Properties

Label 975.2.w.c.49.2
Level $975$
Weight $2$
Character 975.49
Analytic conductor $7.785$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [975,2,Mod(49,975)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(975, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("975.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.w (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.2
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 975.49
Dual form 975.2.w.c.199.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 1.50000i) q^{2} +(0.866025 - 0.500000i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(1.50000 + 0.866025i) q^{6} +1.73205 q^{8} +(0.500000 - 0.866025i) q^{9} +(1.50000 - 0.866025i) q^{11} +1.00000i q^{12} +(0.866025 - 3.50000i) q^{13} +(2.50000 + 4.33013i) q^{16} +1.73205 q^{18} +(2.59808 + 1.50000i) q^{22} +(2.59808 - 1.50000i) q^{23} +(1.50000 - 0.866025i) q^{24} +(6.00000 - 1.73205i) q^{26} -1.00000i q^{27} +6.92820i q^{31} +(-2.59808 + 4.50000i) q^{32} +(0.866025 - 1.50000i) q^{33} +(0.500000 + 0.866025i) q^{36} +(0.866025 + 1.50000i) q^{37} +(-1.00000 - 3.46410i) q^{39} +(3.00000 - 1.73205i) q^{41} +(-8.66025 - 5.00000i) q^{43} +1.73205i q^{44} +(4.50000 + 2.59808i) q^{46} -3.46410 q^{47} +(4.33013 + 2.50000i) q^{48} +(3.50000 + 6.06218i) q^{49} +(2.59808 + 2.50000i) q^{52} +(1.50000 - 0.866025i) q^{54} +(9.00000 + 5.19615i) q^{59} +(-3.50000 + 6.06218i) q^{61} +(-10.3923 + 6.00000i) q^{62} +1.00000 q^{64} +3.00000 q^{66} +(1.73205 + 3.00000i) q^{67} +(1.50000 - 2.59808i) q^{69} +(-7.50000 - 4.33013i) q^{71} +(0.866025 - 1.50000i) q^{72} -8.66025 q^{73} +(-1.50000 + 2.59808i) q^{74} +(4.33013 - 4.50000i) q^{78} +8.00000 q^{79} +(-0.500000 - 0.866025i) q^{81} +(5.19615 + 3.00000i) q^{82} -8.66025 q^{83} -17.3205i q^{86} +(2.59808 - 1.50000i) q^{88} +(6.00000 - 3.46410i) q^{89} +3.00000i q^{92} +(3.46410 + 6.00000i) q^{93} +(-3.00000 - 5.19615i) q^{94} +5.19615i q^{96} +(-4.33013 + 7.50000i) q^{97} +(-6.06218 + 10.5000i) q^{98} -1.73205i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{4} + 6 q^{6} + 2 q^{9} + 6 q^{11} + 10 q^{16} + 6 q^{24} + 24 q^{26} + 2 q^{36} - 4 q^{39} + 12 q^{41} + 18 q^{46} + 14 q^{49} + 6 q^{54} + 36 q^{59} - 14 q^{61} + 4 q^{64} + 12 q^{66} + 6 q^{69}+ \cdots - 12 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 1.50000i 0.612372 + 1.06066i 0.990839 + 0.135045i \(0.0431180\pi\)
−0.378467 + 0.925615i \(0.623549\pi\)
\(3\) 0.866025 0.500000i 0.500000 0.288675i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 0 0
\(6\) 1.50000 + 0.866025i 0.612372 + 0.353553i
\(7\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(8\) 1.73205 0.612372
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) 0 0
\(11\) 1.50000 0.866025i 0.452267 0.261116i −0.256520 0.966539i \(-0.582576\pi\)
0.708787 + 0.705422i \(0.249243\pi\)
\(12\) 1.00000i 0.288675i
\(13\) 0.866025 3.50000i 0.240192 0.970725i
\(14\) 0 0
\(15\) 0 0
\(16\) 2.50000 + 4.33013i 0.625000 + 1.08253i
\(17\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(18\) 1.73205 0.408248
\(19\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 2.59808 + 1.50000i 0.553912 + 0.319801i
\(23\) 2.59808 1.50000i 0.541736 0.312772i −0.204046 0.978961i \(-0.565409\pi\)
0.745782 + 0.666190i \(0.232076\pi\)
\(24\) 1.50000 0.866025i 0.306186 0.176777i
\(25\) 0 0
\(26\) 6.00000 1.73205i 1.17670 0.339683i
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(30\) 0 0
\(31\) 6.92820i 1.24434i 0.782881 + 0.622171i \(0.213749\pi\)
−0.782881 + 0.622171i \(0.786251\pi\)
\(32\) −2.59808 + 4.50000i −0.459279 + 0.795495i
\(33\) 0.866025 1.50000i 0.150756 0.261116i
\(34\) 0 0
\(35\) 0 0
\(36\) 0.500000 + 0.866025i 0.0833333 + 0.144338i
\(37\) 0.866025 + 1.50000i 0.142374 + 0.246598i 0.928390 0.371607i \(-0.121193\pi\)
−0.786016 + 0.618206i \(0.787860\pi\)
\(38\) 0 0
\(39\) −1.00000 3.46410i −0.160128 0.554700i
\(40\) 0 0
\(41\) 3.00000 1.73205i 0.468521 0.270501i −0.247099 0.968990i \(-0.579477\pi\)
0.715621 + 0.698489i \(0.246144\pi\)
\(42\) 0 0
\(43\) −8.66025 5.00000i −1.32068 0.762493i −0.336840 0.941562i \(-0.609358\pi\)
−0.983836 + 0.179069i \(0.942691\pi\)
\(44\) 1.73205i 0.261116i
\(45\) 0 0
\(46\) 4.50000 + 2.59808i 0.663489 + 0.383065i
\(47\) −3.46410 −0.505291 −0.252646 0.967559i \(-0.581301\pi\)
−0.252646 + 0.967559i \(0.581301\pi\)
\(48\) 4.33013 + 2.50000i 0.625000 + 0.360844i
\(49\) 3.50000 + 6.06218i 0.500000 + 0.866025i
\(50\) 0 0
\(51\) 0 0
\(52\) 2.59808 + 2.50000i 0.360288 + 0.346688i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 1.50000 0.866025i 0.204124 0.117851i
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 9.00000 + 5.19615i 1.17170 + 0.676481i 0.954080 0.299552i \(-0.0968372\pi\)
0.217620 + 0.976034i \(0.430171\pi\)
\(60\) 0 0
\(61\) −3.50000 + 6.06218i −0.448129 + 0.776182i −0.998264 0.0588933i \(-0.981243\pi\)
0.550135 + 0.835076i \(0.314576\pi\)
\(62\) −10.3923 + 6.00000i −1.31982 + 0.762001i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 3.00000 0.369274
\(67\) 1.73205 + 3.00000i 0.211604 + 0.366508i 0.952217 0.305424i \(-0.0987981\pi\)
−0.740613 + 0.671932i \(0.765465\pi\)
\(68\) 0 0
\(69\) 1.50000 2.59808i 0.180579 0.312772i
\(70\) 0 0
\(71\) −7.50000 4.33013i −0.890086 0.513892i −0.0161155 0.999870i \(-0.505130\pi\)
−0.873971 + 0.485979i \(0.838463\pi\)
\(72\) 0.866025 1.50000i 0.102062 0.176777i
\(73\) −8.66025 −1.01361 −0.506803 0.862062i \(-0.669173\pi\)
−0.506803 + 0.862062i \(0.669173\pi\)
\(74\) −1.50000 + 2.59808i −0.174371 + 0.302020i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 4.33013 4.50000i 0.490290 0.509525i
