Properties

Label 975.2.bc.g.901.1
Level $975$
Weight $2$
Character 975.901
Analytic conductor $7.785$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [975,2,Mod(751,975)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(975, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("975.751");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.bc (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 901.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 975.901
Dual form 975.2.bc.g.751.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.50000 + 0.866025i) q^{2} +(0.500000 - 0.866025i) q^{3} +(0.500000 + 0.866025i) q^{4} +(1.50000 - 0.866025i) q^{6} -1.73205i q^{8} +(-0.500000 - 0.866025i) q^{9} +(1.50000 + 0.866025i) q^{11} +1.00000 q^{12} +(3.50000 - 0.866025i) q^{13} +(2.50000 - 4.33013i) q^{16} -1.73205i q^{18} +(1.50000 + 2.59808i) q^{22} +(1.50000 - 2.59808i) q^{23} +(-1.50000 - 0.866025i) q^{24} +(6.00000 + 1.73205i) q^{26} -1.00000 q^{27} -6.92820i q^{31} +(4.50000 - 2.59808i) q^{32} +(1.50000 - 0.866025i) q^{33} +(0.500000 - 0.866025i) q^{36} +(1.50000 + 0.866025i) q^{37} +(1.00000 - 3.46410i) q^{39} +(3.00000 + 1.73205i) q^{41} +(5.00000 + 8.66025i) q^{43} +1.73205i q^{44} +(4.50000 - 2.59808i) q^{46} -3.46410i q^{47} +(-2.50000 - 4.33013i) q^{48} +(-3.50000 + 6.06218i) q^{49} +(2.50000 + 2.59808i) q^{52} +(-1.50000 - 0.866025i) q^{54} +(-9.00000 + 5.19615i) q^{59} +(-3.50000 - 6.06218i) q^{61} +(6.00000 - 10.3923i) q^{62} -1.00000 q^{64} +3.00000 q^{66} +(3.00000 + 1.73205i) q^{67} +(-1.50000 - 2.59808i) q^{69} +(-7.50000 + 4.33013i) q^{71} +(-1.50000 + 0.866025i) q^{72} +8.66025i q^{73} +(1.50000 + 2.59808i) q^{74} +(4.50000 - 4.33013i) q^{78} -8.00000 q^{79} +(-0.500000 + 0.866025i) q^{81} +(3.00000 + 5.19615i) q^{82} +8.66025i q^{83} +17.3205i q^{86} +(1.50000 - 2.59808i) q^{88} +(-6.00000 - 3.46410i) q^{89} +3.00000 q^{92} +(-6.00000 - 3.46410i) q^{93} +(3.00000 - 5.19615i) q^{94} -5.19615i q^{96} +(7.50000 - 4.33013i) q^{97} +(-10.5000 + 6.06218i) q^{98} -1.73205i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{2} + q^{3} + q^{4} + 3 q^{6} - q^{9} + 3 q^{11} + 2 q^{12} + 7 q^{13} + 5 q^{16} + 3 q^{22} + 3 q^{23} - 3 q^{24} + 12 q^{26} - 2 q^{27} + 9 q^{32} + 3 q^{33} + q^{36} + 3 q^{37} + 2 q^{39}+ \cdots - 21 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.50000 + 0.866025i 1.06066 + 0.612372i 0.925615 0.378467i \(-0.123549\pi\)
0.135045 + 0.990839i \(0.456882\pi\)
\(3\) 0.500000 0.866025i 0.288675 0.500000i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 0 0
\(6\) 1.50000 0.866025i 0.612372 0.353553i
\(7\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(8\) 1.73205i 0.612372i
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0 0
\(11\) 1.50000 + 0.866025i 0.452267 + 0.261116i 0.708787 0.705422i \(-0.249243\pi\)
−0.256520 + 0.966539i \(0.582576\pi\)
\(12\) 1.00000 0.288675
\(13\) 3.50000 0.866025i 0.970725 0.240192i
\(14\) 0 0
\(15\) 0 0
\(16\) 2.50000 4.33013i 0.625000 1.08253i
\(17\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(18\) 1.73205i 0.408248i
\(19\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 1.50000 + 2.59808i 0.319801 + 0.553912i
\(23\) 1.50000 2.59808i 0.312772 0.541736i −0.666190 0.745782i \(-0.732076\pi\)
0.978961 + 0.204046i \(0.0654092\pi\)
\(24\) −1.50000 0.866025i −0.306186 0.176777i
\(25\) 0 0
\(26\) 6.00000 + 1.73205i 1.17670 + 0.339683i
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(30\) 0 0
\(31\) 6.92820i 1.24434i −0.782881 0.622171i \(-0.786251\pi\)
0.782881 0.622171i \(-0.213749\pi\)
\(32\) 4.50000 2.59808i 0.795495 0.459279i
\(33\) 1.50000 0.866025i 0.261116 0.150756i
\(34\) 0 0
\(35\) 0 0
\(36\) 0.500000 0.866025i 0.0833333 0.144338i
\(37\) 1.50000 + 0.866025i 0.246598 + 0.142374i 0.618206 0.786016i \(-0.287860\pi\)
−0.371607 + 0.928390i \(0.621193\pi\)
\(38\) 0 0
\(39\) 1.00000 3.46410i 0.160128 0.554700i
\(40\) 0 0
\(41\) 3.00000 + 1.73205i 0.468521 + 0.270501i 0.715621 0.698489i \(-0.246144\pi\)
−0.247099 + 0.968990i \(0.579477\pi\)
\(42\) 0 0
\(43\) 5.00000 + 8.66025i 0.762493 + 1.32068i 0.941562 + 0.336840i \(0.109358\pi\)
−0.179069 + 0.983836i \(0.557309\pi\)
\(44\) 1.73205i 0.261116i
\(45\) 0 0
\(46\) 4.50000 2.59808i 0.663489 0.383065i
\(47\) 3.46410i 0.505291i −0.967559 0.252646i \(-0.918699\pi\)
0.967559 0.252646i \(-0.0813007\pi\)
\(48\) −2.50000 4.33013i −0.360844 0.625000i
\(49\) −3.50000 + 6.06218i −0.500000 + 0.866025i
\(50\) 0 0
\(51\) 0 0
\(52\) 2.50000 + 2.59808i 0.346688 + 0.360288i
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) −1.50000 0.866025i −0.204124 0.117851i
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −9.00000 + 5.19615i −1.17170 + 0.676481i −0.954080 0.299552i \(-0.903163\pi\)
−0.217620 + 0.976034i \(0.569829\pi\)
\(60\) 0 0
\(61\) −3.50000 6.06218i −0.448129 0.776182i 0.550135 0.835076i \(-0.314576\pi\)
−0.998264 + 0.0588933i \(0.981243\pi\)
\(62\) 6.00000 10.3923i 0.762001 1.31982i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 3.00000 0.369274
\(67\) 3.00000 + 1.73205i 0.366508 + 0.211604i 0.671932 0.740613i \(-0.265465\pi\)
−0.305424 + 0.952217i \(0.598798\pi\)
\(68\) 0 0
\(69\) −1.50000 2.59808i −0.180579 0.312772i
\(70\) 0 0
\(71\) −7.50000 + 4.33013i −0.890086 + 0.513892i −0.873971 0.485979i \(-0.838463\pi\)
−0.0161155 + 0.999870i \(0.505130\pi\)
\(72\) −1.50000 + 0.866025i −0.176777 + 0.102062i
\(73\) 8.66025i 1.01361i 0.862062 + 0.506803i \(0.169173\pi\)
−0.862062 + 0.506803i \(0.830827\pi\)
