Properties

Label 525.2.a.k.1.2
Level 525525
Weight 22
Character 525.1
Self dual yes
Analytic conductor 4.1924.192
Analytic rank 00
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [525,2,Mod(1,525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(525, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("525.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 525=3527 525 = 3 \cdot 5^{2} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 525.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 4.192146106124.19214610612
Analytic rank: 00
Dimension: 33
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x3x23x+1 x^{3} - x^{2} - 3x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 105)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.2
Root 1.48119-1.48119 of defining polynomial
Character χ\chi == 525.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+0.193937q21.00000q31.96239q40.193937q61.00000q70.768452q8+1.00000q9+2.00000q11+1.96239q12+1.35026q130.193937q14+3.77575q163.35026q17+0.193937q18+5.35026q19+1.00000q21+0.387873q22+4.96239q23+0.768452q24+0.261865q261.00000q27+1.96239q28+7.92478q29+4.57452q31+2.26916q322.00000q330.649738q341.96239q360.775746q37+1.03761q381.35026q39+3.73813q41+0.193937q4212.6253q433.92478q44+0.962389q46+9.92478q473.77575q48+1.00000q49+3.35026q512.64974q52+8.57452q530.193937q54+0.768452q565.35026q57+1.53690q588.62530q598.70052q61+0.887166q621.00000q637.11142q640.387873q66+9.92478q67+6.57452q684.96239q69+2.00000q710.768452q729.35026q730.150446q7410.4993q762.00000q770.261865q78+10.7005q79+1.00000q81+0.724961q82+3.22425q831.96239q842.44851q867.92478q871.53690q88+1.03761q891.35026q919.73813q924.57452q93+1.92478q942.26916q9618.4993q97+0.193937q98+2.00000q99+O(q100)q+0.193937 q^{2} -1.00000 q^{3} -1.96239 q^{4} -0.193937 q^{6} -1.00000 q^{7} -0.768452 q^{8} +1.00000 q^{9} +2.00000 q^{11} +1.96239 q^{12} +1.35026 q^{13} -0.193937 q^{14} +3.77575 q^{16} -3.35026 q^{17} +0.193937 q^{18} +5.35026 q^{19} +1.00000 q^{21} +0.387873 q^{22} +4.96239 q^{23} +0.768452 q^{24} +0.261865 q^{26} -1.00000 q^{27} +1.96239 q^{28} +7.92478 q^{29} +4.57452 q^{31} +2.26916 q^{32} -2.00000 q^{33} -0.649738 q^{34} -1.96239 q^{36} -0.775746 q^{37} +1.03761 q^{38} -1.35026 q^{39} +3.73813 q^{41} +0.193937 q^{42} -12.6253 q^{43} -3.92478 q^{44} +0.962389 q^{46} +9.92478 q^{47} -3.77575 q^{48} +1.00000 q^{49} +3.35026 q^{51} -2.64974 q^{52} +8.57452 q^{53} -0.193937 q^{54} +0.768452 q^{56} -5.35026 q^{57} +1.53690 q^{58} -8.62530 q^{59} -8.70052 q^{61} +0.887166 q^{62} -1.00000 q^{63} -7.11142 q^{64} -0.387873 q^{66} +9.92478 q^{67} +6.57452 q^{68} -4.96239 q^{69} +2.00000 q^{71} -0.768452 q^{72} -9.35026 q^{73} -0.150446 q^{74} -10.4993 q^{76} -2.00000 q^{77} -0.261865 q^{78} +10.7005 q^{79} +1.00000 q^{81} +0.724961 q^{82} +3.22425 q^{83} -1.96239 q^{84} -2.44851 q^{86} -7.92478 q^{87} -1.53690 q^{88} +1.03761 q^{89} -1.35026 q^{91} -9.73813 q^{92} -4.57452 q^{93} +1.92478 q^{94} -2.26916 q^{96} -18.4993 q^{97} +0.193937 q^{98} +2.00000 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q+q23q3+5q4q63q7+9q8+3q9+6q115q126q13q14+13q16+q18+6q19+3q21+2q22+4q239q24+10q26++6q99+O(q100) 3 q + q^{2} - 3 q^{3} + 5 q^{4} - q^{6} - 3 q^{7} + 9 q^{8} + 3 q^{9} + 6 q^{11} - 5 q^{12} - 6 q^{13} - q^{14} + 13 q^{16} + q^{18} + 6 q^{19} + 3 q^{21} + 2 q^{22} + 4 q^{23} - 9 q^{24} + 10 q^{26}+ \cdots + 6 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.193937 0.137134 0.0685669 0.997647i 0.478157π-0.478157\pi
0.0685669 + 0.997647i 0.478157π0.478157\pi
33 −1.00000 −0.577350
44 −1.96239 −0.981194
55 0 0
66 −0.193937 −0.0791743
77 −1.00000 −0.377964
88 −0.768452 −0.271689
99 1.00000 0.333333
1010 0 0
1111 2.00000 0.603023 0.301511 0.953463i 0.402509π-0.402509\pi
0.301511 + 0.953463i 0.402509π0.402509\pi
1212 1.96239 0.566493
1313 1.35026 0.374495 0.187248 0.982313i 0.440043π-0.440043\pi
0.187248 + 0.982313i 0.440043π0.440043\pi
1414 −0.193937 −0.0518317
1515 0 0
1616 3.77575 0.943937
1717 −3.35026 −0.812558 −0.406279 0.913749i 0.633174π-0.633174\pi
−0.406279 + 0.913749i 0.633174π0.633174\pi
1818 0.193937 0.0457113
1919 5.35026 1.22743 0.613717 0.789526i 0.289674π-0.289674\pi
0.613717 + 0.789526i 0.289674π0.289674\pi
2020 0 0
2121 1.00000 0.218218
2222 0.387873 0.0826948
2323 4.96239 1.03473 0.517365 0.855765i 0.326913π-0.326913\pi
0.517365 + 0.855765i 0.326913π0.326913\pi
2424 0.768452 0.156860
2525 0 0
2626 0.261865 0.0513560
2727 −1.00000 −0.192450
2828 1.96239 0.370857
2929 7.92478 1.47159 0.735797 0.677202i 0.236808π-0.236808\pi
0.735797 + 0.677202i 0.236808π0.236808\pi
3030 0 0
3131 4.57452 0.821607 0.410804 0.911724i 0.365248π-0.365248\pi
0.410804 + 0.911724i 0.365248π0.365248\pi
3232 2.26916 0.401134
3333 −2.00000 −0.348155
3434 −0.649738 −0.111429
3535 0 0
3636 −1.96239 −0.327065
3737 −0.775746 −0.127532 −0.0637660 0.997965i 0.520311π-0.520311\pi
−0.0637660 + 0.997965i 0.520311π0.520311\pi
3838 1.03761 0.168323
3939 −1.35026 −0.216215
4040 0 0
4141 3.73813 0.583799 0.291899 0.956449i 0.405713π-0.405713\pi
0.291899 + 0.956449i 0.405713π0.405713\pi
4242 0.193937 0.0299251
4343 −12.6253 −1.92534 −0.962670 0.270677i 0.912752π-0.912752\pi
−0.962670 + 0.270677i 0.912752π0.912752\pi
