L(s) = 1 | + 3·2-s + 3-s + 4·4-s + 3·6-s + 3·8-s + 3·11-s + 4·12-s + 7·13-s + 3·16-s + 9·22-s + 3·23-s + 3·24-s + 21·26-s − 27-s + 6·32-s + 3·33-s + 3·37-s + 7·39-s + 6·41-s + 10·43-s + 12·44-s + 9·46-s + 3·48-s − 7·49-s + 28·52-s − 3·54-s − 18·59-s + ⋯ |
L(s) = 1 | + 2.12·2-s + 0.577·3-s + 2·4-s + 1.22·6-s + 1.06·8-s + 0.904·11-s + 1.15·12-s + 1.94·13-s + 3/4·16-s + 1.91·22-s + 0.625·23-s + 0.612·24-s + 4.11·26-s − 0.192·27-s + 1.06·32-s + 0.522·33-s + 0.493·37-s + 1.12·39-s + 0.937·41-s + 1.52·43-s + 1.80·44-s + 1.32·46-s + 0.433·48-s − 49-s + 3.88·52-s − 0.408·54-s − 2.34·59-s + ⋯ |
Λ(s)=(=(950625s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(950625s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
950625
= 32⋅54⋅132
|
Sign: |
1
|
Analytic conductor: |
60.6126 |
Root analytic conductor: |
2.79023 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 950625, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
9.645121355 |
L(21) |
≈ |
9.645121355 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C2 | 1−T+T2 |
| 5 | | 1 |
| 13 | C2 | 1−7T+pT2 |
good | 2 | C22 | 1−3T+5T2−3pT3+p2T4 |
| 7 | C22 | 1+pT2+p2T4 |
| 11 | C22 | 1−3T+14T2−3pT3+p2T4 |
| 17 | C22 | 1−pT2+p2T4 |
| 19 | C22 | 1+pT2+p2T4 |
| 23 | C22 | 1−3T−14T2−3pT3+p2T4 |
| 29 | C22 | 1−pT2+p2T4 |
| 31 | C22 | 1−14T2+p2T4 |
| 37 | C22 | 1−3T+40T2−3pT3+p2T4 |
| 41 | C22 | 1−6T+53T2−6pT3+p2T4 |
| 43 | C22 | 1−10T+57T2−10pT3+p2T4 |
| 47 | C22 | 1−82T2+p2T4 |
| 53 | C2 | (1+pT2)2 |
| 59 | C22 | 1+18T+167T2+18pT3+p2T4 |
| 61 | C22 | 1+7T−12T2+7pT3+p2T4 |
| 67 | C2 | (1−11T+pT2)(1+5T+pT2) |
| 71 | C22 | 1+15T+146T2+15pT3+p2T4 |
| 73 | C22 | 1−71T2+p2T4 |
| 79 | C2 | (1+8T+pT2)2 |
| 83 | C22 | 1−91T2+p2T4 |
| 89 | C22 | 1+12T+137T2+12pT3+p2T4 |
| 97 | C22 | 1−15T+172T2−15pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.33655290533496836420308194191, −9.843963231527390580171107357540, −9.105843186413900524784805238835, −9.069084932299466622369564730209, −8.639088792803456785164918736586, −8.046985918205892511596777274801, −7.55712781602263027829023812591, −7.26193385574861545151219010435, −6.31859453965618835958929932457, −6.30789815043422501137767938775, −5.88799104523779201314772109017, −5.46145510037921279529980404261, −4.65839595865025108296362679525, −4.52294054175957135050892081689, −3.88097013161846168618880854513, −3.70863208252683331751725555543, −3.01826139467454103950154576191, −2.79519202909103534337746912453, −1.67050637935550119428375772502, −1.15474611137418329177116412373,
1.15474611137418329177116412373, 1.67050637935550119428375772502, 2.79519202909103534337746912453, 3.01826139467454103950154576191, 3.70863208252683331751725555543, 3.88097013161846168618880854513, 4.52294054175957135050892081689, 4.65839595865025108296362679525, 5.46145510037921279529980404261, 5.88799104523779201314772109017, 6.30789815043422501137767938775, 6.31859453965618835958929932457, 7.26193385574861545151219010435, 7.55712781602263027829023812591, 8.046985918205892511596777274801, 8.639088792803456785164918736586, 9.069084932299466622369564730209, 9.105843186413900524784805238835, 9.843963231527390580171107357540, 10.33655290533496836420308194191