\(74\) 1.50000 + 2.59808i 0.174371 + 0.302020i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 4.50000 4.33013i 0.509525 0.490290i
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 3.00000 + 5.19615i 0.331295 + 0.573819i
\(83\) 8.66025i 0.950586i 0.879827 + 0.475293i \(0.157658\pi\)
−0.879827 + 0.475293i \(0.842342\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 17.3205i 1.86772i
\(87\) 0 0
\(88\) 1.50000 2.59808i 0.159901 0.276956i
\(89\) −6.00000 3.46410i −0.635999 0.367194i 0.147073 0.989126i \(-0.453015\pi\)
−0.783072 + 0.621932i \(0.786348\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 3.00000 0.312772
\(93\) −6.00000 3.46410i −0.622171 0.359211i
\(94\) 3.00000 5.19615i 0.309426 0.535942i
\(95\) 0 0
\(96\) 5.19615i 0.530330i
\(97\) 7.50000 4.33013i 0.761510 0.439658i −0.0683279 0.997663i \(-0.521766\pi\)
0.829837 + 0.558005i \(0.188433\pi\)
\(98\) −10.5000 + 6.06218i −1.06066 + 0.612372i
\(99\) 1.73205i 0.174078i
\(100\) 0 0
\(101\) −9.00000 + 15.5885i −0.895533 + 1.55111i −0.0623905 + 0.998052i \(0.519872\pi\)
−0.833143 + 0.553058i \(0.813461\pi\)
\(102\) 0 0
\(103\) 14.0000 1.37946 0.689730 0.724066i \(-0.257729\pi\)
0.689730 + 0.724066i \(0.257729\pi\)
\(104\) −1.50000 6.06218i −0.147087 0.594445i
\(105\) 0 0
\(106\) 0 0
\(107\) 6.00000 10.3923i 0.580042 1.00466i −0.415432 0.909624i \(-0.636370\pi\)
0.995474 0.0950377i \(-0.0302972\pi\)
\(108\) −0.500000 0.866025i −0.0481125 0.0833333i
\(109\) 8.66025i 0.829502i 0.909935 + 0.414751i \(0.136131\pi\)
−0.909935 + 0.414751i \(0.863869\pi\)
\(110\) 0 0
\(111\) 1.50000 0.866025i 0.142374 0.0821995i
\(112\) 0 0
\(113\) 3.00000 + 5.19615i 0.282216 + 0.488813i 0.971930 0.235269i \(-0.0755971\pi\)
−0.689714 + 0.724082i \(0.742264\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −2.50000 2.59808i −0.231125 0.240192i
\(118\) −18.0000 −1.65703
\(119\) 0 0
\(120\) 0 0
\(121\) −4.00000 6.92820i −0.363636 0.629837i
\(122\) 12.1244i 1.09769i
\(123\) 3.00000 1.73205i 0.270501 0.156174i
\(124\) 6.00000 3.46410i 0.538816 0.311086i
\(125\) 0 0
\(126\) 0 0
\(127\) 1.00000 1.73205i 0.0887357 0.153695i −0.818241 0.574875i \(-0.805051\pi\)
0.906977 + 0.421180i \(0.138384\pi\)
\(128\) −10.5000 6.06218i −0.928078 0.535826i
\(129\) 10.0000 0.880451
\(130\) 0 0
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) 1.50000 + 0.866025i 0.130558 + 0.0753778i
\(133\) 0 0
\(134\) 3.00000 + 5.19615i 0.259161 + 0.448879i
\(135\) 0 0
\(136\) 0 0
\(137\) −18.0000 + 10.3923i −1.53784 + 0.887875i −0.538879 + 0.842383i \(0.681152\pi\)
−0.998965 + 0.0454914i \(0.985515\pi\)
\(138\) 5.19615i 0.442326i
\(139\) 5.00000 + 8.66025i 0.424094 + 0.734553i 0.996335 0.0855324i \(-0.0272591\pi\)
−0.572241 + 0.820086i \(0.693926\pi\)
\(140\) 0 0
\(141\) −3.00000 1.73205i −0.252646 0.145865i
\(142\) −15.0000 −1.25877
\(143\) 6.00000 + 1.73205i 0.501745 + 0.144841i
\(144\) −5.00000 −0.416667
\(145\) 0 0
\(146\) −7.50000 + 12.9904i −0.620704 + 1.07509i
\(147\) 3.50000 + 6.06218i 0.288675 + 0.500000i
\(148\) 1.73205i 0.142374i
\(149\) 6.00000 3.46410i 0.491539 0.283790i −0.233674 0.972315i \(-0.575075\pi\)
0.725213 + 0.688525i \(0.241741\pi\)
\(150\) 0 0
\(151\) 3.46410i 0.281905i 0.990016 + 0.140952i \(0.0450164\pi\)
−0.990016 + 0.140952i \(0.954984\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 3.50000 0.866025i 0.280224 0.0693375i
\(157\) −1.00000 −0.0798087 −0.0399043 0.999204i \(-0.512705\pi\)
−0.0399043 + 0.999204i \(0.512705\pi\)
\(158\) −12.0000 6.92820i −0.954669 0.551178i
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) −1.50000 + 0.866025i −0.117851 + 0.0680414i
\(163\) −3.00000 + 1.73205i −0.234978 + 0.135665i −0.612866 0.790186i \(-0.709984\pi\)
0.377888 + 0.925851i \(0.376650\pi\)
\(164\) 3.46410i 0.270501i
\(165\) 0 0
\(166\) −7.50000 + 12.9904i −0.582113 + 1.00825i
\(167\) −7.50000 4.33013i −0.580367 0.335075i 0.180912 0.983499i \(-0.442095\pi\)
−0.761279 + 0.648424i \(0.775428\pi\)
\(168\) 0 0
\(169\) 11.5000 6.06218i 0.884615 0.466321i
\(170\) 0 0
\(171\) 0 0
\(172\) −5.00000 + 8.66025i −0.381246 + 0.660338i
\(173\) 12.0000 + 20.7846i 0.912343 + 1.58022i 0.810745 + 0.585399i \(0.199062\pi\)
0.101598 + 0.994826i \(0.467605\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 7.50000 4.33013i 0.565334 0.326396i
\(177\) 10.3923i 0.781133i
\(178\) −6.00000 10.3923i −0.449719 0.778936i
\(179\) −4.50000 + 7.79423i −0.336346 + 0.582568i −0.983742 0.179585i \(-0.942524\pi\)
0.647397 + 0.762153i \(0.275858\pi\)
\(180\) 0 0
\(181\) −7.00000 −0.520306 −0.260153 0.965567i \(-0.583773\pi\)
−0.260153 + 0.965567i \(0.583773\pi\)
\(182\) 0 0
\(183\) −7.00000 −0.517455
\(184\) −4.50000 2.59808i −0.331744 0.191533i
\(185\) 0 0
\(186\) −6.00000 10.3923i −0.439941 0.762001i
\(187\) 0 0
\(188\) 3.00000 1.73205i 0.218797 0.126323i
\(189\) 0 0
\(190\) 0 0
\(191\) −4.50000 7.79423i −0.325609 0.563971i 0.656027 0.754738i \(-0.272236\pi\)
−0.981635 + 0.190767i \(0.938902\pi\)
\(192\) −0.500000 + 0.866025i −0.0360844 + 0.0625000i
\(193\) −7.50000 4.33013i −0.539862 0.311689i 0.205161 0.978728i \(-0.434228\pi\)
−0.745023 + 0.667039i \(0.767561\pi\)
\(194\) 15.0000 1.07694
\(195\) 0 0
\(196\) −7.00000 −0.500000
\(197\) 9.00000 + 5.19615i 0.641223 + 0.370211i 0.785086 0.619387i \(-0.212619\pi\)
−0.143862 + 0.989598i \(0.545952\pi\)
\(198\) 1.50000 2.59808i 0.106600 0.184637i
\(199\) 7.00000 + 12.1244i 0.496217 + 0.859473i 0.999990 0.00436292i \(-0.00138876\pi\)
−0.503774 + 0.863836i \(0.668055\pi\)
\(200\) 0 0
\(201\) 3.00000 1.73205i 0.211604 0.122169i
\(202\) −27.0000 + 15.5885i −1.89971 + 1.09680i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 21.0000 + 12.1244i 1.46314 + 0.844744i