4444 −3.92478 −0.591682
4545 0 0
4646 0.962389 0.141896
4747 9.92478 1.44768 0.723839 0.689969i 0.242376π-0.242376\pi
0.723839 + 0.689969i 0.242376π0.242376\pi
4848 −3.77575 −0.544982
4949 1.00000 0.142857
5050 0 0
5151 3.35026 0.469130
5252 −2.64974 −0.367453
5353 8.57452 1.17780 0.588900 0.808206i 0.299561π-0.299561\pi
0.588900 + 0.808206i 0.299561π0.299561\pi
5454 −0.193937 −0.0263914
5555 0 0
5656 0.768452 0.102689
5757 −5.35026 −0.708659
5858 1.53690 0.201805
5959 −8.62530 −1.12292 −0.561459 0.827504i 0.689760π-0.689760\pi
−0.561459 + 0.827504i 0.689760π0.689760\pi
6060 0 0
6161 −8.70052 −1.11399 −0.556994 0.830517i 0.688045π-0.688045\pi
−0.556994 + 0.830517i 0.688045π0.688045\pi
6262 0.887166 0.112670
6363 −1.00000 −0.125988
6464 −7.11142 −0.888927
6565 0 0
6666 −0.387873 −0.0477439
6767 9.92478 1.21250 0.606252 0.795272i 0.292672π-0.292672\pi
0.606252 + 0.795272i 0.292672π0.292672\pi
6868 6.57452 0.797277
6969 −4.96239 −0.597401
7070 0 0
7171 2.00000 0.237356 0.118678 0.992933i 0.462134π-0.462134\pi
0.118678 + 0.992933i 0.462134π0.462134\pi
7272 −0.768452 −0.0905629
7373 −9.35026 −1.09437 −0.547183 0.837013i 0.684300π-0.684300\pi
−0.547183 + 0.837013i 0.684300π0.684300\pi
7474 −0.150446 −0.0174889
7575 0 0
7676 −10.4993 −1.20435
7777 −2.00000 −0.227921
7878 −0.261865 −0.0296504
7979 10.7005 1.20390 0.601951 0.798533i 0.294390π-0.294390\pi
0.601951 + 0.798533i 0.294390π0.294390\pi
8080 0 0
8181 1.00000 0.111111
8282 0.724961 0.0800586
8383 3.22425 0.353908 0.176954 0.984219i 0.443376π-0.443376\pi
0.176954 + 0.984219i 0.443376π0.443376\pi
8484 −1.96239 −0.214114
8585 0 0
8686 −2.44851 −0.264029
8787 −7.92478 −0.849625
8888 −1.53690 −0.163835
8989 1.03761 0.109987 0.0549933 0.998487i 0.482486π-0.482486\pi
0.0549933 + 0.998487i 0.482486π0.482486\pi
9090 0 0
9191 −1.35026 −0.141546
9292 −9.73813 −1.01527
9393 −4.57452 −0.474355
9494 1.92478 0.198526
9595 0 0
9696 −2.26916 −0.231595
9797 −18.4993 −1.87832 −0.939159 0.343482i 0.888394π-0.888394\pi
−0.939159 + 0.343482i 0.888394π0.888394\pi
9898 0.193937 0.0195906
9999 2.00000 0.201008
100100 0 0
101101 −17.6629 −1.75753 −0.878763 0.477259i 0.841630π-0.841630\pi
−0.878763 + 0.477259i 0.841630π0.841630\pi
102102 0.649738 0.0643337
103103 6.70052 0.660222 0.330111 0.943942i 0.392914π-0.392914\pi
0.330111 + 0.943942i 0.392914π0.392914\pi
104104 −1.03761 −0.101746
105105 0 0
106106 1.66291 0.161516
107107 13.7381 1.32812 0.664058 0.747681i 0.268833π-0.268833\pi
0.664058 + 0.747681i 0.268833π0.268833\pi
108108 1.96239 0.188831
109109 −2.77575 −0.265868 −0.132934 0.991125i 0.542440π-0.542440\pi
−0.132934 + 0.991125i 0.542440π0.542440\pi
110110 0 0
111111 0.775746 0.0736306
112112 −3.77575 −0.356774
113113 12.0508 1.13364 0.566821 0.823841i 0.308173π-0.308173\pi
0.566821 + 0.823841i 0.308173π0.308173\pi
114114 −1.03761 −0.0971812
115115 0 0
116116 −15.5515 −1.44392
117117 1.35026 0.124832
118118 −1.67276 −0.153990
119119 3.35026 0.307118
120120 0 0
121121 −7.00000 −0.636364
122122 −1.68735 −0.152765
123123 −3.73813 −0.337056
124124 −8.97698 −0.806156
125125 0 0
126126 −0.193937 −0.0172772
127127 2.70052 0.239633 0.119816 0.992796i 0.461769π-0.461769\pi
0.119816 + 0.992796i 0.461769π0.461769\pi
128128 −5.91748 −0.523037
129129 12.6253 1.11160
130130 0 0
131131 20.6253 1.80204 0.901020 0.433777i 0.142819π-0.142819\pi
0.901020 + 0.433777i 0.142819π0.142819\pi
132132 3.92478 0.341608
133133 −5.35026 −0.463927
134134 1.92478 0.166275
135135 0 0
136136 2.57452 0.220763
137137 22.4993 1.92224 0.961122 0.276124i 0.0890499π-0.0890499\pi
0.961122 + 0.276124i 0.0890499π0.0890499\pi
138138 −0.962389 −0.0819240
139139 −3.27504 −0.277785 −0.138893 0.990307i 0.544354π-0.544354\pi
−0.138893 + 0.990307i 0.544354π0.544354\pi
140140 0 0
141141 −9.92478 −0.835817
142142 0.387873 0.0325496
143143 2.70052 0.225829
144144 3.77575 0.314646
145145 0 0
146146 −1.81336 −0.150075
147147 −1.00000 −0.0824786
148148 1.52232 0.125134
149149 −4.44851 −0.364436 −0.182218 0.983258i 0.558328π-0.558328\pi
−0.182218 + 0.983258i 0.558328π0.558328\pi
150150 0 0
151151 1.29948 0.105750 0.0528749 0.998601i 0.483162π-0.483162\pi
0.0528749 + 0.998601i 0.483162π0.483162\pi
152152 −4.11142 −0.333480
153153 −3.35026 −0.270853
154154 −0.387873 −0.0312557
155155 0 0
156156 2.64974 0.212149
157157 −2.64974 −0.211472 −0.105736 0.994394i 0.533720π-0.533720\pi
−0.105736 + 0.994394i 0.533720π0.533720\pi
158158 2.07522 0.165096
159159 −8.57452 −0.680003
160160 0 0
161161 −4.96239 −0.391091
162162 0.193937 0.0152371
163163 5.29948 0.415087 0.207544 0.978226i 0.433453π-0.433453\pi
0.207544 + 0.978226i 0.433453π0.433453\pi
164164 −7.33567 −0.572820
165165 0 0
166166 0.625301 0.0485327
167167 −14.5501 −1.12592 −0.562959 0.826485i 0.690337π-0.690337\pi
−0.562959 + 0.826485i 0.690337π0.690337\pi
168168 −0.768452 −0.0592874
169169 −11.1768 −0.859753
170170 0 0
171171 5.35026 0.409145
172172 24.7757 1.88913
173173 −4.49929 −0.342075 −0.171037 0.985265i 0.554712π-0.554712\pi
−0.171037 + 0.985265i 0.554712π0.554712\pi
174174 −1.53690 −0.116512
175175 0 0
176176 7.55149 0.569215
177177 8.62530 0.648317
178178 0.201231 0.0150829
179179 10.0000 0.747435 0.373718 0.927543i 0.378083π-0.378083\pi
