Properties

Label 5040.2.t.v.1009.6
Level $5040$
Weight $2$
Character 5040.1009
Analytic conductor $40.245$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5040,2,Mod(1009,5040)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5040, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5040.1009");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5040 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5040.t (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(40.2446026187\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1009.6
Root \(0.403032 + 0.403032i\) of defining polynomial
Character \(\chi\) \(=\) 5040.1009
Dual form 5040.2.t.v.1009.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.48119 + 1.67513i) q^{5} -1.00000i q^{7} +2.00000 q^{11} +1.35026i q^{13} -3.35026i q^{17} +5.35026 q^{19} +4.96239i q^{23} +(-0.612127 + 4.96239i) q^{25} +7.92478 q^{29} -4.57452 q^{31} +(1.67513 - 1.48119i) q^{35} +0.775746i q^{37} -3.73813 q^{41} +12.6253i q^{43} -9.92478i q^{47} -1.00000 q^{49} -8.57452i q^{53} +(2.96239 + 3.35026i) q^{55} +8.62530 q^{59} -8.70052 q^{61} +(-2.26187 + 2.00000i) q^{65} +9.92478i q^{67} +2.00000 q^{71} -9.35026i q^{73} -2.00000i q^{77} +10.7005 q^{79} +3.22425i q^{83} +(5.61213 - 4.96239i) q^{85} +1.03761 q^{89} +1.35026 q^{91} +(7.92478 + 8.96239i) q^{95} +18.4993i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{5} + 12 q^{11} + 12 q^{19} - 2 q^{25} + 4 q^{29} - 4 q^{31} - 4 q^{41} - 6 q^{49} - 4 q^{55} - 32 q^{59} - 12 q^{61} - 32 q^{65} + 12 q^{71} + 24 q^{79} + 32 q^{85} + 28 q^{89} - 12 q^{91} + 4 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5040\mathbb{Z}\right)^\times\).

\(n\) \(2017\) \(2801\) \(3151\) \(3601\) \(3781\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.48119 + 1.67513i 0.662410 + 0.749141i
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0 0
\(13\) 1.35026i 0.374495i 0.982313 + 0.187248i \(0.0599567\pi\)
−0.982313 + 0.187248i \(0.940043\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.35026i 0.812558i −0.913749 0.406279i \(-0.866826\pi\)
0.913749 0.406279i \(-0.133174\pi\)
\(18\) 0 0
\(19\) 5.35026 1.22743 0.613717 0.789526i \(-0.289674\pi\)
0.613717 + 0.789526i \(0.289674\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.96239i 1.03473i 0.855765 + 0.517365i \(0.173087\pi\)
−0.855765 + 0.517365i \(0.826913\pi\)
\(24\) 0 0
\(25\) −0.612127 + 4.96239i −0.122425 + 0.992478i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 7.92478 1.47159 0.735797 0.677202i \(-0.236808\pi\)
0.735797 + 0.677202i \(0.236808\pi\)
\(30\) 0 0
\(31\) −4.57452 −0.821607 −0.410804 0.911724i \(-0.634752\pi\)
−0.410804 + 0.911724i \(0.634752\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.67513 1.48119i 0.283149 0.250368i
\(36\) 0 0
\(37\) 0.775746i 0.127532i 0.997965 + 0.0637660i \(0.0203111\pi\)
−0.997965 + 0.0637660i \(0.979689\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.73813 −0.583799 −0.291899 0.956449i \(-0.594287\pi\)
−0.291899 + 0.956449i \(0.594287\pi\)
\(42\) 0 0
\(43\) 12.6253i 1.92534i 0.270677 + 0.962670i \(0.412752\pi\)
−0.270677 + 0.962670i \(0.587248\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 9.92478i 1.44768i −0.689969 0.723839i \(-0.742376\pi\)
0.689969 0.723839i \(-0.257624\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 8.57452i 1.17780i −0.808206 0.588900i \(-0.799561\pi\)
0.808206 0.588900i \(-0.200439\pi\)
\(54\) 0 0