\(207\) −3.00000 −0.208514
\(208\) 5.00000 17.3205i 0.346688 1.20096i
\(209\) 0 0
\(210\) 0 0
\(211\) 10.0000 17.3205i 0.688428 1.19239i −0.283918 0.958849i \(-0.591634\pi\)
0.972346 0.233544i \(-0.0750324\pi\)
\(212\) 0 0
\(213\) 8.66025i 0.593391i
\(214\) 18.0000 10.3923i 1.23045 0.710403i
\(215\) 0 0
\(216\) 1.73205i 0.117851i
\(217\) 0 0
\(218\) −7.50000 + 12.9904i −0.507964 + 0.879820i
\(219\) 7.50000 + 4.33013i 0.506803 + 0.292603i
\(220\) 0 0
\(221\) 0 0
\(222\) 3.00000 0.201347
\(223\) −9.00000 5.19615i −0.602685 0.347960i 0.167412 0.985887i \(-0.446459\pi\)
−0.770097 + 0.637927i \(0.779792\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 10.3923i 0.691286i
\(227\) −25.5000 + 14.7224i −1.69249 + 0.977162i −0.740000 + 0.672607i \(0.765174\pi\)
−0.952495 + 0.304555i \(0.901492\pi\)
\(228\) 0 0
\(229\) 25.9808i 1.71686i −0.512933 0.858429i \(-0.671441\pi\)
0.512933 0.858429i \(-0.328559\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 18.0000 1.17922 0.589610 0.807688i \(-0.299282\pi\)
0.589610 + 0.807688i \(0.299282\pi\)
\(234\) −1.50000 6.06218i −0.0980581 0.396297i
\(235\) 0 0
\(236\) −9.00000 5.19615i −0.585850 0.338241i
\(237\) −4.00000 + 6.92820i −0.259828 + 0.450035i
\(238\) 0 0
\(239\) 5.19615i 0.336111i 0.985778 + 0.168056i \(0.0537488\pi\)
−0.985778 + 0.168056i \(0.946251\pi\)
\(240\) 0 0
\(241\) 18.0000 10.3923i 1.15948 0.669427i 0.208302 0.978065i \(-0.433206\pi\)
0.951180 + 0.308637i \(0.0998729\pi\)
\(242\) 13.8564i 0.890724i
\(243\) 0.500000 + 0.866025i 0.0320750 + 0.0555556i
\(244\) 3.50000 6.06218i 0.224065 0.388091i
\(245\) 0 0
\(246\) 6.00000 0.382546
\(247\) 0 0
\(248\) −12.0000 −0.762001
\(249\) 7.50000 + 4.33013i 0.475293 + 0.274411i
\(250\) 0 0
\(251\) −13.5000 23.3827i −0.852112 1.47590i −0.879298 0.476272i \(-0.841988\pi\)
0.0271858 0.999630i \(-0.491345\pi\)
\(252\) 0 0
\(253\) 4.50000 2.59808i 0.282913 0.163340i
\(254\) 3.00000 1.73205i 0.188237 0.108679i
\(255\) 0 0
\(256\) −9.50000 16.4545i −0.593750 1.02841i
\(257\) 3.00000 5.19615i 0.187135 0.324127i −0.757159 0.653231i \(-0.773413\pi\)
0.944294 + 0.329104i \(0.106747\pi\)
\(258\) 15.0000 + 8.66025i 0.933859 + 0.539164i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −18.0000 10.3923i −1.11204 0.642039i
\(263\) 7.50000 12.9904i 0.462470 0.801021i −0.536614 0.843828i \(-0.680297\pi\)
0.999083 + 0.0428069i \(0.0136300\pi\)
\(264\) −1.50000 2.59808i −0.0923186 0.159901i
\(265\) 0 0
\(266\) 0 0
\(267\) −6.00000 + 3.46410i −0.367194 + 0.212000i
\(268\) 3.46410i 0.211604i
\(269\) 3.00000 + 5.19615i 0.182913 + 0.316815i 0.942871 0.333157i \(-0.108114\pi\)
−0.759958 + 0.649972i \(0.774781\pi\)
\(270\) 0 0
\(271\) 12.0000 + 6.92820i 0.728948 + 0.420858i 0.818037 0.575165i \(-0.195062\pi\)
−0.0890891 + 0.996024i \(0.528396\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −36.0000 −2.17484
\(275\) 0 0
\(276\) 1.50000 2.59808i 0.0902894 0.156386i
\(277\) 12.5000 + 21.6506i 0.751052 + 1.30086i 0.947313 + 0.320309i \(0.103787\pi\)
−0.196261 + 0.980552i \(0.562880\pi\)
\(278\) 17.3205i 1.03882i
\(279\) −6.00000 + 3.46410i −0.359211 + 0.207390i
\(280\) 0 0
\(281\) 13.8564i 0.826604i 0.910594 + 0.413302i \(0.135625\pi\)
−0.910594 + 0.413302i \(0.864375\pi\)
\(282\) −3.00000 5.19615i −0.178647 0.309426i
\(283\) 16.0000 27.7128i 0.951101 1.64736i 0.208053 0.978117i \(-0.433287\pi\)
0.743048 0.669238i \(-0.233379\pi\)
\(284\) −7.50000 4.33013i −0.445043 0.256946i
\(285\) 0 0
\(286\) 7.50000 + 7.79423i 0.443484 + 0.460882i
\(287\) 0 0
\(288\) −4.50000 2.59808i −0.265165 0.153093i
\(289\) 8.50000 14.7224i 0.500000 0.866025i
\(290\) 0 0
\(291\) 8.66025i 0.507673i
\(292\) −7.50000 + 4.33013i −0.438904 + 0.253402i
\(293\) −15.0000 + 8.66025i −0.876309 + 0.505937i −0.869440 0.494039i \(-0.835520\pi\)
−0.00686959 + 0.999976i \(0.502187\pi\)
\(294\) 12.1244i 0.707107i
\(295\) 0 0
\(296\) 1.50000 2.59808i 0.0871857 0.151010i
\(297\) −1.50000 0.866025i −0.0870388 0.0502519i
\(298\) 12.0000 0.695141
\(299\) 3.00000 10.3923i 0.173494 0.601003i
\(300\) 0 0
\(301\) 0 0
\(302\) −3.00000 + 5.19615i −0.172631 + 0.299005i
\(303\) 9.00000 + 15.5885i 0.517036 + 0.895533i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 31.1769i 1.77936i −0.456584 0.889680i \(-0.650927\pi\)
0.456584 0.889680i \(-0.349073\pi\)
\(308\) 0 0
\(309\) 7.00000 12.1244i 0.398216 0.689730i
\(310\) 0 0
\(311\) −3.00000 −0.170114 −0.0850572 0.996376i \(-0.527107\pi\)
−0.0850572 + 0.996376i \(0.527107\pi\)
\(312\) −6.00000 1.73205i −0.339683 0.0980581i
\(313\) −17.0000 −0.960897 −0.480448 0.877023i \(-0.659526\pi\)
−0.480448 + 0.877023i \(0.659526\pi\)
\(314\) −1.50000 0.866025i −0.0846499 0.0488726i
\(315\) 0 0
\(316\) −4.00000 6.92820i −0.225018 0.389742i
\(317\) 27.7128i 1.55651i 0.627950 + 0.778253i \(0.283894\pi\)
−0.627950 + 0.778253i \(0.716106\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −6.00000 10.3923i −0.334887 0.580042i
\(322\) 0 0
\(323\) 0 0
\(324\) −1.00000 −0.0555556
\(325\) 0 0
\(326\) −6.00000 −0.332309
\(327\) 7.50000 + 4.33013i 0.414751 + 0.239457i
\(328\) 3.00000 5.19615i 0.165647 0.286910i
\(329\) 0 0
\(330\) 0 0
\(331\) 3.00000 1.73205i 0.164895 0.0952021i −0.415282 0.909693i \(-0.636317\pi\)
0.580176 + 0.814491i \(0.302984\pi\)
\(332\) −7.50000 + 4.33013i −0.411616 + 0.237647i
\(333\) 1.73205i 0.0949158i
\(334\) −7.50000 12.9904i −0.410382 0.710802i
\(335\) 0 0
\(336\) 0 0
\(337\) −14.0000 −0.762629 −0.381314 0.924445i \(-0.624528\pi\)
−0.381314 + 0.924445i \(0.624528\pi\)
\(338\) 22.5000 + 0.866025i 1.22384 + 0.0471056i