0.373718 + 0.927543i 0.378083π0.378083\pi
180180 0 0
181181 10.6253 0.789772 0.394886 0.918730i 0.370784π-0.370784\pi
0.394886 + 0.918730i 0.370784π0.370784\pi
182182 −0.261865 −0.0194107
183183 8.70052 0.643161
184184 −3.81336 −0.281124
185185 0 0
186186 −0.887166 −0.0650502
187187 −6.70052 −0.489991
188188 −19.4763 −1.42045
189189 1.00000 0.0727393
190190 0 0
191191 −13.8496 −1.00212 −0.501059 0.865413i 0.667056π-0.667056\pi
−0.501059 + 0.865413i 0.667056π0.667056\pi
192192 7.11142 0.513222
193193 15.3258 1.10318 0.551588 0.834116i 0.314022π-0.314022\pi
0.551588 + 0.834116i 0.314022π0.314022\pi
194194 −3.58769 −0.257581
195195 0 0
196196 −1.96239 −0.140171
197197 −0.574515 −0.0409325 −0.0204663 0.999791i 0.506515π-0.506515\pi
−0.0204663 + 0.999791i 0.506515π0.506515\pi
198198 0.387873 0.0275649
199199 −0.201231 −0.0142649 −0.00713244 0.999975i 0.502270π-0.502270\pi
−0.00713244 + 0.999975i 0.502270π0.502270\pi
200200 0 0
201201 −9.92478 −0.700040
202202 −3.42548 −0.241016
203203 −7.92478 −0.556210
204204 −6.57452 −0.460308
205205 0 0
206206 1.29948 0.0905388
207207 4.96239 0.344910
208208 5.09825 0.353500
209209 10.7005 0.740171
210210 0 0
211211 6.44851 0.443934 0.221967 0.975054i 0.428752π-0.428752\pi
0.221967 + 0.975054i 0.428752π0.428752\pi
212212 −16.8265 −1.15565
213213 −2.00000 −0.137038
214214 2.66433 0.182130
215215 0 0
216216 0.768452 0.0522865
217217 −4.57452 −0.310538
218218 −0.538319 −0.0364595
219219 9.35026 0.631832
220220 0 0
221221 −4.52373 −0.304299
222222 0.150446 0.0100972
223223 1.55149 0.103896 0.0519478 0.998650i 0.483457π-0.483457\pi
0.0519478 + 0.998650i 0.483457π0.483457\pi
224224 −2.26916 −0.151615
225225 0 0
226226 2.33709 0.155461
227227 −13.1490 −0.872732 −0.436366 0.899769i 0.643735π-0.643735\pi
−0.436366 + 0.899769i 0.643735π0.643735\pi
228228 10.4993 0.695333
229229 2.77575 0.183426 0.0917132 0.995785i 0.470766π-0.470766\pi
0.0917132 + 0.995785i 0.470766π0.470766\pi
230230 0 0
231231 2.00000 0.131590
232232 −6.08981 −0.399816
233233 −0.0507852 −0.00332705 −0.00166353 0.999999i 0.500530π-0.500530\pi
−0.00166353 + 0.999999i 0.500530π0.500530\pi
234234 0.261865 0.0171187
235235 0 0
236236 16.9262 1.10180
237237 −10.7005 −0.695074
238238 0.649738 0.0421163
239239 5.84955 0.378376 0.189188 0.981941i 0.439414π-0.439414\pi
0.189188 + 0.981941i 0.439414π0.439414\pi
240240 0 0
241241 −0.0752228 −0.00484553 −0.00242276 0.999997i 0.500771π-0.500771\pi
−0.00242276 + 0.999997i 0.500771π0.500771\pi
242242 −1.35756 −0.0872670
243243 −1.00000 −0.0641500
244244 17.0738 1.09304
245245 0 0
246246 −0.724961 −0.0462218
247247 7.22425 0.459668
248248 −3.51530 −0.223222
249249 −3.22425 −0.204329
250250 0 0
251251 19.2243 1.21342 0.606712 0.794922i 0.292488π-0.292488\pi
0.606712 + 0.794922i 0.292488π0.292488\pi
252252 1.96239 0.123619
253253 9.92478 0.623965
254254 0.523730 0.0328618
255255 0 0
256256 13.0752 0.817201
257257 7.35026 0.458497 0.229248 0.973368i 0.426373π-0.426373\pi
0.229248 + 0.973368i 0.426373π0.426373\pi
258258 2.44851 0.152437
259259 0.775746 0.0482025
260260 0 0
261261 7.92478 0.490531
262262 4.00000 0.247121
263263 −12.9624 −0.799295 −0.399648 0.916669i 0.630867π-0.630867\pi
−0.399648 + 0.916669i 0.630867π0.630867\pi
264264 1.53690 0.0945899
265265 0 0
266266 −1.03761 −0.0636200
267267 −1.03761 −0.0635008
268268 −19.4763 −1.18970
269269 4.11142 0.250678 0.125339 0.992114i 0.459998π-0.459998\pi
0.125339 + 0.992114i 0.459998π0.459998\pi
270270 0 0
271271 −16.4241 −0.997691 −0.498846 0.866691i 0.666243π-0.666243\pi
−0.498846 + 0.866691i 0.666243π0.666243\pi
272272 −12.6497 −0.767003
273273 1.35026 0.0817216
274274 4.36344 0.263605
275275 0 0
276276 9.73813 0.586167
277277 −11.0738 −0.665361 −0.332680 0.943040i 0.607953π-0.607953\pi
−0.332680 + 0.943040i 0.607953π0.607953\pi
278278 −0.635150 −0.0380938
279279 4.57452 0.273869
280280 0 0
281281 14.3733 0.857438 0.428719 0.903438i 0.358965π-0.358965\pi
0.428719 + 0.903438i 0.358965π0.358965\pi
282282 −1.92478 −0.114619
283283 1.14903 0.0683028 0.0341514 0.999417i 0.489127π-0.489127\pi
0.0341514 + 0.999417i 0.489127π0.489127\pi
284284 −3.92478 −0.232893
285285 0 0
286286 0.523730 0.0309688
287287 −3.73813 −0.220655
288288 2.26916 0.133711
289289 −5.77575 −0.339750
290290 0 0
291291 18.4993 1.08445
292292 18.3488 1.07379
293293 0.649738 0.0379581 0.0189791 0.999820i 0.493958π-0.493958\pi
0.0189791 + 0.999820i 0.493958π0.493958\pi
294294 −0.193937 −0.0113106
295295 0 0
296296 0.596124 0.0346490
297297 −2.00000 −0.116052
298298 −0.862728 −0.0499765
299299 6.70052 0.387501
300300 0 0
301301 12.6253 0.727710
302302 0.252016 0.0145019
303303 17.6629 1.01471
304304 20.2012 1.15862
305305 0 0
306306 −0.649738 −0.0371431
307307 24.1016 1.37555 0.687775 0.725924i 0.258588π-0.258588\pi
0.687775 + 0.725924i 0.258588π0.258588\pi
308308 3.92478 0.223635
309309 −6.70052 −0.381179
310310 0 0
311311 8.25202 0.467929 0.233964 0.972245i 0.424830π-0.424830\pi
0.233964 + 0.972245i 0.424830π0.424830\pi
312312 1.03761 0.0587432
313313 −14.9018 −0.842297 −0.421148 0.906992i 0.638373π-0.638373\pi
−0.421148 + 0.906992i 0.638373π0.638373\pi
314314 −0.513881 −0.0290000
315315 0 0
316316 −20.9986 −1.18126
