L(s) = 1 | + 4·7-s − 12·17-s + 4·23-s − 14·25-s + 136·31-s − 8·41-s − 188·47-s + 8·49-s − 248·71-s − 124·73-s + 114·81-s + 100·97-s + 516·103-s − 284·113-s − 48·119-s + 1.31e3·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 16·161-s + 163-s + 167-s + 173-s + ⋯ |
L(s) = 1 | + 4/7·7-s − 0.705·17-s + 4/23·23-s − 0.559·25-s + 4.38·31-s − 0.195·41-s − 4·47-s + 8/49·49-s − 3.49·71-s − 1.69·73-s + 1.40·81-s + 1.03·97-s + 5.00·103-s − 2.51·113-s − 0.403·119-s + 10.8·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.0993·161-s + 0.00613·163-s + 0.00598·167-s + 0.00578·173-s + ⋯ |
Λ(s)=(=((2100⋅520)s/2ΓC(s)20L(s)Λ(3−s)
Λ(s)=(=((2100⋅520)s/2ΓC(s+1)20L(s)Λ(1−s)
Particular Values
L(23) |
≈ |
3.188286757 |
L(21) |
≈ |
3.188286757 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+14T2+41pT4−2808T6+2034p2T8+8084p4T10+2034p6T12−2808p8T14+41p13T16+14p16T18+p20T20 |
good | 3 | 1−38pT4−1859T8+1114504T12−14869022T16−50382700p4T20−14869022p8T24+1114504p16T28−1859p24T32−38p33T36+p40T40 |
| 7 | (1−2T+2T2−610T3+271pT4+18320T5+145616T6−1137328T7−8045434T8+18540420T9+564357756T10+18540420p2T11−8045434p4T12−1137328p6T13+145616p8T14+18320p10T15+271p13T16−610p14T17+2p16T18−2p18T19+p20T20)2 |
| 11 | (1−658T2+224781T4−52340600T6+9120139298T8−1240167831404T10+9120139298p4T12−52340600p8T14+224781p12T16−658p16T18+p20T20)2 |
| 13 | 1−68714T4+3087675853T8−85473147028472T12+2398905635263377746T16−60⋯28T20+2398905635263377746p8T24−85473147028472p16T28+3087675853p24T32−68714p32T36+p40T40 |
| 17 | (1+6T+18T2+12134T3+9389pT4−1173048T5+63705656T6+1574926728T7−7035754814T8+54207870724T9+10081821662572T10+54207870724p2T11−7035754814p4T12+1574926728p6T13+63705656p8T14−1173048p10T15+9389p13T16+12134p14T17+18p16T18+6p18T19+p20T20)2 |
| 19 | (1+2406T2+2930557T4+2315128904T6+1303230895506T8+543406660187172T10+1303230895506p4T12+2315128904p8T14+2930557p12T16+2406p16T18+p20T20)2 |
| 23 | (1−2T+2T2+2494T3+280233T4−2455824T5+324400pT6+589949040T7−128728992634T8−513870857180T9+3681193905276T10−513870857180p2T11−128728992634p4T12+589949040p6T13+324400p9T14−2455824p10T15+280233p12T16+2494p14T17+2p16T18−2p18T19+p20T20)2 |
| 29 | (1+5862T2+16207421T4+28469762120T6+35887152044178T8+34347575552131876T10+35887152044178p4T12+28469762120p8T14+16207421p12T16+5862p16T18+p20T20)2 |
| 31 | (1−34T+119pT2−73552T3+5377158T4−77314812T5+5377158p2T6−73552p4T7+119p7T8−34p8T9+p10T10)4 |
| 37 | 1+4173782T4+12570586938765T8+36325113880823571720T12+81⋯38T16+15⋯68T20+81⋯38p8T24+36325113880823571720p16T28+12570586938765p24T32+4173782p32T36+p40T40 |
| 41 | (1+2T+3929T2−43776T3+9954182T4−83797156T5+9954182p2T6−43776p4T7+3929p6T8+2p8T9+p10T10)4 |
| 43 | 1−3802546T4+26831738947197T8−91894552069346003832T12+50⋯70T16−13⋯80T20+50⋯70p8T24−91894552069346003832p16T28+26831738947197p24T32−3802546p32T36+p40T40 |
| 47 | (1+2pT+2p2T2+248926T3+12120201T4+392566800T5+14336307920T6+634261663440T7+14862450450758T8+118302473355652T9+6637757880275964T10+118302473355652p2T11+14862450450758p4T12+634261663440p6T13+14336307920p8T14+392566800p10T15+12120201p12T16+248926p14T17+2p18T18+2p19T19+p20T20)2 |
| 53 | 1−15039146T4+133684220395021T8+39218946710640122632T12−96⋯02T16+12⋯28T20−96⋯02p8T24+39218946710640122632p16T28+133684220395021p24T32−15039146p32T36+p40T40 |
| 59 | (1+20358T2+205085277T4+1346166325448T6+6536734169700626T8+25203640704687976420T10+6536734169700626p4T12+1346166325448p8T14+205085277p12T16+20358p16T18+p20T20)2 |