\(339\) 6.00000 0.325875
\(340\) 0 0
\(341\) 6.00000 10.3923i 0.324918 0.562775i
\(342\) 0 0
\(343\) 0 0
\(344\) 15.0000 8.66025i 0.808746 0.466930i
\(345\) 0 0
\(346\) 41.5692i 2.23478i
\(347\) 1.50000 + 2.59808i 0.0805242 + 0.139472i 0.903475 0.428640i \(-0.141007\pi\)
−0.822951 + 0.568112i \(0.807674\pi\)
\(348\) 0 0
\(349\) 13.5000 + 7.79423i 0.722638 + 0.417215i 0.815723 0.578443i \(-0.196339\pi\)
−0.0930846 + 0.995658i \(0.529673\pi\)
\(350\) 0 0
\(351\) −3.50000 + 0.866025i −0.186816 + 0.0462250i
\(352\) 9.00000 0.479702
\(353\) −15.0000 8.66025i −0.798369 0.460939i 0.0445312 0.999008i \(-0.485821\pi\)
−0.842901 + 0.538069i \(0.819154\pi\)
\(354\) −9.00000 + 15.5885i −0.478345 + 0.828517i
\(355\) 0 0
\(356\) 6.92820i 0.367194i
\(357\) 0 0
\(358\) −13.5000 + 7.79423i −0.713497 + 0.411938i
\(359\) 24.2487i 1.27980i 0.768459 + 0.639899i \(0.221024\pi\)
−0.768459 + 0.639899i \(0.778976\pi\)
\(360\) 0 0
\(361\) −9.50000 + 16.4545i −0.500000 + 0.866025i
\(362\) −10.5000 6.06218i −0.551868 0.318621i
\(363\) −8.00000 −0.419891
\(364\) 0 0
\(365\) 0 0
\(366\) −10.5000 6.06218i −0.548844 0.316875i
\(367\) 14.0000 24.2487i 0.730794 1.26577i −0.225750 0.974185i \(-0.572483\pi\)
0.956544 0.291587i \(-0.0941834\pi\)
\(368\) −7.50000 12.9904i −0.390965 0.677170i
\(369\) 3.46410i 0.180334i
\(370\) 0 0
\(371\) 0 0
\(372\) 6.92820i 0.359211i
\(373\) −6.50000 11.2583i −0.336557 0.582934i 0.647225 0.762299i \(-0.275929\pi\)
−0.983783 + 0.179364i \(0.942596\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −6.00000 −0.309426
\(377\) 0 0
\(378\) 0 0
\(379\) −24.0000 13.8564i −1.23280 0.711756i −0.265185 0.964198i \(-0.585433\pi\)
−0.967612 + 0.252442i \(0.918766\pi\)
\(380\) 0 0
\(381\) −1.00000 1.73205i −0.0512316 0.0887357i
\(382\) 15.5885i 0.797575i
\(383\) 19.5000 11.2583i 0.996403 0.575274i 0.0892213 0.996012i \(-0.471562\pi\)
0.907182 + 0.420738i \(0.138229\pi\)
\(384\) −10.5000 + 6.06218i −0.535826 + 0.309359i
\(385\) 0 0
\(386\) −7.50000 12.9904i −0.381740 0.661193i
\(387\) 5.00000 8.66025i 0.254164 0.440225i
\(388\) 7.50000 + 4.33013i 0.380755 + 0.219829i
\(389\) 30.0000 1.52106 0.760530 0.649303i \(-0.224939\pi\)
0.760530 + 0.649303i \(0.224939\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 10.5000 + 6.06218i 0.530330 + 0.306186i
\(393\) −6.00000 + 10.3923i −0.302660 + 0.524222i
\(394\) 9.00000 + 15.5885i 0.453413 + 0.785335i
\(395\) 0 0
\(396\) 1.50000 0.866025i 0.0753778 0.0435194i
\(397\) 24.0000 13.8564i 1.20453 0.695433i 0.242967 0.970034i \(-0.421879\pi\)
0.961558 + 0.274601i \(0.0885459\pi\)
\(398\) 24.2487i 1.21548i
\(399\) 0 0
\(400\) 0 0
\(401\) 24.0000 + 13.8564i 1.19850 + 0.691956i 0.960221 0.279240i \(-0.0900826\pi\)
0.238282 + 0.971196i \(0.423416\pi\)
\(402\) 6.00000 0.299253
\(403\) −6.00000 24.2487i −0.298881 1.20791i
\(404\) −18.0000 −0.895533
\(405\) 0 0
\(406\) 0 0
\(407\) 1.50000 + 2.59808i 0.0743522 + 0.128782i
\(408\) 0 0
\(409\) −6.00000 + 3.46410i −0.296681 + 0.171289i −0.640951 0.767582i \(-0.721460\pi\)
0.344270 + 0.938871i \(0.388126\pi\)
\(410\) 0 0
\(411\) 20.7846i 1.02523i
\(412\) 7.00000 + 12.1244i 0.344865 + 0.597324i
\(413\) 0 0
\(414\) −4.50000 2.59808i −0.221163 0.127688i
\(415\) 0 0
\(416\) 13.5000 12.9904i 0.661892 0.636906i
\(417\) 10.0000 0.489702
\(418\) 0 0
\(419\) −7.50000 + 12.9904i −0.366399 + 0.634622i −0.989000 0.147918i \(-0.952743\pi\)
0.622601 + 0.782540i \(0.286076\pi\)
\(420\) 0 0
\(421\) 12.1244i 0.590905i 0.955357 + 0.295452i \(0.0954704\pi\)
−0.955357 + 0.295452i \(0.904530\pi\)
\(422\) 30.0000 17.3205i 1.46038 0.843149i
\(423\) −3.00000 + 1.73205i −0.145865 + 0.0842152i
\(424\) 0 0
\(425\) 0 0
\(426\) −7.50000 + 12.9904i −0.363376 + 0.629386i
\(427\) 0 0
\(428\) 12.0000 0.580042
\(429\) 4.50000 4.33013i 0.217262 0.209061i
\(430\) 0 0
\(431\) 10.5000 + 6.06218i 0.505767 + 0.292005i 0.731092 0.682279i \(-0.239011\pi\)
−0.225325 + 0.974284i \(0.572344\pi\)
\(432\) −2.50000 + 4.33013i −0.120281 + 0.208333i
\(433\) 5.50000 + 9.52628i 0.264313 + 0.457804i 0.967383 0.253317i \(-0.0815214\pi\)
−0.703070 + 0.711120i \(0.748188\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −7.50000 + 4.33013i −0.359185 + 0.207375i
\(437\) 0 0
\(438\) 7.50000 + 12.9904i 0.358364 + 0.620704i
\(439\) 2.00000 3.46410i 0.0954548 0.165333i −0.814344 0.580383i \(-0.802903\pi\)
0.909798 + 0.415051i \(0.136236\pi\)
\(440\) 0 0
\(441\) 7.00000 0.333333
\(442\) 0 0
\(443\) −27.0000 −1.28281 −0.641404 0.767203i \(-0.721648\pi\)
−0.641404 + 0.767203i \(0.721648\pi\)
\(444\) 1.50000 + 0.866025i 0.0711868 + 0.0410997i
\(445\) 0 0
\(446\) −9.00000 15.5885i −0.426162 0.738135i
\(447\) 6.92820i 0.327693i
\(448\) 0 0
\(449\) −15.0000 + 8.66025i −0.707894 + 0.408703i −0.810281 0.586042i \(-0.800685\pi\)
0.102387 + 0.994745i \(0.467352\pi\)
\(450\) 0 0
\(451\) 3.00000 + 5.19615i 0.141264 + 0.244677i
\(452\) −3.00000 + 5.19615i −0.141108 + 0.244406i
\(453\) 3.00000 + 1.73205i 0.140952 + 0.0813788i
\(454\) −51.0000 −2.39355
\(455\) 0 0
\(456\) 0 0
\(457\) 13.5000 + 7.79423i 0.631503 + 0.364599i 0.781334 0.624113i \(-0.214540\pi\)
−0.149831 + 0.988712i \(0.547873\pi\)
\(458\) 22.5000 38.9711i 1.05136 1.82100i
\(459\) 0 0
\(460\) 0 0
\(461\) −24.0000 + 13.8564i −1.11779 + 0.645357i −0.940836 0.338862i \(-0.889958\pi\)
−0.176955 + 0.984219i \(0.556625\pi\)
\(462\) 0 0
\(463\) 24.2487i 1.12693i 0.826139 + 0.563467i \(0.190533\pi\)
−0.826139 + 0.563467i \(0.809467\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 27.0000 + 15.5885i 1.25075 + 0.722121i
\(467\) 33.0000 1.52706 0.763529 0.645774i \(-0.223465\pi\)