317317 10.1260 0.568733 0.284367 0.958716i 0.408217π-0.408217\pi
0.284367 + 0.958716i 0.408217π0.408217\pi
318318 −1.66291 −0.0932515
319319 15.8496 0.887405
320320 0 0
321321 −13.7381 −0.766788
322322 −0.962389 −0.0536318
323323 −17.9248 −0.997361
324324 −1.96239 −0.109022
325325 0 0
326326 1.02776 0.0569225
327327 2.77575 0.153499
328328 −2.87258 −0.158612
329329 −9.92478 −0.547171
330330 0 0
331331 27.8496 1.53075 0.765375 0.643585i 0.222554π-0.222554\pi
0.765375 + 0.643585i 0.222554π0.222554\pi
332332 −6.32724 −0.347252
333333 −0.775746 −0.0425106
334334 −2.82179 −0.154402
335335 0 0
336336 3.77575 0.205984
337337 −3.84955 −0.209699 −0.104849 0.994488i 0.533436π-0.533436\pi
−0.104849 + 0.994488i 0.533436π0.533436\pi
338338 −2.16759 −0.117901
339339 −12.0508 −0.654509
340340 0 0
341341 9.14903 0.495448
342342 1.03761 0.0561076
343343 −1.00000 −0.0539949
344344 9.70194 0.523093
345345 0 0
346346 −0.872577 −0.0469101
347347 9.58769 0.514694 0.257347 0.966319i 0.417152π-0.417152\pi
0.257347 + 0.966319i 0.417152π0.417152\pi
348348 15.5515 0.833648
349349 −15.1490 −0.810909 −0.405455 0.914115i 0.632887π-0.632887\pi
−0.405455 + 0.914115i 0.632887π0.632887\pi
350350 0 0
351351 −1.35026 −0.0720716
352352 4.53832 0.241893
353353 −20.3488 −1.08306 −0.541530 0.840681i 0.682155π-0.682155\pi
−0.541530 + 0.840681i 0.682155π0.682155\pi
354354 1.67276 0.0889063
355355 0 0
356356 −2.03620 −0.107918
357357 −3.35026 −0.177315
358358 1.93937 0.102499
359359 −31.4010 −1.65728 −0.828642 0.559779i 0.810886π-0.810886\pi
−0.828642 + 0.559779i 0.810886π0.810886\pi
360360 0 0
361361 9.62530 0.506595
362362 2.06063 0.108305
363363 7.00000 0.367405
364364 2.64974 0.138884
365365 0 0
366366 1.68735 0.0881992
367367 −29.4010 −1.53472 −0.767361 0.641215i 0.778431π-0.778431\pi
−0.767361 + 0.641215i 0.778431π0.778431\pi
368368 18.7367 0.976719
369369 3.73813 0.194600
370370 0 0
371371 −8.57452 −0.445167
372372 8.97698 0.465435
373373 16.0000 0.828449 0.414224 0.910175i 0.364053π-0.364053\pi
0.414224 + 0.910175i 0.364053π0.364053\pi
374374 −1.29948 −0.0671943
375375 0 0
376376 −7.62672 −0.393318
377377 10.7005 0.551105
378378 0.193937 0.00997502
379379 10.7005 0.549649 0.274824 0.961494i 0.411380π-0.411380\pi
0.274824 + 0.961494i 0.411380π0.411380\pi
380380 0 0
381381 −2.70052 −0.138352
382382 −2.68594 −0.137424
383383 −16.7757 −0.857201 −0.428600 0.903494i 0.640993π-0.640993\pi
−0.428600 + 0.903494i 0.640993π0.640993\pi
384384 5.91748 0.301975
385385 0 0
386386 2.97224 0.151283
387387 −12.6253 −0.641780
388388 36.3028 1.84300
389389 −29.3258 −1.48688 −0.743439 0.668804i 0.766807π-0.766807\pi
−0.743439 + 0.668804i 0.766807π0.766807\pi
390390 0 0
391391 −16.6253 −0.840778
392392 −0.768452 −0.0388127
393393 −20.6253 −1.04041
394394 −0.111420 −0.00561324
395395 0 0
396396 −3.92478 −0.197227
397397 18.3488 0.920902 0.460451 0.887685i 0.347688π-0.347688\pi
0.460451 + 0.887685i 0.347688π0.347688\pi
398398 −0.0390260 −0.00195620
399399 5.35026 0.267848
400400 0 0
401401 −37.3258 −1.86396 −0.931981 0.362506i 0.881921π-0.881921\pi
−0.931981 + 0.362506i 0.881921π0.881921\pi
402402 −1.92478 −0.0959992
403403 6.17679 0.307688
404404 34.6615 1.72447
405405 0 0
406406 −1.53690 −0.0762753
407407 −1.55149 −0.0769046
408408 −2.57452 −0.127458
409409 −22.3733 −1.10629 −0.553144 0.833086i 0.686572π-0.686572\pi
−0.553144 + 0.833086i 0.686572π0.686572\pi
410410 0 0
411411 −22.4993 −1.10981
412412 −13.1490 −0.647806
413413 8.62530 0.424423
414414 0.962389 0.0472988
415415 0 0
416416 3.06396 0.150223
417417 3.27504 0.160379
418418 2.07522 0.101502
419419 23.4763 1.14689 0.573445 0.819244i 0.305606π-0.305606\pi
0.573445 + 0.819244i 0.305606π0.305606\pi
420420 0 0
421421 −25.2243 −1.22935 −0.614677 0.788779i 0.710714π-0.710714\pi
−0.614677 + 0.788779i 0.710714π0.710714\pi
422422 1.25060 0.0608783
423423 9.92478 0.482559
424424 −6.58910 −0.319995
425425 0 0
426426 −0.387873 −0.0187925
427427 8.70052 0.421048
428428 −26.9596 −1.30314
429429 −2.70052 −0.130383
430430 0 0
431431 −19.4010 −0.934516 −0.467258 0.884121i 0.654758π-0.654758\pi
−0.467258 + 0.884121i 0.654758π0.654758\pi
432432 −3.77575 −0.181661
433433 6.49929 0.312336 0.156168 0.987731i 0.450086π-0.450086\pi
0.156168 + 0.987731i 0.450086π0.450086\pi
434434 −0.887166 −0.0425853
435435 0 0
436436 5.44709 0.260868
437437 26.5501 1.27006
438438 1.81336 0.0866456
439439 −14.6497 −0.699194 −0.349597 0.936900i 0.613681π-0.613681\pi
−0.349597 + 0.936900i 0.613681π0.613681\pi
440440 0 0
441441 1.00000 0.0476190
442442 −0.877317 −0.0417297
443443 19.1392 0.909330 0.454665 0.890663i 0.349759π-0.349759\pi
0.454665 + 0.890663i 0.349759π0.349759\pi
444444 −1.52232 −0.0722459
445445 0 0
446446 0.300891 0.0142476
447447 4.44851 0.210407
448448 7.11142 0.335983
449449 −32.8021 −1.54803 −0.774013 0.633169i 0.781754π-0.781754\pi
−0.774013 + 0.633169i 0.781754π0.781754\pi
450450 0 0
451451 7.47627 0.352044
452452 −23.6483 −1.11232
453453 −1.29948 −0.0610547
454454 −2.55008 −0.119681
455455 0 0
456456 4.11142 0.192535
457457 −18.7005 −0.874774 −0.437387 0.899273i 0.644096π-0.644096\pi
−0.437387 + 0.899273i 0.644096π0.644096\pi
458458 0.538319 0.0251540
459459 3.35026 0.156377
460460 0 0