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 5.19615 + 3.00000i 0.573819 + 0.331295i
\(83\) −8.66025 −0.950586 −0.475293 0.879827i \(-0.657658\pi\)
−0.475293 + 0.879827i \(0.657658\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 17.3205i 1.86772i
\(87\) 0 0
\(88\) 2.59808 1.50000i 0.276956 0.159901i
\(89\) 6.00000 3.46410i 0.635999 0.367194i −0.147073 0.989126i \(-0.546985\pi\)
0.783072 + 0.621932i \(0.213652\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 3.00000i 0.312772i
\(93\) 3.46410 + 6.00000i 0.359211 + 0.622171i
\(94\) −3.00000 5.19615i −0.309426 0.535942i
\(95\) 0 0
\(96\) 5.19615i 0.530330i
\(97\) −4.33013 + 7.50000i −0.439658 + 0.761510i −0.997663 0.0683279i \(-0.978234\pi\)
0.558005 + 0.829837i \(0.311567\pi\)
\(98\) −6.06218 + 10.5000i −0.612372 + 1.06066i
\(99\) 1.73205i 0.174078i
\(100\) 0 0
\(101\) −9.00000 15.5885i −0.895533 1.55111i −0.833143 0.553058i \(-0.813461\pi\)
−0.0623905 0.998052i \(-0.519872\pi\)
\(102\) 0 0
\(103\) 14.0000i 1.37946i −0.724066 0.689730i \(-0.757729\pi\)
0.724066 0.689730i \(-0.242271\pi\)
\(104\) 1.50000 6.06218i 0.147087 0.594445i
\(105\) 0 0
\(106\) 0 0
\(107\) −10.3923 + 6.00000i −1.00466 + 0.580042i −0.909624 0.415432i \(-0.863630\pi\)
−0.0950377 + 0.995474i \(0.530297\pi\)
\(108\) 0.866025 + 0.500000i 0.0833333 + 0.0481125i
\(109\) 8.66025i 0.829502i 0.909935 + 0.414751i \(0.136131\pi\)
−0.909935 + 0.414751i \(0.863869\pi\)
\(110\) 0 0
\(111\) 1.50000 + 0.866025i 0.142374 + 0.0821995i
\(112\) 0 0
\(113\) −5.19615 3.00000i −0.488813 0.282216i 0.235269 0.971930i \(-0.424403\pi\)
−0.724082 + 0.689714i \(0.757736\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −2.59808 2.50000i −0.240192 0.231125i
\(118\) 18.0000i 1.65703i
\(119\) 0 0
\(120\) 0 0
\(121\) −4.00000 + 6.92820i −0.363636 + 0.629837i
\(122\) −12.1244 −1.09769
\(123\) 1.73205 3.00000i 0.156174 0.270501i
\(124\) −6.00000 3.46410i −0.538816 0.311086i
\(125\) 0 0
\(126\) 0 0
\(127\) −1.73205 + 1.00000i −0.153695 + 0.0887357i −0.574875 0.818241i \(-0.694949\pi\)
0.421180 + 0.906977i \(0.361616\pi\)
\(128\) 6.06218 + 10.5000i 0.535826 + 0.928078i
\(129\) −10.0000 −0.880451
\(130\) 0 0
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) 0.866025 + 1.50000i 0.0753778 + 0.130558i
\(133\) 0 0
\(134\) −3.00000 + 5.19615i −0.259161 + 0.448879i
\(135\) 0 0
\(136\) 0 0
\(137\) 10.3923 18.0000i 0.887875 1.53784i 0.0454914 0.998965i \(-0.485515\pi\)
0.842383 0.538879i \(-0.181152\pi\)
\(138\) 5.19615 0.442326
\(139\) −5.00000 + 8.66025i −0.424094 + 0.734553i −0.996335 0.0855324i \(-0.972741\pi\)
0.572241 + 0.820086i \(0.306074\pi\)
\(140\) 0 0
\(141\) −3.00000 + 1.73205i −0.252646 + 0.145865i
\(142\) 15.0000i 1.25877i
\(143\) −1.73205 6.00000i −0.144841 0.501745i
\(144\) 5.00000 0.416667
\(145\) 0 0
\(146\) −7.50000 12.9904i −0.620704 1.07509i
\(147\) 6.06218 + 3.50000i 0.500000 + 0.288675i
\(148\) −1.73205 −0.142374
\(149\) −6.00000 3.46410i −0.491539 0.283790i 0.233674 0.972315i \(-0.424925\pi\)
−0.725213 + 0.688525i \(0.758259\pi\)
\(150\) 0 0
\(151\) 3.46410i 0.281905i −0.990016 0.140952i \(-0.954984\pi\)
0.990016 0.140952i \(-0.0450164\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 3.50000 + 0.866025i 0.280224 + 0.0693375i
\(157\) 1.00000i 0.0798087i −0.999204 0.0399043i \(-0.987295\pi\)
0.999204 0.0399043i \(-0.0127053\pi\)
\(158\) 6.92820 + 12.0000i 0.551178 + 0.954669i
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0.866025 1.50000i 0.0680414 0.117851i
\(163\) −1.73205 + 3.00000i −0.135665 + 0.234978i −0.925851 0.377888i \(-0.876650\pi\)
0.790186 + 0.612866i \(0.209984\pi\)
\(164\) 3.46410i 0.270501i
\(165\) 0 0
\(166\) −7.50000 12.9904i −0.582113 1.00825i
\(167\) −4.33013 7.50000i −0.335075 0.580367i 0.648424 0.761279i \(-0.275428\pi\)
−0.983499 + 0.180912i \(0.942095\pi\)
\(168\) 0 0
\(169\) −11.5000 6.06218i −0.884615 0.466321i
\(170\) 0 0
\(171\) 0 0
\(172\) 8.66025 5.00000i 0.660338 0.381246i
\(173\) −20.7846 12.0000i −1.58022 0.912343i −0.994826 0.101598i \(-0.967605\pi\)
−0.585399 0.810745i \(-0.699062\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 7.50000 + 4.33013i 0.565334 + 0.326396i
\(177\) 10.3923 0.781133
\(178\) 10.3923 + 6.00000i 0.778936 + 0.449719i
\(179\) 4.50000 + 7.79423i 0.336346 + 0.582568i 0.983742 0.179585i \(-0.0574756\pi\)
−0.647397 + 0.762153i \(0.724142\pi\)
\(180\) 0 0
\(181\) −7.00000 −0.520306 −0.260153 0.965567i \(-0.583773\pi\)
−0.260153 + 0.965567i \(0.583773\pi\)
\(182\) 0 0
\(183\) 7.00000i 0.517455i
\(184\) 4.50000 2.59808i 0.331744 0.191533i
\(185\) 0 0
\(186\) −6.00000 + 10.3923i −0.439941 + 0.762001i
\(187\) 0 0
\(188\) 1.73205 3.00000i 0.126323 0.218797i
\(189\) 0 0
\(190\) 0 0
\(191\) −4.50000 + 7.79423i −0.325609 + 0.563971i −0.981635 0.190767i \(-0.938902\pi\)
0.656027 + 0.754738i \(0.272236\pi\)
\(192\) 0.866025 0.500000i 0.0625000 0.0360844i
\(193\) 4.33013 + 7.50000i 0.311689 + 0.539862i 0.978728 0.205161i \(-0.0657718\pi\)
−0.667039 + 0.745023i \(0.732439\pi\)
\(194\) −15.0000 −1.07694
\(195\) 0 0
\(196\) −7.00000 −0.500000
\(197\) 5.19615 + 9.00000i 0.370211 + 0.641223i 0.989598 0.143862i \(-0.0459522\pi\)
−0.619387 + 0.785086i \(0.712619\pi\)
\(198\) 2.59808 1.50000i 0.184637 0.106600i
\(199\) −7.00000 + 12.1244i −0.496217 + 0.859473i −0.999990 0.00436292i \(-0.998611\pi\)
0.503774 + 0.863836i \(0.331945\pi\)
\(200\) 0 0
\(201\) 3.00000 + 1.73205i 0.211604 + 0.122169i
\(202\) 15.5885 27.0000i 1.09680 1.89971i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 21.0000 12.1244i 1.46314 0.844744i
