
1717 T228T3260 T^{2} - 28T - 3260 Copy content Toggle raw display
1919 T2+88T+1642 T^{2} + 88T + 1642 Copy content Toggle raw display
2323 T2+28T+172 T^{2} + 28T + 172 Copy content Toggle raw display
2929 T2+140T+3724 T^{2} + 140T + 3724 Copy content Toggle raw display
3131 T2104T+1528 T^{2} - 104T + 1528 Copy content Toggle raw display
3737 T2364T+19300 T^{2} - 364T + 19300 Copy content Toggle raw display
4141 T2180T134196 T^{2} - 180T - 134196 Copy content Toggle raw display
4343 T2392T14600 T^{2} - 392T - 14600 Copy content Toggle raw display
4747 T256T28616 T^{2} - 56T - 28616 Copy content Toggle raw display
5353 T2924T+198444 T^{2} - 924T + 198444 Copy content Toggle raw display
5959 T2568T74870 T^{2} - 568T - 74870 Copy content Toggle raw display
6161 T2+468T100770 T^{2} + 468T - 100770 Copy content Toggle raw display
6767 T2224T485120 T^{2} - 224T - 485120 Copy content Toggle raw display
7171 T2+972T+235020 T^{2} + 972T + 235020 Copy content Toggle raw display
7373 T21316T+375340 T^{2} - 1316 T + 375340 Copy content Toggle raw display
7979 T2964T502676 T^{2} - 964T - 502676 Copy content Toggle raw display
8383 T2672T381318 T^{2} - 672T - 381318 Copy content Toggle raw display
8989 T2+1652T+512932 T^{2} + 1652 T + 512932 Copy content Toggle raw display
9797 T21428T+507396 T^{2} - 1428 T + 507396 Copy content Toggle raw display
show more
show less