461461 −6.96239 −0.324271 −0.162135 0.986769i 0.551838π-0.551838\pi
−0.162135 + 0.986769i 0.551838π0.551838\pi
462462 0.387873 0.0180455
463463 5.29948 0.246288 0.123144 0.992389i 0.460702π-0.460702\pi
0.123144 + 0.992389i 0.460702π0.460702\pi
464464 29.9219 1.38909
465465 0 0
466466 −0.00984911 −0.000456251 0
467467 −13.1490 −0.608465 −0.304232 0.952598i 0.598400π-0.598400\pi
−0.304232 + 0.952598i 0.598400π0.598400\pi
468468 −2.64974 −0.122484
469469 −9.92478 −0.458284
470470 0 0
471471 2.64974 0.122093
472472 6.62813 0.305084
473473 −25.2506 −1.16102
474474 −2.07522 −0.0953181
475475 0 0
476476 −6.57452 −0.301342
477477 8.57452 0.392600
478478 1.13444 0.0518882
479479 5.14903 0.235265 0.117633 0.993057i 0.462469π-0.462469\pi
0.117633 + 0.993057i 0.462469π0.462469\pi
480480 0 0
481481 −1.04746 −0.0477601
482482 −0.0145884 −0.000664486 0
483483 4.96239 0.225797
484484 13.7367 0.624396
485485 0 0
486486 −0.193937 −0.00879714
487487 −22.1768 −1.00493 −0.502463 0.864599i 0.667573π-0.667573\pi
−0.502463 + 0.864599i 0.667573π0.667573\pi
488488 6.68594 0.302658
489489 −5.29948 −0.239651
490490 0 0
491491 2.00000 0.0902587 0.0451294 0.998981i 0.485630π-0.485630\pi
0.0451294 + 0.998981i 0.485630π0.485630\pi
492492 7.33567 0.330718
493493 −26.5501 −1.19576
494494 1.40105 0.0630361
495495 0 0
496496 17.2722 0.775545
497497 −2.00000 −0.0897123
498498 −0.625301 −0.0280204
499499 −6.55008 −0.293222 −0.146611 0.989194i 0.546837π-0.546837\pi
−0.146611 + 0.989194i 0.546837π0.546837\pi
500500 0 0
501501 14.5501 0.650050
502502 3.72829 0.166402
503503 8.77575 0.391291 0.195646 0.980675i 0.437320π-0.437320\pi
0.195646 + 0.980675i 0.437320π0.437320\pi
504504 0.768452 0.0342296
505505 0 0
506506 1.92478 0.0855668
507507 11.1768 0.496379
508508 −5.29948 −0.235126
509509 13.1392 0.582384 0.291192 0.956665i 0.405948π-0.405948\pi
0.291192 + 0.956665i 0.405948π0.405948\pi
510510 0 0
511511 9.35026 0.413631
512512 14.3707 0.635103
513513 −5.35026 −0.236220
514514 1.42548 0.0628754
515515 0 0
516516 −24.7757 −1.09069
517517 19.8496 0.872982
518518 0.150446 0.00661020
519519 4.49929 0.197497
520520 0 0
521521 −37.6629 −1.65004 −0.825021 0.565102i 0.808837π-0.808837\pi
−0.825021 + 0.565102i 0.808837π0.808837\pi
522522 1.53690 0.0672685
523523 −4.00000 −0.174908 −0.0874539 0.996169i 0.527873π-0.527873\pi
−0.0874539 + 0.996169i 0.527873π0.527873\pi
524524 −40.4749 −1.76815
525525 0 0
526526 −2.51388 −0.109610
527527 −15.3258 −0.667603
528528 −7.55149 −0.328637
529529 1.62530 0.0706652
530530 0 0
531531 −8.62530 −0.374306
532532 10.4993 0.455202
533533 5.04746 0.218630
534534 −0.201231 −0.00870811
535535 0 0
536536 −7.62672 −0.329424
537537 −10.0000 −0.431532
538538 0.797355 0.0343764
539539 2.00000 0.0861461
540540 0 0
541541 −22.4749 −0.966269 −0.483135 0.875546i 0.660502π-0.660502\pi
−0.483135 + 0.875546i 0.660502π0.660502\pi
542542 −3.18523 −0.136817
543543 −10.6253 −0.455975
544544 −7.60228 −0.325945
545545 0 0
546546 0.261865 0.0112068
547547 −25.9248 −1.10846 −0.554232 0.832362i 0.686988π-0.686988\pi
−0.554232 + 0.832362i 0.686988π0.686988\pi
548548 −44.1524 −1.88610
549549 −8.70052 −0.371329
550550 0 0
551551 42.3996 1.80629
552552 3.81336 0.162307
553553 −10.7005 −0.455033
554554 −2.14762 −0.0912435
555555 0 0
556556 6.42690 0.272561
557557 −28.5256 −1.20867 −0.604335 0.796730i 0.706561π-0.706561\pi
−0.604335 + 0.796730i 0.706561π0.706561\pi
558558 0.887166 0.0375567
559559 −17.0475 −0.721031
560560 0 0
561561 6.70052 0.282896
562562 2.78751 0.117584
563563 −11.6267 −0.490008 −0.245004 0.969522i 0.578789π-0.578789\pi
−0.245004 + 0.969522i 0.578789π0.578789\pi
564564 19.4763 0.820099
565565 0 0
566566 0.222839 0.00936663
567567 −1.00000 −0.0419961
568568 −1.53690 −0.0644871
569569 9.32582 0.390959 0.195479 0.980708i 0.437374π-0.437374\pi
0.195479 + 0.980708i 0.437374π0.437374\pi
570570 0 0
571571 −19.6991 −0.824382 −0.412191 0.911097i 0.635236π-0.635236\pi
−0.412191 + 0.911097i 0.635236π0.635236\pi
572572 −5.29948 −0.221582
573573 13.8496 0.578573
574574 −0.724961 −0.0302593
575575 0 0
576576 −7.11142 −0.296309
577577 32.7974 1.36537 0.682686 0.730712i 0.260812π-0.260812\pi
0.682686 + 0.730712i 0.260812π0.260812\pi
578578 −1.12013 −0.0465912
579579 −15.3258 −0.636920
580580 0 0
581581 −3.22425 −0.133765
582582 3.58769 0.148715
583583 17.1490 0.710240
584584 7.18523 0.297327
585585 0 0
586586 0.126008 0.00520534
587587 18.8218 0.776859 0.388429 0.921479i 0.373018π-0.373018\pi
0.388429 + 0.921479i 0.373018π0.373018\pi
588588 1.96239 0.0809275
589589 24.4749 1.00847
590590 0 0
591591 0.574515 0.0236324
592592 −2.92902 −0.120382
593593 33.7499 1.38594 0.692971 0.720965i 0.256301π-0.256301\pi
0.692971 + 0.720965i 0.256301π0.256301\pi
594594 −0.387873 −0.0159146
595595 0 0
596596 8.72970 0.357582
597597 0.201231 0.00823583
598598 1.29948 0.0531395
599599 −20.2981 −0.829356 −0.414678 0.909968i 0.636106π-0.636106\pi
−0.414678 + 0.909968i 0.636106π0.636106\pi
600600 0 0
601601 −13.8496 −0.564935 −0.282468 0.959277i 0.591153π-0.591153\pi
−0.282468 + 0.959277i 0.591153π0.591153\pi
602602 2.44851 0.0997937
603603 9.92478 0.404168
604604 −2.55008 −0.103761
605605 0 0
606606 3.42548 0.139151