\(55\) 2.96239 + 3.35026i 0.399448 + 0.451749i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 8.62530 1.12292 0.561459 0.827504i \(-0.310240\pi\)
0.561459 + 0.827504i \(0.310240\pi\)
\(60\) 0 0
\(61\) −8.70052 −1.11399 −0.556994 0.830517i \(-0.688045\pi\)
−0.556994 + 0.830517i \(0.688045\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.26187 + 2.00000i −0.280550 + 0.248069i
\(66\) 0 0
\(67\) 9.92478i 1.21250i 0.795272 + 0.606252i \(0.207328\pi\)
−0.795272 + 0.606252i \(0.792672\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.00000 0.237356 0.118678 0.992933i \(-0.462134\pi\)
0.118678 + 0.992933i \(0.462134\pi\)
\(72\) 0 0
\(73\) 9.35026i 1.09437i −0.837013 0.547183i \(-0.815700\pi\)
0.837013 0.547183i \(-0.184300\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.00000i 0.227921i
\(78\) 0 0
\(79\) 10.7005 1.20390 0.601951 0.798533i \(-0.294390\pi\)
0.601951 + 0.798533i \(0.294390\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.22425i 0.353908i 0.984219 + 0.176954i \(0.0566244\pi\)
−0.984219 + 0.176954i \(0.943376\pi\)
\(84\) 0 0
\(85\) 5.61213 4.96239i 0.608721 0.538247i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.03761 0.109987 0.0549933 0.998487i \(-0.482486\pi\)
0.0549933 + 0.998487i \(0.482486\pi\)
\(90\) 0 0
\(91\) 1.35026 0.141546
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 7.92478 + 8.96239i 0.813065 + 0.919522i
\(96\) 0 0
\(97\) 18.4993i 1.87832i 0.343482 + 0.939159i \(0.388394\pi\)
−0.343482 + 0.939159i \(0.611606\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 17.6629 1.75753 0.878763 0.477259i \(-0.158370\pi\)
0.878763 + 0.477259i \(0.158370\pi\)
\(102\) 0 0
\(103\) 6.70052i 0.660222i −0.943942 0.330111i \(-0.892914\pi\)
0.943942 0.330111i \(-0.107086\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 13.7381i 1.32812i −0.747681 0.664058i \(-0.768833\pi\)
0.747681 0.664058i \(-0.231167\pi\)
\(108\) 0 0
\(109\) 2.77575 0.265868 0.132934 0.991125i \(-0.457560\pi\)
0.132934 + 0.991125i \(0.457560\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 12.0508i 1.13364i −0.823841 0.566821i \(-0.808173\pi\)
0.823841 0.566821i \(-0.191827\pi\)
\(114\) 0 0
\(115\) −8.31265 + 7.35026i −0.775159 + 0.685415i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −3.35026 −0.307118
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −9.21933 + 6.32487i −0.824602 + 0.565713i
\(126\) 0 0
\(127\) 2.70052i 0.239633i 0.992796 + 0.119816i \(0.0382306\pi\)
−0.992796 + 0.119816i \(0.961769\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 20.6253 1.80204 0.901020 0.433777i \(-0.142819\pi\)
0.901020 + 0.433777i \(0.142819\pi\)
\(132\) 0 0
\(133\) 5.35026i 0.463927i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 22.4993i 1.92224i 0.276124 + 0.961122i \(0.410950\pi\)
−0.276124 + 0.961122i \(0.589050\pi\)
\(138\) 0 0
\(139\) −3.27504 −0.277785 −0.138893 0.990307i \(-0.544354\pi\)
−0.138893 + 0.990307i \(0.544354\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.70052i 0.225829i
\(144\) 0 0
\(145\) 11.7381 + 13.2750i 0.974799 + 1.10243i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −4.44851 −0.364436 −0.182218 0.983258i \(-0.558328\pi\)
−0.182218 + 0.983258i \(0.558328\pi\)
\(150\) 0 0
\(151\) −1.29948 −0.105750 −0.0528749 0.998601i \(-0.516838\pi\)
−0.0528749 + 0.998601i \(0.516838\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −6.77575 7.66291i −0.544241 0.615500i
\(156\) 0 0
\(157\) 2.64974i 0.211472i 0.994394 + 0.105736i \(0.0337199\pi\)