\(207\) 3.00000i 0.208514i
\(208\) 17.3205 5.00000i 1.20096 0.346688i
\(209\) 0 0
\(210\) 0 0
\(211\) 10.0000 + 17.3205i 0.688428 + 1.19239i 0.972346 + 0.233544i \(0.0750324\pi\)
−0.283918 + 0.958849i \(0.591634\pi\)
\(212\) 0 0
\(213\) −8.66025 −0.593391
\(214\) −18.0000 10.3923i −1.23045 0.710403i
\(215\) 0 0
\(216\) 1.73205i 0.117851i
\(217\) 0 0
\(218\) −12.9904 + 7.50000i −0.879820 + 0.507964i
\(219\) −7.50000 + 4.33013i −0.506803 + 0.292603i
\(220\) 0 0
\(221\) 0 0
\(222\) 3.00000i 0.201347i
\(223\) 5.19615 + 9.00000i 0.347960 + 0.602685i 0.985887 0.167412i \(-0.0535411\pi\)
−0.637927 + 0.770097i \(0.720208\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 10.3923i 0.691286i
\(227\) 14.7224 25.5000i 0.977162 1.69249i 0.304555 0.952495i \(-0.401492\pi\)
0.672607 0.740000i \(-0.265174\pi\)
\(228\) 0 0
\(229\) 25.9808i 1.71686i −0.512933 0.858429i \(-0.671441\pi\)
0.512933 0.858429i \(-0.328559\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 18.0000i 1.17922i −0.807688 0.589610i \(-0.799282\pi\)
0.807688 0.589610i \(-0.200718\pi\)
\(234\) 1.50000 6.06218i 0.0980581 0.396297i
\(235\) 0 0
\(236\) −9.00000 + 5.19615i −0.585850 + 0.338241i
\(237\) 6.92820 4.00000i 0.450035 0.259828i
\(238\) 0 0
\(239\) 5.19615i 0.336111i 0.985778 + 0.168056i \(0.0537488\pi\)
−0.985778 + 0.168056i \(0.946251\pi\)
\(240\) 0 0
\(241\) 18.0000 + 10.3923i 1.15948 + 0.669427i 0.951180 0.308637i \(-0.0998729\pi\)
0.208302 + 0.978065i \(0.433206\pi\)
\(242\) −13.8564 −0.890724
\(243\) −0.866025 0.500000i −0.0555556 0.0320750i
\(244\) −3.50000 6.06218i −0.224065 0.388091i
\(245\) 0 0
\(246\) 6.00000 0.382546
\(247\) 0 0
\(248\) 12.0000i 0.762001i
\(249\) −7.50000 + 4.33013i −0.475293 + 0.274411i
\(250\) 0 0
\(251\) −13.5000 + 23.3827i −0.852112 + 1.47590i 0.0271858 + 0.999630i \(0.491345\pi\)
−0.879298 + 0.476272i \(0.841988\pi\)
\(252\) 0 0
\(253\) 2.59808 4.50000i 0.163340 0.282913i
\(254\) −3.00000 1.73205i −0.188237 0.108679i
\(255\) 0 0
\(256\) −9.50000 + 16.4545i −0.593750 + 1.02841i
\(257\) −5.19615 + 3.00000i −0.324127 + 0.187135i −0.653231 0.757159i \(-0.726587\pi\)
0.329104 + 0.944294i \(0.393253\pi\)
\(258\) −8.66025 15.0000i −0.539164 0.933859i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −10.3923 18.0000i −0.642039 1.11204i
\(263\) 12.9904 7.50000i 0.801021 0.462470i −0.0428069 0.999083i \(-0.513630\pi\)
0.843828 + 0.536614i \(0.180297\pi\)
\(264\) 1.50000 2.59808i 0.0923186 0.159901i
\(265\) 0 0
\(266\) 0 0
\(267\) 3.46410 6.00000i 0.212000 0.367194i
\(268\) −3.46410 −0.211604
\(269\) −3.00000 + 5.19615i −0.182913 + 0.316815i −0.942871 0.333157i \(-0.891886\pi\)
0.759958 + 0.649972i \(0.225219\pi\)
\(270\) 0 0
\(271\) 12.0000 6.92820i 0.728948 0.420858i −0.0890891 0.996024i \(-0.528396\pi\)
0.818037 + 0.575165i \(0.195062\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 36.0000 2.17484
\(275\) 0 0
\(276\) 1.50000 + 2.59808i 0.0902894 + 0.156386i
\(277\) 21.6506 + 12.5000i 1.30086 + 0.751052i 0.980552 0.196261i \(-0.0628800\pi\)
0.320309 + 0.947313i \(0.396213\pi\)
\(278\) −17.3205 −1.03882
\(279\) 6.00000 + 3.46410i 0.359211 + 0.207390i
\(280\) 0 0
\(281\) 13.8564i 0.826604i −0.910594 0.413302i \(-0.864375\pi\)
0.910594 0.413302i \(-0.135625\pi\)
\(282\) −5.19615 3.00000i −0.309426 0.178647i
\(283\) 27.7128 16.0000i 1.64736 0.951101i 0.669238 0.743048i \(-0.266621\pi\)
0.978117 0.208053i \(-0.0667128\pi\)
\(284\) 7.50000 4.33013i 0.445043 0.256946i
\(285\) 0 0
\(286\) 7.50000 7.79423i 0.443484 0.460882i
\(287\) 0 0
\(288\) 2.59808 + 4.50000i 0.153093 + 0.265165i
\(289\) −8.50000 14.7224i −0.500000 0.866025i
\(290\) 0 0
\(291\) 8.66025i 0.507673i
\(292\) 4.33013 7.50000i 0.253402 0.438904i
\(293\) −8.66025 + 15.0000i −0.505937 + 0.876309i 0.494039 + 0.869440i \(0.335520\pi\)
−0.999976 + 0.00686959i \(0.997813\pi\)
\(294\) 12.1244i 0.707107i
\(295\) 0 0
\(296\) 1.50000 + 2.59808i 0.0871857 + 0.151010i
\(297\) −0.866025 1.50000i −0.0502519 0.0870388i
\(298\) 12.0000i 0.695141i
\(299\) −3.00000 10.3923i −0.173494 0.601003i
\(300\) 0 0
\(301\) 0 0
\(302\) 5.19615 3.00000i 0.299005 0.172631i
\(303\) −15.5885 9.00000i −0.895533 0.517036i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −31.1769 −1.77936 −0.889680 0.456584i \(-0.849073\pi\)
−0.889680 + 0.456584i \(0.849073\pi\)
\(308\) 0 0
\(309\) −7.00000 12.1244i −0.398216 0.689730i
\(310\) 0 0
\(311\) −3.00000 −0.170114 −0.0850572 0.996376i \(-0.527107\pi\)
−0.0850572 + 0.996376i \(0.527107\pi\)
\(312\) −1.73205 6.00000i −0.0980581 0.339683i
\(313\) 17.0000i 0.960897i 0.877023 + 0.480448i \(0.159526\pi\)
−0.877023 + 0.480448i \(0.840474\pi\)
\(314\) 1.50000 0.866025i 0.0846499 0.0488726i
\(315\) 0 0
\(316\) −4.00000 + 6.92820i −0.225018 + 0.389742i
\(317\) 27.7128 1.55651 0.778253 0.627950i \(-0.216106\pi\)
0.778253 + 0.627950i \(0.216106\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −6.00000 + 10.3923i −0.334887 + 0.580042i
\(322\) 0 0
\(323\) 0 0
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) −6.00000 −0.332309
\(327\) 4.33013 + 7.50000i 0.239457 + 0.414751i
\(328\) 5.19615 3.00000i 0.286910 0.165647i
\(329\) 0 0
\(330\) 0 0
\(331\) 3.00000 + 1.73205i 0.164895 + 0.0952021i 0.580176 0.814491i \(-0.302984\pi\)
−0.415282 + 0.909693i \(0.636317\pi\)
\(332\) 4.33013 7.50000i 0.237647 0.411616i
\(333\) 1.73205 0.0949158
\(334\) 7.50000 12.9904i 0.410382 0.710802i
\(335\) 0 0
\(336\) 0 0
\(337\) 14.0000i 0.762629i −0.924445 0.381314i \(-0.875472\pi\)
0.924445 0.381314i \(-0.124528\pi\)
\(338\) −0.866025 22.5000i −0.0471056 1.22384i