607607 −25.2506 −1.02489 −0.512445 0.858720i 0.671260π-0.671260\pi
−0.512445 + 0.858720i 0.671260π0.671260\pi
608608 12.1406 0.492366
609609 7.92478 0.321128
610610 0 0
611611 13.4010 0.542148
612612 6.57452 0.265759
613613 −9.14903 −0.369526 −0.184763 0.982783i 0.559152π-0.559152\pi
−0.184763 + 0.982783i 0.559152π0.559152\pi
614614 4.67418 0.188634
615615 0 0
616616 1.53690 0.0619236
617617 15.9492 0.642091 0.321046 0.947064i 0.395966π-0.395966\pi
0.321046 + 0.947064i 0.395966π0.395966\pi
618618 −1.29948 −0.0522726
619619 11.1735 0.449100 0.224550 0.974463i 0.427909π-0.427909\pi
0.224550 + 0.974463i 0.427909π0.427909\pi
620620 0 0
621621 −4.96239 −0.199134
622622 1.60037 0.0641689
623623 −1.03761 −0.0415710
624624 −5.09825 −0.204093
625625 0 0
626626 −2.89000 −0.115507
627627 −10.7005 −0.427338
628628 5.19982 0.207495
629629 2.59895 0.103627
630630 0 0
631631 −14.5501 −0.579229 −0.289615 0.957143i 0.593527π-0.593527\pi
−0.289615 + 0.957143i 0.593527π0.593527\pi
632632 −8.22284 −0.327087
633633 −6.44851 −0.256305
634634 1.96380 0.0779926
635635 0 0
636636 16.8265 0.667215
637637 1.35026 0.0534993
638638 3.07381 0.121693
639639 2.00000 0.0791188
640640 0 0
641641 −38.7269 −1.52962 −0.764810 0.644256i 0.777167π-0.777167\pi
−0.764810 + 0.644256i 0.777167π0.777167\pi
642642 −2.66433 −0.105153
643643 −11.9511 −0.471306 −0.235653 0.971837i 0.575723π-0.575723\pi
−0.235653 + 0.971837i 0.575723π0.575723\pi
644644 9.73813 0.383736
645645 0 0
646646 −3.47627 −0.136772
647647 −14.5501 −0.572023 −0.286011 0.958226i 0.592329π-0.592329\pi
−0.286011 + 0.958226i 0.592329π0.592329\pi
648648 −0.768452 −0.0301876
649649 −17.2506 −0.677145
650650 0 0
651651 4.57452 0.179289
652652 −10.3996 −0.407281
653653 49.9756 1.95569 0.977847 0.209319i 0.0671247π-0.0671247\pi
0.977847 + 0.209319i 0.0671247π0.0671247\pi
654654 0.538319 0.0210499
655655 0 0
656656 14.1142 0.551069
657657 −9.35026 −0.364788
658658 −1.92478 −0.0750356
659659 −16.9525 −0.660377 −0.330189 0.943915i 0.607112π-0.607112\pi
−0.330189 + 0.943915i 0.607112π0.607112\pi
660660 0 0
661661 −15.6531 −0.608834 −0.304417 0.952539i 0.598462π-0.598462\pi
−0.304417 + 0.952539i 0.598462π0.598462\pi
662662 5.40105 0.209918
663663 4.52373 0.175687
664664 −2.47768 −0.0961528
665665 0 0
666666 −0.150446 −0.00582965
667667 39.3258 1.52270
668668 28.5529 1.10475
669669 −1.55149 −0.0599842
670670 0 0
671671 −17.4010 −0.671760
672672 2.26916 0.0875347
673673 26.0263 1.00324 0.501621 0.865088i 0.332737π-0.332737\pi
0.501621 + 0.865088i 0.332737π0.332737\pi
674674 −0.746569 −0.0287568
675675 0 0
676676 21.9332 0.843585
677677 −35.4518 −1.36252 −0.681262 0.732039i 0.738569π-0.738569\pi
−0.681262 + 0.732039i 0.738569π0.738569\pi
678678 −2.33709 −0.0897553
679679 18.4993 0.709938
680680 0 0
681681 13.1490 0.503872
682682 1.77433 0.0679427
683683 −23.6629 −0.905436 −0.452718 0.891654i 0.649546π-0.649546\pi
−0.452718 + 0.891654i 0.649546π0.649546\pi
684684 −10.4993 −0.401450
685685 0 0
686686 −0.193937 −0.00740453
687687 −2.77575 −0.105901
688688 −47.6699 −1.81740
689689 11.5778 0.441081
690690 0 0
691691 −0.574515 −0.0218556 −0.0109278 0.999940i 0.503478π-0.503478\pi
−0.0109278 + 0.999940i 0.503478π0.503478\pi
692692 8.82936 0.335642
693693 −2.00000 −0.0759737
694694 1.85940 0.0705820
695695 0 0
696696 6.08981 0.230834
697697 −12.5237 −0.474370
698698 −2.93795 −0.111203
699699 0.0507852 0.00192087
700700 0 0
701701 42.7269 1.61377 0.806886 0.590707i 0.201151π-0.201151\pi
0.806886 + 0.590707i 0.201151π0.201151\pi
702702 −0.261865 −0.00988346
703703 −4.15045 −0.156537
704704 −14.2228 −0.536043
705705 0 0
706706 −3.94639 −0.148524
707707 17.6629 0.664282
708708 −16.9262 −0.636125
709709 27.2506 1.02342 0.511709 0.859159i 0.329013π-0.329013\pi
0.511709 + 0.859159i 0.329013π0.329013\pi
710710 0 0
711711 10.7005 0.401301
712712 −0.797355 −0.0298821
713713 22.7005 0.850141
714714 −0.649738 −0.0243158
715715 0 0
716716 −19.6239 −0.733379
717717 −5.84955 −0.218456
718718 −6.08981 −0.227270
719719 −10.7005 −0.399062 −0.199531 0.979891i 0.563942π-0.563942\pi
−0.199531 + 0.979891i 0.563942π0.563942\pi
720720 0 0
721721 −6.70052 −0.249541
722722 1.86670 0.0694713
723723 0.0752228 0.00279757
724724 −20.8510 −0.774920
725725 0 0
726726 1.35756 0.0503836
727727 39.9511 1.48171 0.740853 0.671668i 0.234422π-0.234422\pi
0.740853 + 0.671668i 0.234422π0.234422\pi
728728 1.03761 0.0384564
729729 1.00000 0.0370370
730730 0 0
731731 42.2981 1.56445
732732 −17.0738 −0.631066
733733 −30.3488 −1.12096 −0.560480 0.828168i 0.689383π-0.689383\pi
−0.560480 + 0.828168i 0.689383π0.689383\pi
734734 −5.70194 −0.210462
735735 0 0
736736 11.2605 0.415066
737737 19.8496 0.731168
738738 0.724961 0.0266862
739739 37.2506 1.37029 0.685143 0.728409i 0.259740π-0.259740\pi
0.685143 + 0.728409i 0.259740π0.259740\pi
740740 0 0
741741 −7.22425 −0.265390
742742 −1.66291 −0.0610474
743743 26.3634 0.967181 0.483590 0.875294i 0.339332π-0.339332\pi
0.483590 + 0.875294i 0.339332π0.339332\pi
744744 3.51530 0.128877
745745 0 0
746746 3.10299 0.113608
747747 3.22425 0.117969
748748 13.1490 0.480776
749749 −13.7381 −0.501981
750750 0 0
751751 50.6516 1.84830 0.924152 0.382024i 0.124773π-0.124773\pi
0.924152 + 0.382024i 0.124773π0.124773\pi