| 61 | (1−18802T2+189117357T4−1333577301752T6+7106541440264866T8−29659798453891124140T10+7106541440264866p4T12−1333577301752p8T14+189117357p12T16−18802p16T18+p20T20)2 |
| 67 | 1+6517774T4+162116992238781T8−33⋯08T12+23⋯98T16+28⋯68T20+23⋯98p8T24−33⋯08p16T28+162116992238781p24T32+6517774p32T36+p40T40 |
| 71 | (1+62T+12585T2+1087696T3+91333814T4+7391992324T5+91333814p2T6+1087696p4T7+12585p6T8+62p8T9+p10T10)4 |
| 73 | (1+62T+1922T2+293406T3+52885149T4+1992907656T5+64958558712T6+9681205197576T7+2398655765914626T8+112307032540117748T9+3743840733961712140T10+112307032540117748p2T11+2398655765914626p4T12+9681205197576p6T13+64958558712p8T14+1992907656p10T15+52885149p12T16+293406p14T17+1922p16T18+62p18T19+p20T20)2 |
| 79 | (1−46346T2+1023688173T4−14286438751864T6+140168501571945426T8−10⋯20T10+140168501571945426p4T12−14286438751864p8T14+1023688173p12T16−46346p16T18+p20T20)2 |
| 83 | 1−209971186T4+203835292037679pT8−34⋯52T12−43⋯90T16+36⋯20T20−43⋯90p8T24−34⋯52p16T28+203835292037679p25T32−209971186p32T36+p40T40 |
| 89 | (1−46986T2+1163729293T4−215914071096pT6+230705121354497106T8−20⋯60T10+230705121354497106p4T12−215914071096p9T14+1163729293p12T16−46986p16T18+p20T20)2 |
| 97 | (1−50T+1250T2−914226T3+90832893T4+7094951240T5−50384088712T6+11147294809672T7−3740546910279294T8+653351137546335316T9−8437320896266469556T10+653351137546335316p2T11−3740546910279294p4T12+11147294809672p6T13−50384088712p8T14+7094951240p10T15+90832893p12T16−914226p14T17+1250p16T18−50p18T19+p20T20)2 |
show more | |
show less | |
L(s)=p∏ j=1∏40(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−3.02878896273069215571353086641, −2.92930207216142546411213077661, −2.91538082145007012691973105096, −2.69039405599357588105941227665, −2.65370403351739257986545832013, −2.63129950264265721849820806214, −2.42302226682149180536455567434, −2.40411754626911255726855711376, −2.36247294702625153469859971215, −2.24651062898452295193772436094, −2.00297783892652583735740341010, −1.95496074922009698580550575625, −1.78897653077391960579341822836, −1.74278947917878184215171573022, −1.71192332277655219207281132029, −1.61223040739077806774761123099, −1.46873799985940028876846820852, −1.39407383235160307719312885845, −1.05368837344791461721012531743, −0.903583637409107382885236592608, −0.872981040050345257121315903951, −0.76425047923520404724294204667, −0.58762804741124329717946617472, −0.28428959623764864941835423069, −0.12879466634240432482580080998,
0.12879466634240432482580080998, 0.28428959623764864941835423069, 0.58762804741124329717946617472, 0.76425047923520404724294204667, 0.872981040050345257121315903951, 0.903583637409107382885236592608, 1.05368837344791461721012531743, 1.39407383235160307719312885845, 1.46873799985940028876846820852, 1.61223040739077806774761123099, 1.71192332277655219207281132029, 1.74278947917878184215171573022, 1.78897653077391960579341822836, 1.95496074922009698580550575625, 2.00297783892652583735740341010, 2.24651062898452295193772436094, 2.36247294702625153469859971215, 2.40411754626911255726855711376, 2.42302226682149180536455567434, 2.63129950264265721849820806214, 2.65370403351739257986545832013, 2.69039405599357588105941227665, 2.91538082145007012691973105096, 2.92930207216142546411213077661, 3.02878896273069215571353086641
Plot not available for L-functions of degree greater than 10.