L(s) = 1 | − 6·5-s + 4·7-s + 4·11-s − 5·13-s + 3·17-s + 4·19-s − 8·23-s + 17·25-s − 5·29-s − 16·31-s − 24·35-s − 7·37-s − 9·41-s − 8·43-s + 8·47-s + 7·49-s + 10·53-s − 24·55-s + 4·59-s + 5·61-s + 30·65-s − 8·67-s − 4·71-s + 22·73-s + 16·77-s − 8·79-s − 18·85-s + ⋯ |
L(s) = 1 | − 2.68·5-s + 1.51·7-s + 1.20·11-s − 1.38·13-s + 0.727·17-s + 0.917·19-s − 1.66·23-s + 17/5·25-s − 0.928·29-s − 2.87·31-s − 4.05·35-s − 1.15·37-s − 1.40·41-s − 1.21·43-s + 1.16·47-s + 49-s + 1.37·53-s − 3.23·55-s + 0.520·59-s + 0.640·61-s + 3.72·65-s − 0.977·67-s − 0.474·71-s + 2.57·73-s + 1.82·77-s − 0.900·79-s − 1.95·85-s + ⋯ |
Λ(s)=(=(876096s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(876096s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
876096
= 26⋅34⋅132
|
Sign: |
1
|
Analytic conductor: |
55.8606 |
Root analytic conductor: |
2.73386 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 876096, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.6928871698 |
L(21) |
≈ |
0.6928871698 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 13 | C2 | 1+5T+pT2 |
good | 5 | C2 | (1+3T+pT2)2 |
| 7 | C2 | (1−5T+pT2)(1+T+pT2) |
| 11 | C22 | 1−4T+5T2−4pT3+p2T4 |
| 17 | C22 | 1−3T−8T2−3pT3+p2T4 |
| 19 | C22 | 1−4T−3T2−4pT3+p2T4 |
| 23 | C22 | 1+8T+41T2+8pT3+p2T4 |
| 29 | C22 | 1+5T−4T2+5pT3+p2T4 |
| 31 | C2 | (1+8T+pT2)2 |
| 37 | C22 | 1+7T+12T2+7pT3+p2T4 |
| 41 | C22 | 1+9T+40T2+9pT3+p2T4 |
| 43 | C2 | (1−5T+pT2)(1+13T+pT2) |
| 47 | C2 | (1−4T+pT2)2 |
| 53 | C2 | (1−5T+pT2)2 |
| 59 | C22 | 1−4T−43T2−4pT3+p2T4 |
| 61 | C22 | 1−5T−36T2−5pT3+p2T4 |
| 67 | C22 | 1+8T−3T2+8pT3+p2T4 |
| 71 | C22 | 1+4T−55T2+4pT3+p2T4 |
| 73 | C2 | (1−11T+pT2)2 |
| 79 | C2 | (1+4T+pT2)2 |
| 83 | C2 | (1+pT2)2 |
| 89 | C22 | 1+6T−53T2+6pT3+p2T4 |
| 97 | C2 | (1−19T+pT2)(1+5T+pT2) |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.44576908600006344510224581554, −9.831099065397905593927316513367, −9.339559828881023943090777047827, −8.926709517664852580663735112682, −8.408689480637070077514118951523, −8.045785227277115288864906260437, −7.81178514871832325268213458267, −7.32847919310981351068343944314, −7.16333818514872748276182623727, −6.80406900819133450422673111009, −5.72284034130761734054914096761, −5.31308900094643306220052118701, −5.03438953992755654583183824456, −4.30107391680632332291633076927, −3.86837836122392383913578565062, −3.76094796415234917020729315861, −3.21063136376065098437512599043, −2.03891394506725681742493250815, −1.60646807934623313479652226127, −0.39906640497337272797831426704,
0.39906640497337272797831426704, 1.60646807934623313479652226127, 2.03891394506725681742493250815, 3.21063136376065098437512599043, 3.76094796415234917020729315861, 3.86837836122392383913578565062, 4.30107391680632332291633076927, 5.03438953992755654583183824456, 5.31308900094643306220052118701, 5.72284034130761734054914096761, 6.80406900819133450422673111009, 7.16333818514872748276182623727, 7.32847919310981351068343944314, 7.81178514871832325268213458267, 8.045785227277115288864906260437, 8.408689480637070077514118951523, 8.926709517664852580663735112682, 9.339559828881023943090777047827, 9.831099065397905593927316513367, 10.44576908600006344510224581554