\(339\) −6.00000 −0.325875
\(340\) 0 0
\(341\) 6.00000 + 10.3923i 0.324918 + 0.562775i
\(342\) 0 0
\(343\) 0 0
\(344\) −15.0000 8.66025i −0.808746 0.466930i
\(345\) 0 0
\(346\) 41.5692i 2.23478i
\(347\) 2.59808 + 1.50000i 0.139472 + 0.0805242i 0.568112 0.822951i \(-0.307674\pi\)
−0.428640 + 0.903475i \(0.641007\pi\)
\(348\) 0 0
\(349\) −13.5000 + 7.79423i −0.722638 + 0.417215i −0.815723 0.578443i \(-0.803661\pi\)
0.0930846 + 0.995658i \(0.470327\pi\)
\(350\) 0 0
\(351\) −3.50000 0.866025i −0.186816 0.0462250i
\(352\) 9.00000i 0.479702i
\(353\) 8.66025 + 15.0000i 0.460939 + 0.798369i 0.999008 0.0445312i \(-0.0141794\pi\)
−0.538069 + 0.842901i \(0.680846\pi\)
\(354\) 9.00000 + 15.5885i 0.478345 + 0.828517i
\(355\) 0 0
\(356\) 6.92820i 0.367194i
\(357\) 0 0
\(358\) −7.79423 + 13.5000i −0.411938 + 0.713497i
\(359\) 24.2487i 1.27980i 0.768459 + 0.639899i \(0.221024\pi\)
−0.768459 + 0.639899i \(0.778976\pi\)
\(360\) 0 0
\(361\) −9.50000 16.4545i −0.500000 0.866025i
\(362\) −6.06218 10.5000i −0.318621 0.551868i
\(363\) 8.00000i 0.419891i
\(364\) 0 0
\(365\) 0 0
\(366\) −10.5000 + 6.06218i −0.548844 + 0.316875i
\(367\) −24.2487 + 14.0000i −1.26577 + 0.730794i −0.974185 0.225750i \(-0.927517\pi\)
−0.291587 + 0.956544i \(0.594183\pi\)
\(368\) 12.9904 + 7.50000i 0.677170 + 0.390965i
\(369\) 3.46410i 0.180334i
\(370\) 0 0
\(371\) 0 0
\(372\) −6.92820 −0.359211
\(373\) 11.2583 + 6.50000i 0.582934 + 0.336557i 0.762299 0.647225i \(-0.224071\pi\)
−0.179364 + 0.983783i \(0.557404\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −6.00000 −0.309426
\(377\) 0 0
\(378\) 0 0
\(379\) 24.0000 13.8564i 1.23280 0.711756i 0.265185 0.964198i \(-0.414567\pi\)
0.967612 + 0.252442i \(0.0812336\pi\)
\(380\) 0 0
\(381\) −1.00000 + 1.73205i −0.0512316 + 0.0887357i
\(382\) −15.5885 −0.797575
\(383\) 11.2583 19.5000i 0.575274 0.996403i −0.420738 0.907182i \(-0.638229\pi\)
0.996012 0.0892213i \(-0.0284378\pi\)
\(384\) 10.5000 + 6.06218i 0.535826 + 0.309359i
\(385\) 0 0
\(386\) −7.50000 + 12.9904i −0.381740 + 0.661193i
\(387\) −8.66025 + 5.00000i −0.440225 + 0.254164i
\(388\) −4.33013 7.50000i −0.219829 0.380755i
\(389\) −30.0000 −1.52106 −0.760530 0.649303i \(-0.775061\pi\)
−0.760530 + 0.649303i \(0.775061\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 6.06218 + 10.5000i 0.306186 + 0.530330i
\(393\) −10.3923 + 6.00000i −0.524222 + 0.302660i
\(394\) −9.00000 + 15.5885i −0.453413 + 0.785335i
\(395\) 0 0
\(396\) 1.50000 + 0.866025i 0.0753778 + 0.0435194i
\(397\) −13.8564 + 24.0000i −0.695433 + 1.20453i 0.274601 + 0.961558i \(0.411454\pi\)
−0.970034 + 0.242967i \(0.921879\pi\)
\(398\) −24.2487 −1.21548
\(399\) 0 0
\(400\) 0 0
\(401\) 24.0000 13.8564i 1.19850 0.691956i 0.238282 0.971196i \(-0.423416\pi\)
0.960221 + 0.279240i \(0.0900826\pi\)
\(402\) 6.00000i 0.299253i
\(403\) 24.2487 + 6.00000i 1.20791 + 0.298881i
\(404\) 18.0000 0.895533
\(405\) 0 0
\(406\) 0 0
\(407\) 2.59808 + 1.50000i 0.128782 + 0.0743522i
\(408\) 0 0
\(409\) 6.00000 + 3.46410i 0.296681 + 0.171289i 0.640951 0.767582i \(-0.278540\pi\)
−0.344270 + 0.938871i \(0.611874\pi\)
\(410\) 0 0
\(411\) 20.7846i 1.02523i
\(412\) 12.1244 + 7.00000i 0.597324 + 0.344865i
\(413\) 0 0
\(414\) 4.50000 2.59808i 0.221163 0.127688i
\(415\) 0 0
\(416\) 13.5000 + 12.9904i 0.661892 + 0.636906i
\(417\) 10.0000i 0.489702i
\(418\) 0 0
\(419\) 7.50000 + 12.9904i 0.366399 + 0.634622i 0.989000 0.147918i \(-0.0472572\pi\)
−0.622601 + 0.782540i \(0.713924\pi\)
\(420\) 0 0
\(421\) 12.1244i 0.590905i −0.955357 0.295452i \(-0.904530\pi\)
0.955357 0.295452i \(-0.0954704\pi\)
\(422\) −17.3205 + 30.0000i −0.843149 + 1.46038i
\(423\) −1.73205 + 3.00000i −0.0842152 + 0.145865i
\(424\) 0 0
\(425\) 0 0
\(426\) −7.50000 12.9904i −0.363376 0.629386i
\(427\) 0 0
\(428\) 12.0000i 0.580042i
\(429\) −4.50000 4.33013i −0.217262 0.209061i
\(430\) 0 0
\(431\) 10.5000 6.06218i 0.505767 0.292005i −0.225325 0.974284i \(-0.572344\pi\)
0.731092 + 0.682279i \(0.239011\pi\)
\(432\) 4.33013 2.50000i 0.208333 0.120281i
\(433\) −9.52628 5.50000i −0.457804 0.264313i 0.253317 0.967383i \(-0.418479\pi\)
−0.711120 + 0.703070i \(0.751812\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −7.50000 4.33013i −0.359185 0.207375i
\(437\) 0 0
\(438\) −12.9904 7.50000i −0.620704 0.358364i
\(439\) −2.00000 3.46410i −0.0954548 0.165333i 0.814344 0.580383i \(-0.197097\pi\)
−0.909798 + 0.415051i \(0.863764\pi\)
\(440\) 0 0
\(441\) 7.00000 0.333333
\(442\) 0 0
\(443\) 27.0000i 1.28281i 0.767203 + 0.641404i \(0.221648\pi\)
−0.767203 + 0.641404i \(0.778352\pi\)
\(444\) −1.50000 + 0.866025i −0.0711868 + 0.0410997i
\(445\) 0 0
\(446\) −9.00000 + 15.5885i −0.426162 + 0.738135i
\(447\) −6.92820 −0.327693
\(448\) 0 0
\(449\) 15.0000 + 8.66025i 0.707894 + 0.408703i 0.810281 0.586042i \(-0.199315\pi\)
−0.102387 + 0.994745i \(0.532648\pi\)
\(450\) 0 0
\(451\) 3.00000 5.19615i 0.141264 0.244677i
\(452\) 5.19615 3.00000i 0.244406 0.141108i
\(453\) −1.73205 3.00000i −0.0813788 0.140952i
\(454\) 51.0000 2.39355
\(455\) 0 0
\(456\) 0 0
\(457\) 7.79423 + 13.5000i 0.364599 + 0.631503i 0.988712 0.149831i \(-0.0478729\pi\)
−0.624113 + 0.781334i \(0.714540\pi\)
\(458\) 38.9711 22.5000i 1.82100 1.05136i
\(459\) 0 0
\(460\) 0 0
\(461\) −24.0000 13.8564i −1.11779 0.645357i −0.176955 0.984219i \(-0.556625\pi\)
−0.940836 + 0.338862i \(0.889958\pi\)
\(462\) 0 0
\(463\) −24.2487 −1.12693 −0.563467 0.826139i \(-0.690533\pi\)
−0.563467 + 0.826139i \(0.690533\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 27.0000 15.5885i 1.25075 0.722121i