0.763529 + 0.645774i \(0.223465\pi\)
\(468\) 1.00000 3.46410i 0.0462250 0.160128i
\(469\) 0 0
\(470\) 0 0
\(471\) −0.500000 + 0.866025i −0.0230388 + 0.0399043i
\(472\) 9.00000 + 15.5885i 0.414259 + 0.717517i
\(473\) 17.3205i 0.796398i
\(474\) −12.0000 + 6.92820i −0.551178 + 0.318223i
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) −4.50000 + 7.79423i −0.205825 + 0.356500i
\(479\) −9.00000 5.19615i −0.411220 0.237418i 0.280094 0.959973i \(-0.409635\pi\)
−0.691314 + 0.722554i \(0.742968\pi\)
\(480\) 0 0
\(481\) 6.00000 + 1.73205i 0.273576 + 0.0789747i
\(482\) 36.0000 1.63976
\(483\) 0 0
\(484\) 4.00000 6.92820i 0.181818 0.314918i
\(485\) 0 0
\(486\) 1.73205i 0.0785674i
\(487\) 15.0000 8.66025i 0.679715 0.392434i −0.120033 0.992770i \(-0.538300\pi\)
0.799748 + 0.600336i \(0.204967\pi\)
\(488\) −10.5000 + 6.06218i −0.475313 + 0.274422i
\(489\) 3.46410i 0.156652i
\(490\) 0 0
\(491\) 13.5000 23.3827i 0.609246 1.05525i −0.382118 0.924113i \(-0.624805\pi\)
0.991365 0.131132i \(-0.0418613\pi\)
\(492\) 3.00000 + 1.73205i 0.135250 + 0.0780869i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −30.0000 17.3205i −1.34704 0.777714i
\(497\) 0 0
\(498\) 7.50000 + 12.9904i 0.336083 + 0.582113i
\(499\) 38.1051i 1.70582i 0.522059 + 0.852910i \(0.325164\pi\)
−0.522059 + 0.852910i \(0.674836\pi\)
\(500\) 0 0
\(501\) −7.50000 + 4.33013i −0.335075 + 0.193456i
\(502\) 46.7654i 2.08724i
\(503\) −4.50000 7.79423i −0.200645 0.347527i 0.748091 0.663596i \(-0.230970\pi\)
−0.948736 + 0.316068i \(0.897637\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 9.00000 0.400099
\(507\) 0.500000 12.9904i 0.0222058 0.576923i
\(508\) 2.00000 0.0887357
\(509\) −27.0000 15.5885i −1.19675 0.690946i −0.236924 0.971528i \(-0.576139\pi\)
−0.959830 + 0.280582i \(0.909473\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 8.66025i 0.382733i
\(513\) 0 0
\(514\) 9.00000 5.19615i 0.396973 0.229192i
\(515\) 0 0
\(516\) 5.00000 + 8.66025i 0.220113 + 0.381246i
\(517\) 3.00000 5.19615i 0.131940 0.228527i
\(518\) 0 0
\(519\) 24.0000 1.05348
\(520\) 0 0
\(521\) −12.0000 −0.525730 −0.262865 0.964833i \(-0.584667\pi\)
−0.262865 + 0.964833i \(0.584667\pi\)
\(522\) 0 0
\(523\) −10.0000 + 17.3205i −0.437269 + 0.757373i −0.997478 0.0709788i \(-0.977388\pi\)
0.560208 + 0.828352i \(0.310721\pi\)
\(524\) −6.00000 10.3923i −0.262111 0.453990i
\(525\) 0 0
\(526\) 22.5000 12.9904i 0.981047 0.566408i
\(527\) 0 0
\(528\) 8.66025i 0.376889i
\(529\) 7.00000 + 12.1244i 0.304348 + 0.527146i
\(530\) 0 0
\(531\) 9.00000 + 5.19615i 0.390567 + 0.225494i
\(532\) 0 0
\(533\) 12.0000 + 3.46410i 0.519778 + 0.150047i
\(534\) −12.0000 −0.519291
\(535\) 0 0
\(536\) 3.00000 5.19615i 0.129580 0.224440i
\(537\) 4.50000 + 7.79423i 0.194189 + 0.336346i
\(538\) 10.3923i 0.448044i
\(539\) −10.5000 + 6.06218i −0.452267 + 0.261116i
\(540\) 0 0
\(541\) 29.4449i 1.26593i 0.774179 + 0.632967i \(0.218163\pi\)
−0.774179 + 0.632967i \(0.781837\pi\)
\(542\) 12.0000 + 20.7846i 0.515444 + 0.892775i
\(543\) −3.50000 + 6.06218i −0.150199 + 0.260153i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 26.0000 1.11168 0.555840 0.831289i \(-0.312397\pi\)
0.555840 + 0.831289i \(0.312397\pi\)
\(548\) −18.0000 10.3923i −0.768922 0.443937i
\(549\) −3.50000 + 6.06218i −0.149376 + 0.258727i
\(550\) 0 0
\(551\) 0 0
\(552\) −4.50000 + 2.59808i −0.191533 + 0.110581i
\(553\) 0 0
\(554\) 43.3013i 1.83969i
\(555\) 0 0
\(556\) −5.00000 + 8.66025i −0.212047 + 0.367277i
\(557\) −15.0000 8.66025i −0.635570 0.366947i 0.147336 0.989087i \(-0.452930\pi\)
−0.782906 + 0.622140i \(0.786264\pi\)
\(558\) −12.0000 −0.508001
\(559\) 25.0000 + 25.9808i 1.05739 + 1.09887i
\(560\) 0 0
\(561\) 0 0
\(562\) −12.0000 + 20.7846i −0.506189 + 0.876746i
\(563\) −10.5000 18.1865i −0.442522 0.766471i 0.555354 0.831614i \(-0.312583\pi\)
−0.997876 + 0.0651433i \(0.979250\pi\)
\(564\) 3.46410i 0.145865i
\(565\) 0 0
\(566\) 48.0000 27.7128i 2.01759 1.16486i
\(567\) 0 0
\(568\) 7.50000 + 12.9904i 0.314693 + 0.545064i
\(569\) 9.00000 15.5885i 0.377300 0.653502i −0.613369 0.789797i \(-0.710186\pi\)
0.990668 + 0.136295i \(0.0435194\pi\)
\(570\) 0 0
\(571\) −14.0000 −0.585882 −0.292941 0.956131i \(-0.594634\pi\)
−0.292941 + 0.956131i \(0.594634\pi\)
\(572\) 1.50000 + 6.06218i 0.0627182 + 0.253472i
\(573\) −9.00000 −0.375980
\(574\) 0 0
\(575\) 0 0
\(576\) 0.500000 + 0.866025i 0.0208333 + 0.0360844i
\(577\) 29.4449i 1.22581i 0.790158 + 0.612903i \(0.209998\pi\)
−0.790158 + 0.612903i \(0.790002\pi\)
\(578\) 25.5000 14.7224i 1.06066 0.612372i
\(579\) −7.50000 + 4.33013i −0.311689 + 0.179954i
\(580\) 0 0
\(581\) 0 0
\(582\) 7.50000 12.9904i 0.310885 0.538469i
\(583\) 0 0
\(584\) 15.0000 0.620704
\(585\) 0 0
\(586\) −30.0000 −1.23929
\(587\) 4.50000 + 2.59808i 0.185735 + 0.107234i 0.589984 0.807415i \(-0.299134\pi\)
−0.404249 + 0.914649i \(0.632467\pi\)
\(588\) −3.50000 + 6.06218i −0.144338 + 0.250000i
\(589\) 0 0
\(590\) 0 0
\(591\) 9.00000 5.19615i 0.370211 0.213741i
\(592\) 7.50000 4.33013i 0.308248 0.177967i
\(593\) 13.8564i 0.569014i 0.958674 + 0.284507i \(0.0918300\pi\)
−0.958674 + 0.284507i \(0.908170\pi\)
\(594\) −1.50000 2.59808i −0.0615457 0.106600i
\(595\) 0 0
\(596\) 6.00000 + 3.46410i 0.245770 + 0.141895i
\(597\) 14.0000 0.572982
\(598\) 13.5000 12.9904i 0.552056 0.531216i
\(599\) −9.00000 −0.367730 −0.183865 0.982952i \(-0.558861\pi\)
−0.183865 + 0.982952i \(0.558861\pi\)
\(600\) 0 0
\(601\) 13.0000 22.5167i 0.530281 0.918474i −0.469095 0.883148i \(-0.655420\pi\)
0.999376 0.0353259i \(-0.0112469\pi\)
\(602\) 0 0
\(603\) 3.46410i 0.141069i
