L(s) = 1 | + 2-s − 3·3-s − 3·6-s − 3·7-s + 2·8-s + 6·9-s + 6·11-s − 6·13-s − 3·14-s + 3·16-s + 6·18-s + 6·19-s + 9·21-s + 6·22-s + 4·23-s − 6·24-s − 6·26-s − 10·27-s + 2·29-s + 2·31-s + 3·32-s − 18·33-s − 4·37-s + 6·38-s + 18·39-s + 2·41-s + 9·42-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1.73·3-s − 1.22·6-s − 1.13·7-s + 0.707·8-s + 2·9-s + 1.80·11-s − 1.66·13-s − 0.801·14-s + 3/4·16-s + 1.41·18-s + 1.37·19-s + 1.96·21-s + 1.27·22-s + 0.834·23-s − 1.22·24-s − 1.17·26-s − 1.92·27-s + 0.371·29-s + 0.359·31-s + 0.530·32-s − 3.13·33-s − 0.657·37-s + 0.973·38-s + 2.88·39-s + 0.312·41-s + 1.38·42-s + ⋯ |
Λ(s)=(=((33⋅56⋅73)s/2ΓC(s)3L(s)Λ(2−s)
Λ(s)=(=((33⋅56⋅73)s/2ΓC(s+1/2)3L(s)Λ(1−s)
Degree: |
6 |
Conductor: |
33⋅56⋅73
|
Sign: |
1
|
Analytic conductor: |
73.6731 |
Root analytic conductor: |
2.04747 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(6, 33⋅56⋅73, ( :1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.857930201 |
L(21) |
≈ |
1.857930201 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C1 | (1+T)3 |
| 5 | | 1 |
| 7 | C1 | (1+T)3 |
good | 2 | S4×C2 | 1−T+T2−3T3+pT4−p2T5+p3T6 |
| 11 | C2 | (1−2T+pT2)3 |
| 13 | S4×C2 | 1+6T+35T2+148T3+35pT4+6p2T5+p3T6 |
| 17 | S4×C2 | 1+35T2−16T3+35pT4+p3T6 |
| 19 | S4×C2 | 1−6T+53T2−188T3+53pT4−6p2T5+p3T6 |
| 23 | S4×C2 | 1−4T+61T2−168T3+61pT4−4p2T5+p3T6 |
| 29 | S4×C2 | 1−2T+35T2−76T3+35pT4−2p2T5+p3T6 |
| 31 | S4×C2 | 1−2T+41T2+60T3+41pT4−2p2T5+p3T6 |
| 37 | S4×C2 | 1+4T+31T2+232T3+31pT4+4p2T5+p3T6 |
| 41 | S4×C2 | 1−2T+63T2+36T3+63pT4−2p2T5+p3T6 |
| 43 | S4×C2 | 1−4T−15T2+488T3−15pT4−4p2T5+p3T6 |
| 47 | S4×C2 | 1−8T+109T2−624T3+109pT4−8p2T5+p3T6 |
| 53 | S4×C2 | 1−14T+171T2−1188T3+171pT4−14p2T5+p3T6 |
| 59 | S4×C2 | 1−16T+113T2−608T3+113pT4−16p2T5+p3T6 |
| 61 | S4×C2 | 1+6T+131T2+484T3+131pT4+6p2T5+p3T6 |
| 67 | S4×C2 | 1−8T+169T2−944T3+169pT4−8p2T5+p3T6 |
| 71 | C2 | (1−2T+pT2)3 |
| 73 | S4×C2 | 1+18T+311T2+2732T3+311pT4+18p2T5+p3T6 |
| 79 | S4×C2 | 1−12T+221T2−1576T3+221pT4−12p2T5+p3T6 |
| 83 | S4×C2 | 1−8T+185T2−1072T3+185pT4−8p2T5+p3T6 |
| 89 | S4×C2 | 1−14T+319T2−2532T3+319pT4−14p2T5+p3T6 |
| 97 | S4×C2 | 1+22T+255T2+2404T3+255pT4+22p2T5+p3T6 |
show more | | |
show less | | |
L(s)=p∏ j=1∏6(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.914525071408972659806251594373, −9.316520234174628371140068914352, −9.284020288732556461940958544307, −9.156825295931349904739131572860, −8.362766972126603023432502689627, −8.230490685348470661746481354447, −7.54195956443254506082870524233, −7.33870709268040940690541670912, −7.06666112289600058325462250884, −6.87566073734968804379748228912, −6.64213211134235603508882279981, −6.18421278721861225303735663511, −5.92690994891109039255491340178, −5.34873866904477615142468144811, −5.27741902028662012725921251974, −5.14085153600714544753454493451, −4.30027321369541196988573082776, −4.22140353570702312656420354378, −4.17650345759519333851478902367, −3.35778747230251275316332301302, −3.14182764210480382492854285569, −2.43619215235081207014809590862, −1.89682845780111182442129770040, −0.956151394633825783233879657697, −0.799153297890762279963436329692,
0.799153297890762279963436329692, 0.956151394633825783233879657697, 1.89682845780111182442129770040, 2.43619215235081207014809590862, 3.14182764210480382492854285569, 3.35778747230251275316332301302, 4.17650345759519333851478902367, 4.22140353570702312656420354378, 4.30027321369541196988573082776, 5.14085153600714544753454493451, 5.27741902028662012725921251974, 5.34873866904477615142468144811, 5.92690994891109039255491340178, 6.18421278721861225303735663511, 6.64213211134235603508882279981, 6.87566073734968804379748228912, 7.06666112289600058325462250884, 7.33870709268040940690541670912, 7.54195956443254506082870524233, 8.230490685348470661746481354447, 8.362766972126603023432502689627, 9.156825295931349904739131572860, 9.284020288732556461940958544307, 9.316520234174628371140068914352, 9.914525071408972659806251594373