\(467\) 33.0000i 1.52706i 0.645774 + 0.763529i \(0.276535\pi\)
−0.645774 + 0.763529i \(0.723465\pi\)
\(468\) 3.46410 1.00000i 0.160128 0.0462250i
\(469\) 0 0
\(470\) 0 0
\(471\) −0.500000 0.866025i −0.0230388 0.0399043i
\(472\) 15.5885 + 9.00000i 0.717517 + 0.414259i
\(473\) −17.3205 −0.796398
\(474\) 12.0000 + 6.92820i 0.551178 + 0.318223i
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) −7.79423 + 4.50000i −0.356500 + 0.205825i
\(479\) 9.00000 5.19615i 0.411220 0.237418i −0.280094 0.959973i \(-0.590365\pi\)
0.691314 + 0.722554i \(0.257032\pi\)
\(480\) 0 0
\(481\) 6.00000 1.73205i 0.273576 0.0789747i
\(482\) 36.0000i 1.63976i
\(483\) 0 0
\(484\) −4.00000 6.92820i −0.181818 0.314918i
\(485\) 0 0
\(486\) 1.73205i 0.0785674i
\(487\) −8.66025 + 15.0000i −0.392434 + 0.679715i −0.992770 0.120033i \(-0.961700\pi\)
0.600336 + 0.799748i \(0.295033\pi\)
\(488\) −6.06218 + 10.5000i −0.274422 + 0.475313i
\(489\) 3.46410i 0.156652i
\(490\) 0 0
\(491\) 13.5000 + 23.3827i 0.609246 + 1.05525i 0.991365 + 0.131132i \(0.0418613\pi\)
−0.382118 + 0.924113i \(0.624805\pi\)
\(492\) 1.73205 + 3.00000i 0.0780869 + 0.135250i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −30.0000 + 17.3205i −1.34704 + 0.777714i
\(497\) 0 0
\(498\) −12.9904 7.50000i −0.582113 0.336083i
\(499\) 38.1051i 1.70582i 0.522059 + 0.852910i \(0.325164\pi\)
−0.522059 + 0.852910i \(0.674836\pi\)
\(500\) 0 0
\(501\) −7.50000 4.33013i −0.335075 0.193456i
\(502\) −46.7654 −2.08724
\(503\) 7.79423 + 4.50000i 0.347527 + 0.200645i 0.663596 0.748091i \(-0.269030\pi\)
−0.316068 + 0.948736i \(0.602363\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 9.00000 0.400099
\(507\) −12.9904 + 0.500000i −0.576923 + 0.0222058i
\(508\) 2.00000i 0.0887357i
\(509\) 27.0000 15.5885i 1.19675 0.690946i 0.236924 0.971528i \(-0.423861\pi\)
0.959830 + 0.280582i \(0.0905275\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −8.66025 −0.382733
\(513\) 0 0
\(514\) −9.00000 5.19615i −0.396973 0.229192i
\(515\) 0 0
\(516\) 5.00000 8.66025i 0.220113 0.381246i
\(517\) −5.19615 + 3.00000i −0.228527 + 0.131940i
\(518\) 0 0
\(519\) −24.0000 −1.05348
\(520\) 0 0
\(521\) −12.0000 −0.525730 −0.262865 0.964833i \(-0.584667\pi\)
−0.262865 + 0.964833i \(0.584667\pi\)
\(522\) 0 0
\(523\) −17.3205 + 10.0000i −0.757373 + 0.437269i −0.828352 0.560208i \(-0.810721\pi\)
0.0709788 + 0.997478i \(0.477388\pi\)
\(524\) 6.00000 10.3923i 0.262111 0.453990i
\(525\) 0 0
\(526\) 22.5000 + 12.9904i 0.981047 + 0.566408i
\(527\) 0 0
\(528\) 8.66025 0.376889
\(529\) −7.00000 + 12.1244i −0.304348 + 0.527146i
\(530\) 0 0
\(531\) 9.00000 5.19615i 0.390567 0.225494i
\(532\) 0 0
\(533\) −3.46410 12.0000i −0.150047 0.519778i
\(534\) 12.0000 0.519291
\(535\) 0 0
\(536\) 3.00000 + 5.19615i 0.129580 + 0.224440i
\(537\) 7.79423 + 4.50000i 0.336346 + 0.194189i
\(538\) −10.3923 −0.448044
\(539\) 10.5000 + 6.06218i 0.452267 + 0.261116i
\(540\) 0 0
\(541\) 29.4449i 1.26593i −0.774179 0.632967i \(-0.781837\pi\)
0.774179 0.632967i \(-0.218163\pi\)
\(542\) 20.7846 + 12.0000i 0.892775 + 0.515444i
\(543\) −6.06218 + 3.50000i −0.260153 + 0.150199i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 26.0000i 1.11168i 0.831289 + 0.555840i \(0.187603\pi\)
−0.831289 + 0.555840i \(0.812397\pi\)
\(548\) 10.3923 + 18.0000i 0.443937 + 0.768922i
\(549\) 3.50000 + 6.06218i 0.149376 + 0.258727i
\(550\) 0 0
\(551\) 0 0
\(552\) 2.59808 4.50000i 0.110581 0.191533i
\(553\) 0 0
\(554\) 43.3013i 1.83969i
\(555\) 0 0
\(556\) −5.00000 8.66025i −0.212047 0.367277i
\(557\) −8.66025 15.0000i −0.366947 0.635570i 0.622140 0.782906i \(-0.286264\pi\)
−0.989087 + 0.147336i \(0.952930\pi\)
\(558\) 12.0000i 0.508001i
\(559\) −25.0000 + 25.9808i −1.05739 + 1.09887i
\(560\) 0 0
\(561\) 0 0
\(562\) 20.7846 12.0000i 0.876746 0.506189i
\(563\) 18.1865 + 10.5000i 0.766471 + 0.442522i 0.831614 0.555354i \(-0.187417\pi\)
−0.0651433 + 0.997876i \(0.520750\pi\)
\(564\) 3.46410i 0.145865i
\(565\) 0 0
\(566\) 48.0000 + 27.7128i 2.01759 + 1.16486i
\(567\) 0 0
\(568\) −12.9904 7.50000i −0.545064 0.314693i
\(569\) −9.00000 15.5885i −0.377300 0.653502i 0.613369 0.789797i \(-0.289814\pi\)
−0.990668 + 0.136295i \(0.956481\pi\)
\(570\) 0 0
\(571\) −14.0000 −0.585882 −0.292941 0.956131i \(-0.594634\pi\)
−0.292941 + 0.956131i \(0.594634\pi\)
\(572\) 6.06218 + 1.50000i 0.253472 + 0.0627182i
\(573\) 9.00000i 0.375980i
\(574\) 0 0
\(575\) 0 0
\(576\) 0.500000 0.866025i 0.0208333 0.0360844i
\(577\) 29.4449 1.22581 0.612903 0.790158i \(-0.290002\pi\)
0.612903 + 0.790158i \(0.290002\pi\)
\(578\) 14.7224 25.5000i 0.612372 1.06066i
\(579\) 7.50000 + 4.33013i 0.311689 + 0.179954i
\(580\) 0 0
\(581\) 0 0
\(582\) −12.9904 + 7.50000i −0.538469 + 0.310885i
\(583\) 0 0
\(584\) −15.0000 −0.620704
\(585\) 0 0
\(586\) −30.0000 −1.23929
\(587\) 2.59808 + 4.50000i 0.107234 + 0.185735i 0.914649 0.404249i \(-0.132467\pi\)
−0.807415 + 0.589984i \(0.799134\pi\)
\(588\) −6.06218 + 3.50000i −0.250000 + 0.144338i
\(589\) 0 0
\(590\) 0 0
\(591\) 9.00000 + 5.19615i 0.370211 + 0.213741i
\(592\) −4.33013 + 7.50000i −0.177967 + 0.308248i
\(593\) −13.8564 −0.569014 −0.284507 0.958674i \(-0.591830\pi\)
−0.284507 + 0.958674i \(0.591830\pi\)
\(594\) 1.50000 2.59808i 0.0615457 0.106600i
\(595\) 0 0
\(596\) 6.00000 3.46410i 0.245770 0.141895i
\(597\) 14.0000i 0.572982i
\(598\) 12.9904 13.5000i 0.531216 0.552056i
\(599\) 9.00000 0.367730 0.183865 0.982952i \(-0.441139\pi\)
0.183865 + 0.982952i \(0.441139\pi\)
\(600\) 0 0
\(601\) 13.0000 + 22.5167i 0.530281 + 0.918474i 0.999376 + 0.0353259i \(0.0112469\pi\)
−0.469095 + 0.883148i \(0.655420\pi\)
\(602\) 0 0