\(604\) −3.00000 + 1.73205i −0.122068 + 0.0704761i
\(605\) 0 0
\(606\) 31.1769i 1.26648i
\(607\) −16.0000 27.7128i −0.649420 1.12483i −0.983262 0.182199i \(-0.941678\pi\)
0.333842 0.942629i \(-0.391655\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −3.00000 12.1244i −0.121367 0.490499i
\(612\) 0 0
\(613\) 6.00000 + 3.46410i 0.242338 + 0.139914i 0.616251 0.787550i \(-0.288651\pi\)
−0.373913 + 0.927464i \(0.621984\pi\)
\(614\) 27.0000 46.7654i 1.08963 1.88730i
\(615\) 0 0
\(616\) 0 0
\(617\) −39.0000 + 22.5167i −1.57008 + 0.906487i −0.573923 + 0.818909i \(0.694579\pi\)
−0.996158 + 0.0875775i \(0.972087\pi\)
\(618\) 21.0000 12.1244i 0.844744 0.487713i
\(619\) 27.7128i 1.11387i −0.830555 0.556936i \(-0.811977\pi\)
0.830555 0.556936i \(-0.188023\pi\)
\(620\) 0 0
\(621\) −1.50000 + 2.59808i −0.0601929 + 0.104257i
\(622\) −4.50000 2.59808i −0.180434 0.104173i
\(623\) 0 0
\(624\) −12.5000 12.9904i −0.500400 0.520031i
\(625\) 0 0
\(626\) −25.5000 14.7224i −1.01918 0.588427i
\(627\) 0 0
\(628\) −0.500000 0.866025i −0.0199522 0.0345582i
\(629\) 0 0
\(630\) 0 0
\(631\) 42.0000 24.2487i 1.67199 0.965326i 0.705473 0.708737i \(-0.250735\pi\)
0.966521 0.256589i \(-0.0825987\pi\)
\(632\) 13.8564i 0.551178i
\(633\) −10.0000 17.3205i −0.397464 0.688428i
\(634\) −24.0000 + 41.5692i −0.953162 + 1.65092i
\(635\) 0 0
\(636\) 0 0
\(637\) −7.00000 + 24.2487i −0.277350 + 0.960769i
\(638\) 0 0
\(639\) 7.50000 + 4.33013i 0.296695 + 0.171297i
\(640\) 0 0
\(641\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(642\) 20.7846i 0.820303i
\(643\) −15.0000 + 8.66025i −0.591542 + 0.341527i −0.765707 0.643189i \(-0.777611\pi\)
0.174165 + 0.984717i \(0.444277\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 16.5000 28.5788i 0.648682 1.12355i −0.334756 0.942305i \(-0.608654\pi\)
0.983438 0.181245i \(-0.0580128\pi\)
\(648\) 1.50000 + 0.866025i 0.0589256 + 0.0340207i
\(649\) −18.0000 −0.706562
\(650\) 0 0
\(651\) 0 0
\(652\) −3.00000 1.73205i −0.117489 0.0678323i
\(653\) 24.0000 41.5692i 0.939193 1.62673i 0.172211 0.985060i \(-0.444909\pi\)
0.766982 0.641669i \(-0.221758\pi\)
\(654\) 7.50000 + 12.9904i 0.293273 + 0.507964i
\(655\) 0 0
\(656\) 15.0000 8.66025i 0.585652 0.338126i
\(657\) 7.50000 4.33013i 0.292603 0.168934i
\(658\) 0 0
\(659\) −16.5000 28.5788i −0.642749 1.11327i −0.984817 0.173598i \(-0.944461\pi\)
0.342068 0.939675i \(-0.388873\pi\)
\(660\) 0 0
\(661\) −12.0000 6.92820i −0.466746 0.269476i 0.248131 0.968727i \(-0.420184\pi\)
−0.714877 + 0.699251i \(0.753517\pi\)
\(662\) 6.00000 0.233197
\(663\) 0 0
\(664\) 15.0000 0.582113
\(665\) 0 0
\(666\) 1.50000 2.59808i 0.0581238 0.100673i
\(667\) 0 0
\(668\) 8.66025i 0.335075i
\(669\) −9.00000 + 5.19615i −0.347960 + 0.200895i
\(670\) 0 0
\(671\) 12.1244i 0.468056i
\(672\) 0 0
\(673\) −8.50000 + 14.7224i −0.327651 + 0.567508i −0.982045 0.188645i \(-0.939590\pi\)
0.654394 + 0.756153i \(0.272924\pi\)
\(674\) −21.0000 12.1244i −0.808890 0.467013i
\(675\) 0 0
\(676\) 11.0000 + 6.92820i 0.423077 + 0.266469i
\(677\) −36.0000 −1.38359 −0.691796 0.722093i \(-0.743180\pi\)
−0.691796 + 0.722093i \(0.743180\pi\)
\(678\) 9.00000 + 5.19615i 0.345643 + 0.199557i
\(679\) 0 0
\(680\) 0 0
\(681\) 29.4449i 1.12833i
\(682\) 18.0000 10.3923i 0.689256 0.397942i
\(683\) 40.5000 23.3827i 1.54969 0.894714i 0.551525 0.834159i \(-0.314046\pi\)
0.998165 0.0605550i \(-0.0192870\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −22.5000 12.9904i −0.858429 0.495614i
\(688\) 50.0000 1.90623
\(689\) 0 0
\(690\) 0 0
\(691\) −12.0000 6.92820i −0.456502 0.263561i 0.254071 0.967186i \(-0.418230\pi\)
−0.710572 + 0.703624i \(0.751564\pi\)
\(692\) −12.0000 + 20.7846i −0.456172 + 0.790112i
\(693\) 0 0
\(694\) 5.19615i 0.197243i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 13.5000 + 23.3827i 0.510983 + 0.885048i
\(699\) 9.00000 15.5885i 0.340411 0.589610i
\(700\) 0 0
\(701\) 30.0000 1.13308 0.566542 0.824033i \(-0.308281\pi\)
0.566542 + 0.824033i \(0.308281\pi\)
\(702\) −6.00000 1.73205i −0.226455 0.0653720i
\(703\) 0 0
\(704\) −1.50000 0.866025i −0.0565334 0.0326396i
\(705\) 0 0
\(706\) −15.0000 25.9808i −0.564532 0.977799i
\(707\) 0 0
\(708\) −9.00000 + 5.19615i −0.338241 + 0.195283i
\(709\) 25.5000 14.7224i 0.957673 0.552913i 0.0622167 0.998063i \(-0.480183\pi\)
0.895456 + 0.445150i \(0.146850\pi\)
\(710\) 0 0
\(711\) 4.00000 + 6.92820i 0.150012 + 0.259828i
\(712\) −6.00000 + 10.3923i −0.224860 + 0.389468i
\(713\) −18.0000 10.3923i −0.674105 0.389195i
\(714\) 0 0
\(715\) 0 0
\(716\) −9.00000 −0.336346
\(717\) 4.50000 + 2.59808i 0.168056 + 0.0970269i
\(718\) −21.0000 + 36.3731i −0.783713 + 1.35743i
\(719\) −22.5000 38.9711i −0.839108 1.45338i −0.890641 0.454707i \(-0.849744\pi\)
0.0515326 0.998671i \(-0.483589\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −28.5000 + 16.4545i −1.06066 + 0.612372i
\(723\) 20.7846i 0.772988i
\(724\) −3.50000 6.06218i −0.130076 0.225299i
\(725\) 0 0
\(726\) −12.0000 6.92820i −0.445362 0.257130i
\(727\) −26.0000 −0.964287 −0.482143 0.876092i \(-0.660142\pi\)
−0.482143 + 0.876092i \(0.660142\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 0 0
\(732\) −3.50000 6.06218i −0.129364 0.224065i
\(733\) 1.73205i 0.0639748i −0.999488 0.0319874i \(-0.989816\pi\)
0.999488 0.0319874i \(-0.0101836\pi\)
\(734\) 42.0000 24.2487i 1.55025 0.895036i
\(735\) 0 0
\(736\) 15.5885i 0.574598i
\(737\) 3.00000 + 5.19615i 0.110506 + 0.191403i
\(738\) 3.00000 5.19615i 0.110432 0.191273i
\(739\) 39.0000 + 22.5167i 1.43464 + 0.828289i 0.997470 0.0710909i \(-0.0226481\pi\)