752752 37.4734 1.36652
753753 −19.2243 −0.700571
754754 2.07522 0.0755752
755755 0 0
756756 −1.96239 −0.0713714
757757 38.9525 1.41575 0.707877 0.706336i 0.249653π-0.249653\pi
0.707877 + 0.706336i 0.249653π0.249653\pi
758758 2.07522 0.0753755
759759 −9.92478 −0.360247
760760 0 0
761761 48.2130 1.74772 0.873860 0.486178i 0.161609π-0.161609\pi
0.873860 + 0.486178i 0.161609π0.161609\pi
762762 −0.523730 −0.0189727
763763 2.77575 0.100489
764764 27.1782 0.983273
765765 0 0
766766 −3.25343 −0.117551
767767 −11.6464 −0.420528
768768 −13.0752 −0.471811
769769 4.44851 0.160417 0.0802086 0.996778i 0.474441π-0.474441\pi
0.0802086 + 0.996778i 0.474441π0.474441\pi
770770 0 0
771771 −7.35026 −0.264713
772772 −30.0752 −1.08243
773773 39.3014 1.41357 0.706786 0.707427i 0.250144π-0.250144\pi
0.706786 + 0.707427i 0.250144π0.250144\pi
774774 −2.44851 −0.0880098
775775 0 0
776776 14.2158 0.510318
777777 −0.775746 −0.0278297
778778 −5.68735 −0.203901
779779 20.0000 0.716574
780780 0 0
781781 4.00000 0.143131
782782 −3.22425 −0.115299
783783 −7.92478 −0.283208
784784 3.77575 0.134848
785785 0 0
786786 −4.00000 −0.142675
787787 0.897015 0.0319751 0.0159876 0.999872i 0.494911π-0.494911\pi
0.0159876 + 0.999872i 0.494911π0.494911\pi
788788 1.12742 0.0401628
789789 12.9624 0.461473
790790 0 0
791791 −12.0508 −0.428477
792792 −1.53690 −0.0546115
793793 −11.7480 −0.417183
794794 3.55851 0.126287
795795 0 0
796796 0.394893 0.0139966
797797 3.19982 0.113343 0.0566717 0.998393i 0.481951π-0.481951\pi
0.0566717 + 0.998393i 0.481951π0.481951\pi
798798 1.03761 0.0367310
799799 −33.2506 −1.17632
800800 0 0
801801 1.03761 0.0366622
802802 −7.23884 −0.255612
803803 −18.7005 −0.659927
804804 19.4763 0.686875
805805 0 0
806806 1.19791 0.0421944
807807 −4.11142 −0.144729
808808 13.5731 0.477500
809809 4.44851 0.156401 0.0782006 0.996938i 0.475083π-0.475083\pi
0.0782006 + 0.996938i 0.475083π0.475083\pi
810810 0 0
811811 37.6747 1.32294 0.661468 0.749973i 0.269934π-0.269934\pi
0.661468 + 0.749973i 0.269934π0.269934\pi
812812 15.5515 0.545750
813813 16.4241 0.576017
814814 −0.300891 −0.0105462
815815 0 0
816816 12.6497 0.442829
817817 −67.5487 −2.36323
818818 −4.33900 −0.151710
819819 −1.35026 −0.0471820
820820 0 0
821821 −0.749399 −0.0261542 −0.0130771 0.999914i 0.504163π-0.504163\pi
−0.0130771 + 0.999914i 0.504163π0.504163\pi
822822 −4.36344 −0.152192
823823 −26.3996 −0.920233 −0.460117 0.887858i 0.652192π-0.652192\pi
−0.460117 + 0.887858i 0.652192π0.652192\pi
824824 −5.14903 −0.179375
825825 0 0
826826 1.67276 0.0582028
827827 5.43724 0.189071 0.0945357 0.995521i 0.469863π-0.469863\pi
0.0945357 + 0.995521i 0.469863π0.469863\pi
828828 −9.73813 −0.338424
829829 22.7757 0.791034 0.395517 0.918459i 0.370565π-0.370565\pi
0.395517 + 0.918459i 0.370565π0.370565\pi
830830 0 0
831831 11.0738 0.384146
832832 −9.60228 −0.332899
833833 −3.35026 −0.116080
834834 0.635150 0.0219934
835835 0 0
836836 −20.9986 −0.726251
837837 −4.57452 −0.158118
838838 4.55291 0.157278
839839 15.8496 0.547187 0.273594 0.961845i 0.411788π-0.411788\pi
0.273594 + 0.961845i 0.411788π0.411788\pi
840840 0 0
841841 33.8021 1.16559
842842 −4.89191 −0.168586
843843 −14.3733 −0.495042
844844 −12.6545 −0.435585
845845 0 0
846846 1.92478 0.0661752
847847 7.00000 0.240523
848848 32.3752 1.11177
849849 −1.14903 −0.0394346
850850 0 0
851851 −3.84955 −0.131961
852852 3.92478 0.134461
853853 −21.0494 −0.720717 −0.360358 0.932814i 0.617346π-0.617346\pi
−0.360358 + 0.932814i 0.617346π0.617346\pi
854854 1.68735 0.0577399
855855 0 0
856856 −10.5571 −0.360834
857857 50.1524 1.71317 0.856586 0.516004i 0.172581π-0.172581\pi
0.856586 + 0.516004i 0.172581π0.172581\pi
858858 −0.523730 −0.0178799
859859 −5.35026 −0.182549 −0.0912743 0.995826i 0.529094π-0.529094\pi
−0.0912743 + 0.995826i 0.529094π0.529094\pi
860860 0 0
861861 3.73813 0.127395
862862 −3.76257 −0.128154
863863 −33.6893 −1.14680 −0.573398 0.819277i 0.694375π-0.694375\pi
−0.573398 + 0.819277i 0.694375π0.694375\pi
864864 −2.26916 −0.0771984
865865 0 0
866866 1.26045 0.0428319
867867 5.77575 0.196155
868868 8.97698 0.304698
869869 21.4010 0.725981
870870 0 0
871871 13.4010 0.454077
872872 2.13303 0.0722334
873873 −18.4993 −0.626106
874874 5.14903 0.174169
875875 0 0
876876 −18.3488 −0.619950
877877 −21.5026 −0.726092 −0.363046 0.931771i 0.618263π-0.618263\pi
−0.363046 + 0.931771i 0.618263π0.618263\pi
878878 −2.84112 −0.0958832
879879 −0.649738 −0.0219151
880880 0 0
881881 32.3634 1.09035 0.545176 0.838322i 0.316463π-0.316463\pi
0.545176 + 0.838322i 0.316463π0.316463\pi
882882 0.193937 0.00653018
883883 −2.59895 −0.0874617 −0.0437309 0.999043i 0.513924π-0.513924\pi
−0.0437309 + 0.999043i 0.513924π0.513924\pi
884884 8.87732 0.298576
885885 0 0
886886 3.71179 0.124700
887887 38.2784 1.28526 0.642631 0.766176i 0.277843π-0.277843\pi
0.642631 + 0.766176i 0.277843π0.277843\pi
888888 −0.596124 −0.0200046
889889 −2.70052 −0.0905727
890890 0 0
891891 2.00000 0.0670025
892892 −3.04463 −0.101942
893893 53.1002 1.77693
894894 0.862728 0.0288539
895895 0 0
896896 5.91748 0.197689
897897 −6.70052 −0.223724
898898 −6.36153 −0.212287
899899 36.2520 1.20907
900900 0 0
901901 −28.7269 −0.957031
902902 1.44992 0.0482771