\(603\) 3.46410 0.141069
\(604\) 3.00000 + 1.73205i 0.122068 + 0.0704761i
\(605\) 0 0
\(606\) 31.1769i 1.26648i
\(607\) −27.7128 16.0000i −1.12483 0.649420i −0.182199 0.983262i \(-0.558322\pi\)
−0.942629 + 0.333842i \(0.891655\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −3.00000 + 12.1244i −0.121367 + 0.490499i
\(612\) 0 0
\(613\) −3.46410 6.00000i −0.139914 0.242338i 0.787550 0.616251i \(-0.211349\pi\)
−0.927464 + 0.373913i \(0.878016\pi\)
\(614\) −27.0000 46.7654i −1.08963 1.88730i
\(615\) 0 0
\(616\) 0 0
\(617\) 22.5167 39.0000i 0.906487 1.57008i 0.0875775 0.996158i \(-0.472087\pi\)
0.818909 0.573923i \(-0.194579\pi\)
\(618\) 12.1244 21.0000i 0.487713 0.844744i
\(619\) 27.7128i 1.11387i −0.830555 0.556936i \(-0.811977\pi\)
0.830555 0.556936i \(-0.188023\pi\)
\(620\) 0 0
\(621\) −1.50000 2.59808i −0.0601929 0.104257i
\(622\) −2.59808 4.50000i −0.104173 0.180434i
\(623\) 0 0
\(624\) 12.5000 12.9904i 0.500400 0.520031i
\(625\) 0 0
\(626\) −25.5000 + 14.7224i −1.01918 + 0.588427i
\(627\) 0 0
\(628\) 0.866025 + 0.500000i 0.0345582 + 0.0199522i
\(629\) 0 0
\(630\) 0 0
\(631\) 42.0000 + 24.2487i 1.67199 + 0.965326i 0.966521 + 0.256589i \(0.0825987\pi\)
0.705473 + 0.708737i \(0.250735\pi\)
\(632\) 13.8564 0.551178
\(633\) 17.3205 + 10.0000i 0.688428 + 0.397464i
\(634\) 24.0000 + 41.5692i 0.953162 + 1.65092i
\(635\) 0 0
\(636\) 0 0
\(637\) 24.2487 7.00000i 0.960769 0.277350i
\(638\) 0 0
\(639\) −7.50000 + 4.33013i −0.296695 + 0.171297i
\(640\) 0 0
\(641\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(642\) −20.7846 −0.820303
\(643\) −8.66025 + 15.0000i −0.341527 + 0.591542i −0.984717 0.174165i \(-0.944277\pi\)
0.643189 + 0.765707i \(0.277611\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −28.5788 + 16.5000i −1.12355 + 0.648682i −0.942305 0.334756i \(-0.891346\pi\)
−0.181245 + 0.983438i \(0.558013\pi\)
\(648\) −0.866025 1.50000i −0.0340207 0.0589256i
\(649\) 18.0000 0.706562
\(650\) 0 0
\(651\) 0 0
\(652\) −1.73205 3.00000i −0.0678323 0.117489i
\(653\) 41.5692 24.0000i 1.62673 0.939193i 0.641669 0.766982i \(-0.278242\pi\)
0.985060 0.172211i \(-0.0550911\pi\)
\(654\) −7.50000 + 12.9904i −0.293273 + 0.507964i
\(655\) 0 0
\(656\) 15.0000 + 8.66025i 0.585652 + 0.338126i
\(657\) −4.33013 + 7.50000i −0.168934 + 0.292603i
\(658\) 0 0
\(659\) 16.5000 28.5788i 0.642749 1.11327i −0.342068 0.939675i \(-0.611127\pi\)
0.984817 0.173598i \(-0.0555394\pi\)
\(660\) 0 0
\(661\) −12.0000 + 6.92820i −0.466746 + 0.269476i −0.714877 0.699251i \(-0.753517\pi\)
0.248131 + 0.968727i \(0.420184\pi\)
\(662\) 6.00000i 0.233197i
\(663\) 0 0
\(664\) −15.0000 −0.582113
\(665\) 0 0
\(666\) 1.50000 + 2.59808i 0.0581238 + 0.100673i
\(667\) 0 0
\(668\) 8.66025 0.335075
\(669\) 9.00000 + 5.19615i 0.347960 + 0.200895i
\(670\) 0 0
\(671\) 12.1244i 0.468056i
\(672\) 0 0
\(673\) −14.7224 + 8.50000i −0.567508 + 0.327651i −0.756153 0.654394i \(-0.772924\pi\)
0.188645 + 0.982045i \(0.439590\pi\)
\(674\) 21.0000 12.1244i 0.808890 0.467013i
\(675\) 0 0
\(676\) 11.0000 6.92820i 0.423077 0.266469i
\(677\) 36.0000i 1.38359i −0.722093 0.691796i \(-0.756820\pi\)
0.722093 0.691796i \(-0.243180\pi\)
\(678\) −5.19615 9.00000i −0.199557 0.345643i
\(679\) 0 0
\(680\) 0 0
\(681\) 29.4449i 1.12833i
\(682\) −10.3923 + 18.0000i −0.397942 + 0.689256i
\(683\) 23.3827 40.5000i 0.894714 1.54969i 0.0605550 0.998165i \(-0.480713\pi\)
0.834159 0.551525i \(-0.185954\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −12.9904 22.5000i −0.495614 0.858429i
\(688\) 50.0000i 1.90623i
\(689\) 0 0
\(690\) 0 0
\(691\) −12.0000 + 6.92820i −0.456502 + 0.263561i −0.710572 0.703624i \(-0.751564\pi\)
0.254071 + 0.967186i \(0.418230\pi\)
\(692\) 20.7846 12.0000i 0.790112 0.456172i
\(693\) 0 0
\(694\) 5.19615i 0.197243i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) −23.3827 13.5000i −0.885048 0.510983i
\(699\) −9.00000 15.5885i −0.340411 0.589610i
\(700\) 0 0
\(701\) 30.0000 1.13308 0.566542 0.824033i \(-0.308281\pi\)
0.566542 + 0.824033i \(0.308281\pi\)
\(702\) −1.73205 6.00000i −0.0653720 0.226455i
\(703\) 0 0
\(704\) 1.50000 0.866025i 0.0565334 0.0326396i
\(705\) 0 0
\(706\) −15.0000 + 25.9808i −0.564532 + 0.977799i
\(707\) 0 0
\(708\) −5.19615 + 9.00000i −0.195283 + 0.338241i
\(709\) −25.5000 14.7224i −0.957673 0.552913i −0.0622167 0.998063i \(-0.519817\pi\)
−0.895456 + 0.445150i \(0.853150\pi\)
\(710\) 0 0
\(711\) 4.00000 6.92820i 0.150012 0.259828i
\(712\) 10.3923 6.00000i 0.389468 0.224860i
\(713\) 10.3923 + 18.0000i 0.389195 + 0.674105i
\(714\) 0 0
\(715\) 0 0
\(716\) −9.00000 −0.336346
\(717\) 2.59808 + 4.50000i 0.0970269 + 0.168056i
\(718\) −36.3731 + 21.0000i −1.35743 + 0.783713i
\(719\) 22.5000 38.9711i 0.839108 1.45338i −0.0515326 0.998671i \(-0.516411\pi\)
0.890641 0.454707i \(-0.150256\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 16.4545 28.5000i 0.612372 1.06066i
\(723\) 20.7846 0.772988
\(724\) 3.50000 6.06218i 0.130076 0.225299i
\(725\) 0 0
\(726\) −12.0000 + 6.92820i −0.445362 + 0.257130i
\(727\) 26.0000i 0.964287i −0.876092 0.482143i \(-0.839858\pi\)
0.876092 0.482143i \(-0.160142\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 0 0
\(732\) −6.06218 3.50000i −0.224065 0.129364i
\(733\) 1.73205 0.0639748 0.0319874 0.999488i \(-0.489816\pi\)
0.0319874 + 0.999488i \(0.489816\pi\)
\(734\) −42.0000 24.2487i −1.55025 0.895036i
\(735\) 0 0
\(736\) 15.5885i 0.574598i
\(737\) 5.19615 + 3.00000i 0.191403 + 0.110506i
\(738\) 5.19615 3.00000i 0.191273 0.110432i
\(739\) −39.0000 + 22.5167i −1.43464 + 0.828289i −0.997470 0.0710909i \(-0.977352\pi\)