0.437168 + 0.899380i \(0.355981\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −15.0000 8.66025i −0.550297 0.317714i 0.198945 0.980011i \(-0.436248\pi\)
−0.749242 + 0.662297i \(0.769582\pi\)
\(744\) −6.00000 + 10.3923i −0.219971 + 0.381000i
\(745\) 0 0
\(746\) 22.5167i 0.824394i
\(747\) 7.50000 4.33013i 0.274411 0.158431i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −7.00000 + 12.1244i −0.255434 + 0.442424i −0.965013 0.262201i \(-0.915552\pi\)
0.709580 + 0.704625i \(0.248885\pi\)
\(752\) −15.0000 8.66025i −0.546994 0.315807i
\(753\) −27.0000 −0.983935
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1.00000 1.73205i 0.0363456 0.0629525i −0.847280 0.531146i \(-0.821762\pi\)
0.883626 + 0.468193i \(0.155095\pi\)
\(758\) −24.0000 41.5692i −0.871719 1.50986i
\(759\) 5.19615i 0.188608i
\(760\) 0 0
\(761\) 6.00000 3.46410i 0.217500 0.125574i −0.387292 0.921957i \(-0.626590\pi\)
0.604792 + 0.796383i \(0.293256\pi\)
\(762\) 3.46410i 0.125491i
\(763\) 0 0
\(764\) 4.50000 7.79423i 0.162804 0.281985i
\(765\) 0 0
\(766\) 39.0000 1.40913
\(767\) −27.0000 + 25.9808i −0.974913 + 0.938111i
\(768\) −19.0000 −0.685603
\(769\) −42.0000 24.2487i −1.51456 0.874431i −0.999854 0.0170631i \(-0.994568\pi\)
−0.514704 0.857368i \(-0.672098\pi\)
\(770\) 0 0
\(771\) −3.00000 5.19615i −0.108042 0.187135i
\(772\) 8.66025i 0.311689i
\(773\) 30.0000 17.3205i 1.07903 0.622975i 0.148392 0.988929i \(-0.452590\pi\)
0.930633 + 0.365953i \(0.119257\pi\)
\(774\) 15.0000 8.66025i 0.539164 0.311286i
\(775\) 0 0
\(776\) −7.50000 12.9904i −0.269234 0.466328i
\(777\) 0 0
\(778\) 45.0000 + 25.9808i 1.61333 + 0.931455i
\(779\) 0 0
\(780\) 0 0
\(781\) −15.0000 −0.536742
\(782\) 0 0
\(783\) 0 0
\(784\) 17.5000 + 30.3109i 0.625000 + 1.08253i
\(785\) 0 0
\(786\) −18.0000 + 10.3923i −0.642039 + 0.370681i
\(787\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(788\) 10.3923i 0.370211i
\(789\) −7.50000 12.9904i −0.267007 0.462470i
\(790\) 0 0
\(791\) 0 0
\(792\) −3.00000 −0.106600
\(793\) −17.5000 18.1865i −0.621443 0.645823i
\(794\) 48.0000 1.70346
\(795\) 0 0
\(796\) −7.00000 + 12.1244i −0.248108 + 0.429736i
\(797\) −9.00000 15.5885i −0.318796 0.552171i 0.661441 0.749997i \(-0.269945\pi\)
−0.980237 + 0.197826i \(0.936612\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 6.92820i 0.244796i
\(802\) 24.0000 + 41.5692i 0.847469 + 1.46786i
\(803\) −7.50000 + 12.9904i −0.264669 + 0.458421i
\(804\) 3.00000 + 1.73205i 0.105802 + 0.0610847i
\(805\) 0 0
\(806\) 12.0000 41.5692i 0.422682 1.46421i
\(807\) 6.00000 0.211210
\(808\) 27.0000 + 15.5885i 0.949857 + 0.548400i
\(809\) −9.00000 + 15.5885i −0.316423 + 0.548061i −0.979739 0.200279i \(-0.935815\pi\)
0.663316 + 0.748340i \(0.269149\pi\)
\(810\) 0 0
\(811\) 13.8564i 0.486564i 0.969956 + 0.243282i \(0.0782241\pi\)
−0.969956 + 0.243282i \(0.921776\pi\)
\(812\) 0 0
\(813\) 12.0000 6.92820i 0.420858 0.242983i
\(814\) 5.19615i 0.182125i
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) −12.0000 −0.419570
\(819\) 0 0
\(820\) 0 0
\(821\) 12.0000 + 6.92820i 0.418803 + 0.241796i 0.694565 0.719430i \(-0.255597\pi\)
−0.275762 + 0.961226i \(0.588930\pi\)
\(822\) −18.0000 + 31.1769i −0.627822 + 1.08742i
\(823\) 2.00000 + 3.46410i 0.0697156 + 0.120751i 0.898776 0.438408i \(-0.144457\pi\)
−0.829060 + 0.559159i \(0.811124\pi\)
\(824\) 24.2487i 0.844744i
\(825\) 0 0
\(826\) 0 0
\(827\) 8.66025i 0.301147i −0.988599 0.150573i \(-0.951888\pi\)
0.988599 0.150573i \(-0.0481119\pi\)
\(828\) −1.50000 2.59808i −0.0521286 0.0902894i
\(829\) 1.00000 1.73205i 0.0347314 0.0601566i −0.848137 0.529777i \(-0.822276\pi\)
0.882869 + 0.469620i \(0.155609\pi\)
\(830\) 0 0
\(831\) 25.0000 0.867240
\(832\) −3.50000 + 0.866025i −0.121341 + 0.0300240i
\(833\) 0 0
\(834\) 15.0000 + 8.66025i 0.519408 + 0.299880i
\(835\) 0 0
\(836\) 0 0
\(837\) 6.92820i 0.239474i
\(838\) −22.5000 + 12.9904i −0.777250 + 0.448745i
\(839\) −7.50000 + 4.33013i −0.258929 + 0.149493i −0.623846 0.781547i \(-0.714431\pi\)
0.364917 + 0.931040i \(0.381097\pi\)
\(840\) 0 0
\(841\) 14.5000 + 25.1147i 0.500000 + 0.866025i
\(842\) −10.5000 + 18.1865i −0.361854 + 0.626749i
\(843\) 12.0000 + 6.92820i 0.413302 + 0.238620i
\(844\) 20.0000 0.688428
\(845\) 0 0
\(846\) −6.00000 −0.206284
\(847\) 0 0
\(848\) 0 0
\(849\) −16.0000 27.7128i −0.549119 0.951101i
\(850\) 0 0
\(851\) 4.50000 2.59808i 0.154258 0.0890609i
\(852\) −7.50000 + 4.33013i −0.256946 + 0.148348i
\(853\) 41.5692i 1.42330i 0.702533 + 0.711651i \(0.252052\pi\)
−0.702533 + 0.711651i \(0.747948\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −18.0000 10.3923i −0.615227 0.355202i
\(857\) −12.0000 −0.409912 −0.204956 0.978771i \(-0.565705\pi\)
−0.204956 + 0.978771i \(0.565705\pi\)
\(858\) 10.5000 2.59808i 0.358464 0.0886969i
\(859\) −14.0000 −0.477674 −0.238837 0.971060i \(-0.576766\pi\)
−0.238837 + 0.971060i \(0.576766\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 10.5000 + 18.1865i 0.357631 + 0.619436i
\(863\) 25.9808i 0.884395i −0.896918 0.442198i \(-0.854199\pi\)
0.896918 0.442198i \(-0.145801\pi\)
\(864\) −4.50000 + 2.59808i −0.153093 + 0.0883883i
\(865\) 0 0
\(866\) 19.0526i 0.647432i
\(867\) −8.50000 14.7224i −0.288675 0.500000i
\(868\) 0 0
\(869\) −12.0000 6.92820i −0.407072 0.235023i
\(870\) 0 0
\(871\) 12.0000 + 3.46410i 0.406604 + 0.117377i
\(872\) 15.0000 0.507964
\(873\) −7.50000 4.33013i −0.253837 0.146553i
\(874\) 0 0
\(875\) 0 0
\(876\) 8.66025i 0.292603i
\(877\) −34.5000 + 19.9186i −1.16498 + 0.672603i −0.952493 0.304561i \(-0.901490\pi\)
−0.212489 + 0.977163i \(0.568157\pi\)
\(878\) 6.00000 3.46410i 0.202490 0.116908i
