Properties

Label 140.4.e.c
Level $140$
Weight $4$
Character orbit 140.e
Analytic conductor $8.260$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [140,4,Mod(29,140)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(140, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("140.29");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 140 = 2^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 140.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.26026740080\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 7^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{3} + (\beta_{3} + \beta_1 + 1) q^{5} - \beta_1 q^{7} + 21 q^{9} + ( - 4 \beta_{3} - 2 \beta_{2} + 24) q^{11} + (23 \beta_{2} - 2 \beta_1) q^{13} + ( - 2 \beta_{3} + 3 \beta_1 + 3) q^{15}+ \cdots + ( - 84 \beta_{3} - 42 \beta_{2} + 504) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{5} + 84 q^{9} + 96 q^{11} + 12 q^{15} + 176 q^{19} + 96 q^{25} + 280 q^{29} + 208 q^{31} + 196 q^{35} - 552 q^{39} + 360 q^{41} + 84 q^{45} - 196 q^{49} - 576 q^{51} - 1080 q^{55} - 1136 q^{59}+ \cdots + 2016 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 7\nu^{2} ) / 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 3\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -4\nu^{3} + 9\nu ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + 4\beta_{2} ) / 7 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 3\beta_1 ) / 7 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -3\beta_{3} + 9\beta_{2} ) / 7 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/140\mathbb{Z}\right)^\times\).

\(n\) \(57\) \(71\) \(101\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
29.1
−1.22474 1.22474i
1.22474 1.22474i
−1.22474 + 1.22474i
1.22474 + 1.22474i
0 2.44949i 0 −7.57321 + 8.22474i 0 7.00000i 0 21.0000 0
29.2 0 2.44949i 0 9.57321 5.77526i 0 7.00000i 0 21.0000 0
29.3 0 2.44949i 0 −7.57321 8.22474i 0 7.00000i 0 21.0000 0
29.4 0 2.44949i 0 9.57321 + 5.77526i 0 7.00000i 0 21.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 140.4.e.c 4
3.b odd 2 1 1260.4.k.d 4
4.b odd 2 1 560.4.g.d 4
5.b even 2 1 inner 140.4.e.c 4
5.c odd 4 1 700.4.a.p 2
5.c odd 4 1 700.4.a.q 2
7.b odd 2 1 980.4.e.d 4
15.d odd 2 1 1260.4.k.d 4
20.d odd 2 1 560.4.g.d 4
35.c odd 2 1 980.4.e.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.4.e.c 4 1.a even 1 1 trivial
140.4.e.c 4 5.b even 2 1 inner
560.4.g.d 4 4.b odd 2 1
560.4.g.d 4 20.d odd 2 1
700.4.a.p 2 5.c odd 4 1
700.4.a.q 2 5.c odd 4 1
980.4.e.d 4 7.b odd 2 1
980.4.e.d 4 35.c odd 2 1
1260.4.k.d 4 3.b odd 2 1
1260.4.k.d 4 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 6 \) acting on \(S_{4}^{\mathrm{new}}(140, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + 6)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} - 4 T^{3} + \cdots + 15625 \) Copy content Toggle raw display
$7$ \( (T^{2} + 49)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 48 T - 600)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + 6740 T^{2} + 8868484 \) Copy content Toggle raw display
$17$ \( T^{4} + 7304 T^{2} + 10627600 \) Copy content Toggle raw display
$19$ \( (T^{2} - 88 T + 1642)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 440 T^{2} + 29584 \) Copy content Toggle raw display
$29$ \( (T^{2} - 140 T + 3724)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 104 T + 1528)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + 93896 T^{2} + 372490000 \) Copy content Toggle raw display
$41$ \( (T^{2} - 180 T - 134196)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 182864 T^{2} + 213160000 \) Copy content Toggle raw display
$47$ \( T^{4} + 60368 T^{2} + 818875456 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 39380021136 \) Copy content Toggle raw display
$59$ \( (T^{2} + 568 T - 74870)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 468 T - 100770)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 235341414400 \) Copy content Toggle raw display
$71$ \( (T^{2} + 972 T + 235020)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 140880115600 \) Copy content Toggle raw display
$79$ \( (T^{2} + 964 T - 502676)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 145403417124 \) Copy content Toggle raw display
$89$ \( (T^{2} - 1652 T + 512932)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 257450700816 \) Copy content Toggle raw display
show more
show less