−0.437168 + 0.899380i \(0.644019\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 8.66025 + 15.0000i 0.317714 + 0.550297i 0.980011 0.198945i \(-0.0637515\pi\)
−0.662297 + 0.749242i \(0.730418\pi\)
\(744\) 6.00000 + 10.3923i 0.219971 + 0.381000i
\(745\) 0 0
\(746\) 22.5167i 0.824394i
\(747\) −4.33013 + 7.50000i −0.158431 + 0.274411i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −7.00000 12.1244i −0.255434 0.442424i 0.709580 0.704625i \(-0.248885\pi\)
−0.965013 + 0.262201i \(0.915552\pi\)
\(752\) −8.66025 15.0000i −0.315807 0.546994i
\(753\) 27.0000i 0.983935i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −1.73205 + 1.00000i −0.0629525 + 0.0363456i −0.531146 0.847280i \(-0.678238\pi\)
0.468193 + 0.883626i \(0.344905\pi\)
\(758\) 41.5692 + 24.0000i 1.50986 + 0.871719i
\(759\) 5.19615i 0.188608i
\(760\) 0 0
\(761\) 6.00000 + 3.46410i 0.217500 + 0.125574i 0.604792 0.796383i \(-0.293256\pi\)
−0.387292 + 0.921957i \(0.626590\pi\)
\(762\) −3.46410 −0.125491
\(763\) 0 0
\(764\) −4.50000 7.79423i −0.162804 0.281985i
\(765\) 0 0
\(766\) 39.0000 1.40913
\(767\) 25.9808 27.0000i 0.938111 0.974913i
\(768\) 19.0000i 0.685603i
\(769\) 42.0000 24.2487i 1.51456 0.874431i 0.514704 0.857368i \(-0.327902\pi\)
0.999854 0.0170631i \(-0.00543163\pi\)
\(770\) 0 0
\(771\) −3.00000 + 5.19615i −0.108042 + 0.187135i
\(772\) −8.66025 −0.311689
\(773\) 17.3205 30.0000i 0.622975 1.07903i −0.365953 0.930633i \(-0.619257\pi\)
0.988929 0.148392i \(-0.0474097\pi\)
\(774\) −15.0000 8.66025i −0.539164 0.311286i
\(775\) 0 0
\(776\) −7.50000 + 12.9904i −0.269234 + 0.466328i
\(777\) 0 0
\(778\) −25.9808 45.0000i −0.931455 1.61333i
\(779\) 0 0
\(780\) 0 0
\(781\) −15.0000 −0.536742
\(782\) 0 0
\(783\) 0 0
\(784\) −17.5000 + 30.3109i −0.625000 + 1.08253i
\(785\) 0 0
\(786\) −18.0000 10.3923i −0.642039 0.370681i
\(787\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(788\) −10.3923 −0.370211
\(789\) 7.50000 12.9904i 0.267007 0.462470i
\(790\) 0 0
\(791\) 0 0
\(792\) 3.00000i 0.106600i
\(793\) 18.1865 + 17.5000i 0.645823 + 0.621443i
\(794\) −48.0000 −1.70346
\(795\) 0 0
\(796\) −7.00000 12.1244i −0.248108 0.429736i
\(797\) −15.5885 9.00000i −0.552171 0.318796i 0.197826 0.980237i \(-0.436612\pi\)
−0.749997 + 0.661441i \(0.769945\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 6.92820i 0.244796i
\(802\) 41.5692 + 24.0000i 1.46786 + 0.847469i
\(803\) −12.9904 + 7.50000i −0.458421 + 0.264669i
\(804\) −3.00000 + 1.73205i −0.105802 + 0.0610847i
\(805\) 0 0
\(806\) 12.0000 + 41.5692i 0.422682 + 1.46421i
\(807\) 6.00000i 0.211210i
\(808\) −15.5885 27.0000i −0.548400 0.949857i
\(809\) 9.00000 + 15.5885i 0.316423 + 0.548061i 0.979739 0.200279i \(-0.0641847\pi\)
−0.663316 + 0.748340i \(0.730851\pi\)
\(810\) 0 0
\(811\) 13.8564i 0.486564i −0.969956 0.243282i \(-0.921776\pi\)
0.969956 0.243282i \(-0.0782241\pi\)
\(812\) 0 0
\(813\) 6.92820 12.0000i 0.242983 0.420858i
\(814\) 5.19615i 0.182125i
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 12.0000i 0.419570i
\(819\) 0 0
\(820\) 0 0
\(821\) 12.0000 6.92820i 0.418803 0.241796i −0.275762 0.961226i \(-0.588930\pi\)
0.694565 + 0.719430i \(0.255597\pi\)
\(822\) 31.1769 18.0000i 1.08742 0.627822i
\(823\) −3.46410 2.00000i −0.120751 0.0697156i 0.438408 0.898776i \(-0.355543\pi\)
−0.559159 + 0.829060i \(0.688876\pi\)
\(824\) 24.2487i 0.844744i
\(825\) 0 0
\(826\) 0 0
\(827\) −8.66025 −0.301147 −0.150573 0.988599i \(-0.548112\pi\)
−0.150573 + 0.988599i \(0.548112\pi\)
\(828\) 2.59808 + 1.50000i 0.0902894 + 0.0521286i
\(829\) −1.00000 1.73205i −0.0347314 0.0601566i 0.848137 0.529777i \(-0.177724\pi\)
−0.882869 + 0.469620i \(0.844391\pi\)
\(830\) 0 0
\(831\) 25.0000 0.867240
\(832\) 0.866025 3.50000i 0.0300240 0.121341i
\(833\) 0 0
\(834\) −15.0000 + 8.66025i −0.519408 + 0.299880i
\(835\) 0 0
\(836\) 0 0
\(837\) 6.92820 0.239474
\(838\) −12.9904 + 22.5000i −0.448745 + 0.777250i
\(839\) 7.50000 + 4.33013i 0.258929 + 0.149493i 0.623846 0.781547i \(-0.285569\pi\)
−0.364917 + 0.931040i \(0.618903\pi\)
\(840\) 0 0
\(841\) 14.5000 25.1147i 0.500000 0.866025i
\(842\) 18.1865 10.5000i 0.626749 0.361854i
\(843\) −6.92820 12.0000i −0.238620 0.413302i
\(844\) −20.0000 −0.688428
\(845\) 0 0
\(846\) −6.00000 −0.206284
\(847\) 0 0
\(848\) 0 0
\(849\) 16.0000 27.7128i 0.549119 0.951101i
\(850\) 0 0
\(851\) 4.50000 + 2.59808i 0.154258 + 0.0890609i
\(852\) 4.33013 7.50000i 0.148348 0.256946i
\(853\) −41.5692 −1.42330 −0.711651 0.702533i \(-0.752052\pi\)
−0.711651 + 0.702533i \(0.752052\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −18.0000 + 10.3923i −0.615227 + 0.355202i
\(857\) 12.0000i 0.409912i −0.978771 0.204956i \(-0.934295\pi\)
0.978771 0.204956i \(-0.0657052\pi\)
\(858\) 2.59808 10.5000i 0.0886969 0.358464i
\(859\) 14.0000 0.477674 0.238837 0.971060i \(-0.423234\pi\)
0.238837 + 0.971060i \(0.423234\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 18.1865 + 10.5000i 0.619436 + 0.357631i
\(863\) 25.9808 0.884395 0.442198 0.896918i \(-0.354199\pi\)
0.442198 + 0.896918i \(0.354199\pi\)
\(864\) 4.50000 + 2.59808i 0.153093 + 0.0883883i
\(865\) 0 0
\(866\) 19.0526i 0.647432i
\(867\) −14.7224 8.50000i −0.500000 0.288675i
\(868\) 0 0
\(869\) 12.0000 6.92820i 0.407072 0.235023i
\(870\) 0 0
\(871\) 12.0000 3.46410i 0.406604 0.117377i
\(872\) 15.0000i 0.507964i
\(873\) 4.33013 + 7.50000i 0.146553 + 0.253837i
\(874\) 0 0
\(875\) 0 0
\(876\) 8.66025i 0.292603i
\(877\) 19.9186 34.5000i 0.672603 1.16498i −0.304561 0.952493i \(-0.598510\pi\)
0.977163 0.212489i \(-0.0681571\pi\)
\(878\) 3.46410 6.00000i 0.116908 0.202490i