\(879\) 17.3205i 0.584206i
\(880\) 0 0
\(881\) −6.00000 + 10.3923i −0.202145 + 0.350126i −0.949219 0.314615i \(-0.898125\pi\)
0.747074 + 0.664741i \(0.231458\pi\)
\(882\) 10.5000 + 6.06218i 0.353553 + 0.204124i
\(883\) −2.00000 −0.0673054 −0.0336527 0.999434i \(-0.510714\pi\)
−0.0336527 + 0.999434i \(0.510714\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −40.5000 23.3827i −1.36062 0.785557i
\(887\) 12.0000 20.7846i 0.402921 0.697879i −0.591156 0.806557i \(-0.701328\pi\)
0.994077 + 0.108678i \(0.0346618\pi\)
\(888\) −1.50000 2.59808i −0.0503367 0.0871857i
\(889\) 0 0
\(890\) 0 0
\(891\) −1.50000 + 0.866025i −0.0502519 + 0.0290129i
\(892\) 10.3923i 0.347960i
\(893\) 0 0
\(894\) 6.00000 10.3923i 0.200670 0.347571i
\(895\) 0 0
\(896\) 0 0
\(897\) −7.50000 7.79423i −0.250418 0.260242i
\(898\) −30.0000 −1.00111
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 10.3923i 0.346026i
\(903\) 0 0
\(904\) 9.00000 5.19615i 0.299336 0.172821i
\(905\) 0 0
\(906\) 3.00000 + 5.19615i 0.0996683 + 0.172631i
\(907\) 4.00000 6.92820i 0.132818 0.230047i −0.791944 0.610594i \(-0.790931\pi\)
0.924762 + 0.380547i \(0.124264\pi\)
\(908\) −25.5000 14.7224i −0.846247 0.488581i
\(909\) 18.0000 0.597022
\(910\) 0 0
\(911\) −57.0000 −1.88849 −0.944247 0.329238i \(-0.893208\pi\)
−0.944247 + 0.329238i \(0.893208\pi\)
\(912\) 0 0
\(913\) −7.50000 + 12.9904i −0.248214 + 0.429919i
\(914\) 13.5000 + 23.3827i 0.446540 + 0.773431i
\(915\) 0 0
\(916\) 22.5000 12.9904i 0.743421 0.429214i
\(917\) 0 0
\(918\) 0 0
\(919\) 1.00000 + 1.73205i 0.0329870 + 0.0571351i 0.882048 0.471160i \(-0.156165\pi\)
−0.849061 + 0.528295i \(0.822831\pi\)
\(920\) 0 0
\(921\) −27.0000 15.5885i −0.889680 0.513657i
\(922\) −48.0000 −1.58080
\(923\) −22.5000 + 21.6506i −0.740597 + 0.712639i
\(924\) 0 0
\(925\) 0 0
\(926\) −21.0000 + 36.3731i −0.690103 + 1.19529i
\(927\) −7.00000 12.1244i −0.229910 0.398216i
\(928\) 0 0
\(929\) −27.0000 + 15.5885i −0.885841 + 0.511441i −0.872580 0.488471i \(-0.837555\pi\)
−0.0132613 + 0.999912i \(0.504221\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 9.00000 + 15.5885i 0.294805 + 0.510617i
\(933\) −1.50000 + 2.59808i −0.0491078 + 0.0850572i
\(934\) 49.5000 + 28.5788i 1.61969 + 0.935128i
\(935\) 0 0
\(936\) −4.50000 + 4.33013i −0.147087 + 0.141535i
\(937\) −47.0000 −1.53542 −0.767712 0.640796i \(-0.778605\pi\)
−0.767712 + 0.640796i \(0.778605\pi\)
\(938\) 0 0
\(939\) −8.50000 + 14.7224i −0.277387 + 0.480448i
\(940\) 0 0
\(941\) 31.1769i 1.01634i 0.861257 + 0.508169i \(0.169678\pi\)
−0.861257 + 0.508169i \(0.830322\pi\)
\(942\) −1.50000 + 0.866025i −0.0488726 + 0.0282166i
\(943\) 9.00000 5.19615i 0.293080 0.169210i
\(944\) 51.9615i 1.69120i
\(945\) 0 0
\(946\) −15.0000 + 25.9808i −0.487692 + 0.844707i
\(947\) −13.5000 7.79423i −0.438691 0.253278i 0.264351 0.964426i \(-0.414842\pi\)
−0.703042 + 0.711148i \(0.748176\pi\)
\(948\) −8.00000 −0.259828
\(949\) 7.50000 + 30.3109i 0.243460 + 0.983933i
\(950\) 0 0
\(951\) 24.0000 + 13.8564i 0.778253 + 0.449325i
\(952\) 0 0
\(953\) −6.00000 10.3923i −0.194359 0.336640i 0.752331 0.658785i \(-0.228929\pi\)
−0.946690 + 0.322145i \(0.895596\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −4.50000 + 2.59808i −0.145540 + 0.0840278i
\(957\) 0 0
\(958\) −9.00000 15.5885i −0.290777 0.503640i
\(959\) 0 0
\(960\) 0 0
\(961\) −17.0000 −0.548387
\(962\) 7.50000 + 7.79423i 0.241810 + 0.251296i
\(963\) −12.0000 −0.386695
\(964\) 18.0000 + 10.3923i 0.579741 + 0.334714i
\(965\) 0 0
\(966\) 0 0
\(967\) 20.7846i 0.668388i 0.942504 + 0.334194i \(0.108464\pi\)
−0.942504 + 0.334194i \(0.891536\pi\)
\(968\) −12.0000 + 6.92820i −0.385695 + 0.222681i
\(969\) 0 0
\(970\) 0 0
\(971\) −24.0000 41.5692i −0.770197 1.33402i −0.937455 0.348107i \(-0.886825\pi\)
0.167258 0.985913i \(-0.446509\pi\)
\(972\) −0.500000 + 0.866025i −0.0160375 + 0.0277778i
\(973\) 0 0
\(974\) 30.0000 0.961262
\(975\) 0 0
\(976\) −35.0000 −1.12032
\(977\) 6.00000 + 3.46410i 0.191957 + 0.110826i 0.592898 0.805277i \(-0.297984\pi\)
−0.400941 + 0.916104i \(0.631317\pi\)
\(978\) −3.00000 + 5.19615i −0.0959294 + 0.166155i
\(979\) −6.00000 10.3923i −0.191761 0.332140i
\(980\) 0 0
\(981\) 7.50000 4.33013i 0.239457 0.138250i
\(982\) 40.5000 23.3827i 1.29241 0.746171i
\(983\) 10.3923i 0.331463i −0.986171 0.165732i \(-0.947001\pi\)
0.986171 0.165732i \(-0.0529985\pi\)
\(984\) −3.00000 5.19615i −0.0956365 0.165647i
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 30.0000 0.953945
\(990\) 0 0
\(991\) 8.00000 13.8564i 0.254128 0.440163i −0.710530 0.703667i \(-0.751545\pi\)
0.964658 + 0.263504i \(0.0848781\pi\)
\(992\) −18.0000 31.1769i −0.571501 0.989868i
\(993\) 3.46410i 0.109930i
\(994\) 0 0
\(995\) 0 0
\(996\) 8.66025i 0.274411i
\(997\) 5.00000 + 8.66025i 0.158352 + 0.274273i 0.934274 0.356555i \(-0.116049\pi\)
−0.775923 + 0.630828i \(0.782715\pi\)
\(998\) −33.0000 + 57.1577i −1.04460 + 1.80929i
\(999\) −1.50000 0.866025i −0.0474579 0.0273998i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.bc.g.901.1 yes 2
5.2 odd 4 975.2.w.c.199.1 4
5.3 odd 4 975.2.w.c.199.2 4
5.4 even 2 975.2.bc.a.901.1 yes 2
13.10 even 6 inner 975.2.bc.g.751.1 yes 2
65.23 odd 12 975.2.w.c.49.1 4
65.49 even 6 975.2.bc.a.751.1 2
65.62 odd 12 975.2.w.c.49.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
975.2.w.c.49.1 4 65.23 odd 12
975.2.w.c.49.2 4 65.62 odd 12
975.2.w.c.199.1 4 5.2 odd 4
975.2.w.c.199.2 4 5.3 odd 4
975.2.bc.a.751.1 2 65.49 even 6
975.2.bc.a.901.1 yes 2 5.4 even 2
975.2.bc.g.751.1 yes 2 13.10 even 6 inner
975.2.bc.g.901.1 yes 2 1.1 even 1 trivial