gp: [N,k,chi] = [700,4,Mod(1,700)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(700, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("700.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [2,0,0,0,0,0,-14,0,-42,0,48]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of β = 6 \beta = \sqrt{6} β = 6 .
We also show the integral q q q -expansion of the trace form .
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
− 1 -1 − 1
5 5 5
− 1 -1 − 1
7 7 7
+ 1 +1 + 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( Γ 0 ( 700 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(700)) S 4 n e w ( Γ 0 ( 7 0 0 ) ) :
T 3 2 − 6 T_{3}^{2} - 6 T 3 2 − 6
T3^2 - 6
T 11 2 − 48 T 11 − 600 T_{11}^{2} - 48T_{11} - 600 T 1 1 2 − 4 8 T 1 1 − 6 0 0
T11^2 - 48*T11 - 600
T 13 2 − 28 T 13 − 2978 T_{13}^{2} - 28T_{13} - 2978 T 1 3 2 − 2 8 T 1 3 − 2 9 7 8
T13^2 - 28*T13 - 2978
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 T^{2} T 2
T^2
3 3 3
T 2 − 6 T^{2} - 6 T 2 − 6
T^2 - 6
5 5 5
T 2 T^{2} T 2
T^2
7 7 7
( T + 7 ) 2 (T + 7)^{2} ( T + 7 ) 2
(T + 7)^2
11 11 1 1
T 2 − 48 T − 600 T^{2} - 48T - 600 T 2 − 4 8 T − 6 0 0
T^2 - 48*T - 600
13 13 1 3
T 2 − 28 T − 2978 T^{2} - 28T - 2978 T 2 − 2 8 T − 2 9 7 8
T^2 - 28*T - 2978
17 17 1 7
T 2 − 28 T − 3260 T^{2} - 28T - 3260 T 2 − 2 8 T − 3 2 6 0
T^2 - 28*T - 3260
19 19 1 9
T 2 + 88 T + 1642 T^{2} + 88T + 1642 T 2 + 8 8 T + 1 6 4 2
T^2 + 88*T + 1642
23 23 2 3
T 2 + 28 T + 172 T^{2} + 28T + 172 T 2 + 2 8 T + 1 7 2
T^2 + 28*T + 172
29 29 2 9
T 2 + 140 T + 3724 T^{2} + 140T + 3724 T 2 + 1 4 0 T + 3 7 2 4
T^2 + 140*T + 3724
31 31 3 1
T 2 − 104 T + 1528 T^{2} - 104T + 1528 T 2 − 1 0 4 T + 1 5 2 8
T^2 - 104*T + 1528
37 37 3 7
T 2 − 364 T + 19300 T^{2} - 364T + 19300 T 2 − 3 6 4 T + 1 9 3 0 0
T^2 - 364*T + 19300
41 41 4 1
T 2 − 180 T − 134196 T^{2} - 180T - 134196 T 2 − 1 8 0 T − 1 3 4 1 9 6
T^2 - 180*T - 134196
43 43 4 3
T 2 − 392 T − 14600 T^{2} - 392T - 14600 T 2 − 3 9 2 T − 1 4 6 0 0
T^2 - 392*T - 14600
47 47 4 7
T 2 − 56 T − 28616 T^{2} - 56T - 28616 T 2 − 5 6 T − 2 8 6 1 6
T^2 - 56*T - 28616
53 53 5 3
T 2 − 924 T + 198444 T^{2} - 924T + 198444 T 2 − 9 2 4 T + 1 9 8 4 4 4
T^2 - 924*T + 198444
59 59 5 9
T 2 − 568 T − 74870 T^{2} - 568T - 74870 T 2 − 5 6 8 T − 7 4 8 7 0
T^2 - 568*T - 74870
61 61 6 1
T 2 + 468 T − 100770 T^{2} + 468T - 100770 T 2 + 4 6 8 T − 1 0 0 7 7 0
T^2 + 468*T - 100770
67 67 6 7
T 2 − 224 T − 485120 T^{2} - 224T - 485120 T 2 − 2 2 4 T − 4 8 5 1 2 0
T^2 - 224*T - 485120
71 71 7 1
T 2 + 972 T + 235020 T^{2} + 972T + 235020 T 2 + 9 7 2 T + 2 3 5 0 2 0
T^2 + 972*T + 235020
73 73 7 3
T 2 − 1316 T + 375340 T^{2} - 1316 T + 375340 T 2 − 1 3 1 6 T + 3 7 5 3 4 0
T^2 - 1316*T + 375340
79 79 7 9
T 2 − 964 T − 502676 T^{2} - 964T - 502676 T 2 − 9 6 4 T − 5 0 2 6 7 6
T^2 - 964*T - 502676
83 83 8 3
T 2 − 672 T − 381318 T^{2} - 672T - 381318 T 2 − 6 7 2 T − 3 8 1 3 1 8
T^2 - 672*T - 381318
89 89 8 9
T 2 + 1652 T + 512932 T^{2} + 1652 T + 512932 T 2 + 1 6 5 2 T + 5 1 2 9 3 2
T^2 + 1652*T + 512932
97 97 9 7
T 2 − 1428 T + 507396 T^{2} - 1428 T + 507396 T 2 − 1 4 2 8 T + 5 0 7 3 9 6
T^2 - 1428*T + 507396
show more
show less