903903 −12.6253 −0.420144
904904 −9.26045 −0.307998
905905 0 0
906906 −0.252016 −0.00837267
907907 −49.9972 −1.66013 −0.830064 0.557668i 0.811696π-0.811696\pi
−0.830064 + 0.557668i 0.811696π0.811696\pi
908908 25.8035 0.856320
909909 −17.6629 −0.585842
910910 0 0
911911 −24.9525 −0.826715 −0.413357 0.910569i 0.635644π-0.635644\pi
−0.413357 + 0.910569i 0.635644π0.635644\pi
912912 −20.2012 −0.668930
913913 6.44851 0.213414
914914 −3.62672 −0.119961
915915 0 0
916916 −5.44709 −0.179977
917917 −20.6253 −0.681107
918918 0.649738 0.0214446
919919 −11.6991 −0.385918 −0.192959 0.981207i 0.561808π-0.561808\pi
−0.192959 + 0.981207i 0.561808π0.561808\pi
920920 0 0
921921 −24.1016 −0.794174
922922 −1.35026 −0.0444685
923923 2.70052 0.0888888
924924 −3.92478 −0.129116
925925 0 0
926926 1.02776 0.0337744
927927 6.70052 0.220074
928928 17.9826 0.590307
929929 23.7090 0.777866 0.388933 0.921266i 0.372844π-0.372844\pi
0.388933 + 0.921266i 0.372844π0.372844\pi
930930 0 0
931931 5.35026 0.175348
932932 0.0996603 0.00326448
933933 −8.25202 −0.270159
934934 −2.55008 −0.0834411
935935 0 0
936936 −1.03761 −0.0339154
937937 −19.9003 −0.650116 −0.325058 0.945694i 0.605384π-0.605384\pi
−0.325058 + 0.945694i 0.605384π0.605384\pi
938938 −1.92478 −0.0628462
939939 14.9018 0.486300
940940 0 0
941941 −6.28821 −0.204990 −0.102495 0.994734i 0.532683π-0.532683\pi
−0.102495 + 0.994734i 0.532683π0.532683\pi
942942 0.513881 0.0167432
943943 18.5501 0.604074
944944 −32.5669 −1.05996
945945 0 0
946946 −4.89701 −0.159216
947947 −40.0362 −1.30100 −0.650501 0.759506i 0.725441π-0.725441\pi
−0.650501 + 0.759506i 0.725441π0.725441\pi
948948 20.9986 0.682002
949949 −12.6253 −0.409835
950950 0 0
951951 −10.1260 −0.328358
952952 −2.57452 −0.0834405
953953 40.9478 1.32643 0.663215 0.748429i 0.269192π-0.269192\pi
0.663215 + 0.748429i 0.269192π0.269192\pi
954954 1.66291 0.0538388
955955 0 0
956956 −11.4791 −0.371261
957957 −15.8496 −0.512343
958958 0.998585 0.0322628
959959 −22.4993 −0.726540
960960 0 0
961961 −10.0738 −0.324962
962962 −0.203141 −0.00654953
963963 13.7381 0.442705
964964 0.147616 0.00475440
965965 0 0
966966 0.962389 0.0309643
967967 38.2784 1.23095 0.615475 0.788157i 0.288964π-0.288964\pi
0.615475 + 0.788157i 0.288964π0.288964\pi
968968 5.37916 0.172893
969969 17.9248 0.575827
970970 0 0
971971 −28.7269 −0.921889 −0.460945 0.887429i 0.652489π-0.652489\pi
−0.460945 + 0.887429i 0.652489π0.652489\pi
972972 1.96239 0.0629436
973973 3.27504 0.104993
974974 −4.30089 −0.137809
975975 0 0
976976 −32.8510 −1.05153
977977 −41.3014 −1.32135 −0.660674 0.750673i 0.729730π-0.729730\pi
−0.660674 + 0.750673i 0.729730π0.729730\pi
978978 −1.02776 −0.0328642
979979 2.07522 0.0663244
980980 0 0
981981 −2.77575 −0.0886228
982982 0.387873 0.0123775
983983 −24.0000 −0.765481 −0.382741 0.923856i 0.625020π-0.625020\pi
−0.382741 + 0.923856i 0.625020π0.625020\pi
984984 2.87258 0.0915744
985985 0 0
986986 −5.14903 −0.163979
987987 9.92478 0.315909
988988 −14.1768 −0.451024
989989 −62.6516 −1.99221
990990 0 0
991991 25.1002 0.797333 0.398666 0.917096i 0.369473π-0.369473\pi
0.398666 + 0.917096i 0.369473π0.369473\pi
992992 10.3803 0.329575
993993 −27.8496 −0.883779
994994 −0.387873 −0.0123026
995995 0 0
996996 6.32724 0.200486
997997 32.7974 1.03870 0.519351 0.854561i 0.326174π-0.326174\pi
0.519351 + 0.854561i 0.326174π0.326174\pi
998998 −1.27030 −0.0402106
999999 0.775746 0.0245435
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 525.2.a.k.1.2 3
3.2 odd 2 1575.2.a.w.1.2 3
4.3 odd 2 8400.2.a.dj.1.3 3
5.2 odd 4 105.2.d.b.64.4 yes 6
5.3 odd 4 105.2.d.b.64.3 6
5.4 even 2 525.2.a.j.1.2 3
7.6 odd 2 3675.2.a.bj.1.2 3
15.2 even 4 315.2.d.e.64.3 6
15.8 even 4 315.2.d.e.64.4 6
15.14 odd 2 1575.2.a.x.1.2 3
20.3 even 4 1680.2.t.k.1009.4 6
20.7 even 4 1680.2.t.k.1009.1 6
20.19 odd 2 8400.2.a.dg.1.1 3
35.2 odd 12 735.2.q.e.214.4 12
35.3 even 12 735.2.q.f.79.4 12
35.12 even 12 735.2.q.f.214.4 12
35.13 even 4 735.2.d.b.589.3 6
35.17 even 12 735.2.q.f.79.3 12
35.18 odd 12 735.2.q.e.79.4 12
35.23 odd 12 735.2.q.e.214.3 12
35.27 even 4 735.2.d.b.589.4 6
35.32 odd 12 735.2.q.e.79.3 12
35.33 even 12 735.2.q.f.214.3 12
35.34 odd 2 3675.2.a.bi.1.2 3
60.23 odd 4 5040.2.t.v.1009.6 6
60.47 odd 4 5040.2.t.v.1009.5 6
105.62 odd 4 2205.2.d.l.1324.3 6
105.83 odd 4 2205.2.d.l.1324.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.d.b.64.3 6 5.3 odd 4
105.2.d.b.64.4 yes 6 5.2 odd 4
315.2.d.e.64.3 6 15.2 even 4
315.2.d.e.64.4 6 15.8 even 4
525.2.a.j.1.2 3 5.4 even 2
525.2.a.k.1.2 3 1.1 even 1 trivial
735.2.d.b.589.3 6 35.13 even 4
735.2.d.b.589.4 6 35.27 even 4
735.2.q.e.79.3 12 35.32 odd 12
735.2.q.e.79.4 12 35.18 odd 12
735.2.q.e.214.3 12 35.23 odd 12
735.2.q.e.214.4 12 35.2 odd 12
735.2.q.f.79.3 12 35.17 even 12
735.2.q.f.79.4 12 35.3 even 12
735.2.q.f.214.3 12 35.33 even 12
735.2.q.f.214.4 12 35.12 even 12
1575.2.a.w.1.2 3 3.2 odd 2
1575.2.a.x.1.2 3 15.14 odd 2
1680.2.t.k.1009.1 6 20.7 even 4
1680.2.t.k.1009.4 6 20.3 even 4
2205.2.d.l.1324.3 6 105.62 odd 4
2205.2.d.l.1324.4 6 105.83 odd 4
3675.2.a.bi.1.2 3 35.34 odd 2
3675.2.a.bj.1.2 3 7.6 odd 2
5040.2.t.v.1009.5 6 60.47 odd 4
5040.2.t.v.1009.6 6 60.23 odd 4
8400.2.a.dg.1.1 3 20.19 odd 2
8400.2.a.dj.1.3 3 4.3 odd 2