L(s) = 1 | + 2·2-s + 3·4-s + 4·8-s − 2·11-s − 4·13-s + 5·16-s − 8·17-s − 4·19-s − 4·22-s − 8·26-s + 8·29-s − 12·31-s + 6·32-s − 16·34-s + 4·37-s − 8·38-s + 8·41-s − 6·44-s − 4·47-s − 12·52-s − 4·53-s + 16·58-s + 16·59-s − 20·61-s − 24·62-s + 7·64-s − 4·67-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 3/2·4-s + 1.41·8-s − 0.603·11-s − 1.10·13-s + 5/4·16-s − 1.94·17-s − 0.917·19-s − 0.852·22-s − 1.56·26-s + 1.48·29-s − 2.15·31-s + 1.06·32-s − 2.74·34-s + 0.657·37-s − 1.29·38-s + 1.24·41-s − 0.904·44-s − 0.583·47-s − 1.66·52-s − 0.549·53-s + 2.10·58-s + 2.08·59-s − 2.56·61-s − 3.04·62-s + 7/8·64-s − 0.488·67-s + ⋯ |
Λ(s)=(=(94128804s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(94128804s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
94128804
= 22⋅34⋅74⋅112
|
Sign: |
1
|
Analytic conductor: |
6001.73 |
Root analytic conductor: |
8.80175 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 94128804, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C1 | (1−T)2 |
| 3 | | 1 |
| 7 | | 1 |
| 11 | C1 | (1+T)2 |
good | 5 | C22 | 1+p2T4 |
| 13 | C2 | (1+2T+pT2)2 |
| 17 | D4 | 1+8T+40T2+8pT3+p2T4 |
| 19 | D4 | 1+4T+32T2+4pT3+p2T4 |
| 23 | C22 | 1+6T2+p2T4 |
| 29 | C2 | (1−4T+pT2)2 |
| 31 | D4 | 1+12T+88T2+12pT3+p2T4 |
| 37 | D4 | 1−4T+38T2−4pT3+p2T4 |
| 41 | D4 | 1−8T+88T2−8pT3+p2T4 |
| 43 | C22 | 1+46T2+p2T4 |
| 47 | C22 | 1+4T+8T2+4pT3+p2T4 |
| 53 | D4 | 1+4T+70T2+4pT3+p2T4 |
| 59 | D4 | 1−16T+142T2−16pT3+p2T4 |
| 61 | C2 | (1+10T+pT2)2 |
| 67 | D4 | 1+4T+98T2+4pT3+p2T4 |
| 71 | C2 | (1+8T+pT2)2 |
| 73 | D4 | 1+8T+72T2+8pT3+p2T4 |
| 79 | D4 | 1−4T+122T2−4pT3+p2T4 |
| 83 | D4 | 1−4T+160T2−4pT3+p2T4 |
| 89 | D4 | 1+20T+238T2+20pT3+p2T4 |
| 97 | D4 | 1+4T+38T2+4pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.40390696552429875805816987607, −7.07149514668228748995453113511, −6.78633192065727996855660760536, −6.40619557849196721234626637624, −6.05192671395370405034974781964, −5.88568236290735424417634580988, −5.30568208992729320133223596045, −5.07365129834296019028673126943, −4.57417664900218053085768901530, −4.55106686279006346469585476986, −4.03230845911111815865991516512, −3.87676902674504075288729074028, −3.13243545207358721453027083435, −2.80952576827936694236965068411, −2.51016169042402406257076724758, −2.20547063448227657421133644363, −1.71368723360904622860530757896, −1.19238049380801914993518122461, 0, 0,
1.19238049380801914993518122461, 1.71368723360904622860530757896, 2.20547063448227657421133644363, 2.51016169042402406257076724758, 2.80952576827936694236965068411, 3.13243545207358721453027083435, 3.87676902674504075288729074028, 4.03230845911111815865991516512, 4.55106686279006346469585476986, 4.57417664900218053085768901530, 5.07365129834296019028673126943, 5.30568208992729320133223596045, 5.88568236290735424417634580988, 6.05192671395370405034974781964, 6.40619557849196721234626637624, 6.78633192065727996855660760536, 7.07149514668228748995453113511, 7.40390696552429875805816987607