\(879\) 17.3205i 0.584206i
\(880\) 0 0
\(881\) −6.00000 10.3923i −0.202145 0.350126i 0.747074 0.664741i \(-0.231458\pi\)
−0.949219 + 0.314615i \(0.898125\pi\)
\(882\) 6.06218 + 10.5000i 0.204124 + 0.353553i
\(883\) 2.00000i 0.0673054i 0.999434 + 0.0336527i \(0.0107140\pi\)
−0.999434 + 0.0336527i \(0.989286\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −40.5000 + 23.3827i −1.36062 + 0.785557i
\(887\) −20.7846 + 12.0000i −0.697879 + 0.402921i −0.806557 0.591156i \(-0.798672\pi\)
0.108678 + 0.994077i \(0.465338\pi\)
\(888\) 2.59808 + 1.50000i 0.0871857 + 0.0503367i
\(889\) 0 0
\(890\) 0 0
\(891\) −1.50000 0.866025i −0.0502519 0.0290129i
\(892\) −10.3923 −0.347960
\(893\) 0 0
\(894\) −6.00000 10.3923i −0.200670 0.347571i
\(895\) 0 0
\(896\) 0 0
\(897\) −7.79423 7.50000i −0.260242 0.250418i
\(898\) 30.0000i 1.00111i
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 10.3923 0.346026
\(903\) 0 0
\(904\) −9.00000 5.19615i −0.299336 0.172821i
\(905\) 0 0
\(906\) 3.00000 5.19615i 0.0996683 0.172631i
\(907\) −6.92820 + 4.00000i −0.230047 + 0.132818i −0.610594 0.791944i \(-0.709069\pi\)
0.380547 + 0.924762i \(0.375736\pi\)
\(908\) 14.7224 + 25.5000i 0.488581 + 0.846247i
\(909\) −18.0000 −0.597022
\(910\) 0 0
\(911\) −57.0000 −1.88849 −0.944247 0.329238i \(-0.893208\pi\)
−0.944247 + 0.329238i \(0.893208\pi\)
\(912\) 0 0
\(913\) −12.9904 + 7.50000i −0.429919 + 0.248214i
\(914\) −13.5000 + 23.3827i −0.446540 + 0.773431i
\(915\) 0 0
\(916\) 22.5000 + 12.9904i 0.743421 + 0.429214i
\(917\) 0 0
\(918\) 0 0
\(919\) −1.00000 + 1.73205i −0.0329870 + 0.0571351i −0.882048 0.471160i \(-0.843835\pi\)
0.849061 + 0.528295i \(0.177169\pi\)
\(920\) 0 0
\(921\) −27.0000 + 15.5885i −0.889680 + 0.513657i
\(922\) 48.0000i 1.58080i
\(923\) −21.6506 + 22.5000i −0.712639 + 0.740597i
\(924\) 0 0
\(925\) 0 0
\(926\) −21.0000 36.3731i −0.690103 1.19529i
\(927\) −12.1244 7.00000i −0.398216 0.229910i
\(928\) 0 0
\(929\) 27.0000 + 15.5885i 0.885841 + 0.511441i 0.872580 0.488471i \(-0.162445\pi\)
0.0132613 + 0.999912i \(0.495779\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 15.5885 + 9.00000i 0.510617 + 0.294805i
\(933\) −2.59808 + 1.50000i −0.0850572 + 0.0491078i
\(934\) −49.5000 + 28.5788i −1.61969 + 0.935128i
\(935\) 0 0
\(936\) −4.50000 4.33013i −0.147087 0.141535i
\(937\) 47.0000i 1.53542i −0.640796 0.767712i \(-0.721395\pi\)
0.640796 0.767712i \(-0.278605\pi\)
\(938\) 0 0
\(939\) 8.50000 + 14.7224i 0.277387 + 0.480448i
\(940\) 0 0
\(941\) 31.1769i 1.01634i −0.861257 0.508169i \(-0.830322\pi\)
0.861257 0.508169i \(-0.169678\pi\)
\(942\) 0.866025 1.50000i 0.0282166 0.0488726i
\(943\) 5.19615 9.00000i 0.169210 0.293080i
\(944\) 51.9615i 1.69120i
\(945\) 0 0
\(946\) −15.0000 25.9808i −0.487692 0.844707i
\(947\) −7.79423 13.5000i −0.253278 0.438691i 0.711148 0.703042i \(-0.248176\pi\)
−0.964426 + 0.264351i \(0.914842\pi\)
\(948\) 8.00000i 0.259828i
\(949\) −7.50000 + 30.3109i −0.243460 + 0.983933i
\(950\) 0 0
\(951\) 24.0000 13.8564i 0.778253 0.449325i
\(952\) 0 0
\(953\) 10.3923 + 6.00000i 0.336640 + 0.194359i 0.658785 0.752331i \(-0.271071\pi\)
−0.322145 + 0.946690i \(0.604404\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −4.50000 2.59808i −0.145540 0.0840278i
\(957\) 0 0
\(958\) 15.5885 + 9.00000i 0.503640 + 0.290777i
\(959\) 0 0
\(960\) 0 0
\(961\) −17.0000 −0.548387
\(962\) 7.79423 + 7.50000i 0.251296 + 0.241810i
\(963\) 12.0000i 0.386695i
\(964\) −18.0000 + 10.3923i −0.579741 + 0.334714i
\(965\) 0 0
\(966\) 0 0
\(967\) 20.7846 0.668388 0.334194 0.942504i \(-0.391536\pi\)
0.334194 + 0.942504i \(0.391536\pi\)
\(968\) −6.92820 + 12.0000i −0.222681 + 0.385695i
\(969\) 0 0
\(970\) 0 0
\(971\) −24.0000 + 41.5692i −0.770197 + 1.33402i 0.167258 + 0.985913i \(0.446509\pi\)
−0.937455 + 0.348107i \(0.886825\pi\)
\(972\) 0.866025 0.500000i 0.0277778 0.0160375i
\(973\) 0 0
\(974\) −30.0000 −0.961262
\(975\) 0 0
\(976\) −35.0000 −1.12032
\(977\) 3.46410 + 6.00000i 0.110826 + 0.191957i 0.916104 0.400941i \(-0.131317\pi\)
−0.805277 + 0.592898i \(0.797984\pi\)
\(978\) −5.19615 + 3.00000i −0.166155 + 0.0959294i
\(979\) 6.00000 10.3923i 0.191761 0.332140i
\(980\) 0 0
\(981\) 7.50000 + 4.33013i 0.239457 + 0.138250i
\(982\) −23.3827 + 40.5000i −0.746171 + 1.29241i
\(983\) 10.3923 0.331463 0.165732 0.986171i \(-0.447001\pi\)
0.165732 + 0.986171i \(0.447001\pi\)
\(984\) 3.00000 5.19615i 0.0956365 0.165647i
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −30.0000 −0.953945
\(990\) 0 0
\(991\) 8.00000 + 13.8564i 0.254128 + 0.440163i 0.964658 0.263504i \(-0.0848781\pi\)
−0.710530 + 0.703667i \(0.751545\pi\)
\(992\) −31.1769 18.0000i −0.989868 0.571501i
\(993\) 3.46410 0.109930
\(994\) 0 0
\(995\) 0 0
\(996\) 8.66025i 0.274411i
\(997\) 8.66025 + 5.00000i 0.274273 + 0.158352i 0.630828 0.775923i \(-0.282715\pi\)
−0.356555 + 0.934274i \(0.616049\pi\)
\(998\) −57.1577 + 33.0000i −1.80929 + 1.04460i
\(999\) 1.50000 0.866025i 0.0474579 0.0273998i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.w.c.49.2 4
5.2 odd 4 975.2.bc.a.751.1 2
5.3 odd 4 975.2.bc.g.751.1 yes 2
5.4 even 2 inner 975.2.w.c.49.1 4
13.4 even 6 inner 975.2.w.c.199.1 4
65.4 even 6 inner 975.2.w.c.199.2 4
65.17 odd 12 975.2.bc.a.901.1 yes 2
65.43 odd 12 975.2.bc.g.901.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
975.2.w.c.49.1 4 5.4 even 2 inner
975.2.w.c.49.2 4 1.1 even 1 trivial
975.2.w.c.199.1 4 13.4 even 6 inner
975.2.w.c.199.2 4 65.4 even 6 inner
975.2.bc.a.751.1 2 5.2 odd 4
975.2.bc.a.901.1 yes 2 65.17 odd 12
975.2.bc.g.751.1 yes 2 5.3 odd 4
975.2.bc.g.901.1 yes 2 65.43 odd 12