−0.994394 + 0.105736i \(0.966280\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 4.96239 0.391091
\(162\) 0 0
\(163\) 5.29948i 0.415087i −0.978226 0.207544i \(-0.933453\pi\)
0.978226 0.207544i \(-0.0665469\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 14.5501i 1.12592i 0.826485 + 0.562959i \(0.190337\pi\)
−0.826485 + 0.562959i \(0.809663\pi\)
\(168\) 0 0
\(169\) 11.1768 0.859753
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 4.49929i 0.342075i 0.985265 + 0.171037i \(0.0547119\pi\)
−0.985265 + 0.171037i \(0.945288\pi\)
\(174\) 0 0
\(175\) 4.96239 + 0.612127i 0.375121 + 0.0462724i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −10.0000 −0.747435 −0.373718 0.927543i \(-0.621917\pi\)
−0.373718 + 0.927543i \(0.621917\pi\)
\(180\) 0 0
\(181\) 10.6253 0.789772 0.394886 0.918730i \(-0.370784\pi\)
0.394886 + 0.918730i \(0.370784\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1.29948 + 1.14903i −0.0955394 + 0.0844784i
\(186\) 0 0
\(187\) 6.70052i 0.489991i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −13.8496 −1.00212 −0.501059 0.865413i \(-0.667056\pi\)
−0.501059 + 0.865413i \(0.667056\pi\)
\(192\) 0 0
\(193\) 15.3258i 1.10318i 0.834116 + 0.551588i \(0.185978\pi\)
−0.834116 + 0.551588i \(0.814022\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0.574515i 0.0409325i −0.999791 0.0204663i \(-0.993485\pi\)
0.999791 0.0204663i \(-0.00651507\pi\)
\(198\) 0 0
\(199\) −0.201231 −0.0142649 −0.00713244 0.999975i \(-0.502270\pi\)
−0.00713244 + 0.999975i \(0.502270\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 7.92478i 0.556210i
\(204\) 0 0
\(205\) −5.53690 6.26187i −0.386714 0.437348i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 10.7005 0.740171
\(210\) 0 0
\(211\) −6.44851 −0.443934 −0.221967 0.975054i \(-0.571248\pi\)
−0.221967 + 0.975054i \(0.571248\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −21.1490 + 18.7005i −1.44235 + 1.27537i
\(216\) 0 0
\(217\) 4.57452i 0.310538i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 4.52373 0.304299
\(222\) 0 0
\(223\) 1.55149i 0.103896i −0.998650 0.0519478i \(-0.983457\pi\)
0.998650 0.0519478i \(-0.0165429\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 13.1490i 0.872732i 0.899769 + 0.436366i \(0.143735\pi\)
−0.899769 + 0.436366i \(0.856265\pi\)
\(228\) 0 0
\(229\) −2.77575 −0.183426 −0.0917132 0.995785i \(-0.529234\pi\)
−0.0917132 + 0.995785i \(0.529234\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0.0507852i 0.00332705i 0.999999 + 0.00166353i \(0.000529517\pi\)
−0.999999 + 0.00166353i \(0.999470\pi\)
\(234\) 0 0
\(235\) 16.6253 14.7005i 1.08452 0.958956i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −5.84955 −0.378376 −0.189188 0.981941i \(-0.560586\pi\)
−0.189188 + 0.981941i \(0.560586\pi\)
\(240\) 0 0
\(241\) −0.0752228 −0.00484553 −0.00242276 0.999997i \(-0.500771\pi\)
−0.00242276 + 0.999997i \(0.500771\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.48119 1.67513i −0.0946300 0.107020i
\(246\) 0 0
\(247\) 7.22425i 0.459668i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 19.2243 1.21342 0.606712 0.794922i \(-0.292488\pi\)
0.606712 + 0.794922i \(0.292488\pi\)
\(252\) 0 0
\(253\) 9.92478i 0.623965i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 7.35026i 0.458497i 0.973368 + 0.229248i \(0.0736268\pi\)
−0.973368 + 0.229248i \(0.926373\pi\)
\(258\) 0 0
\(259\) 0.775746 0.0482025
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 12.9624i 0.799295i −0.916669 0.399648i \(-0.869133\pi\)
0.916669 0.399648i \(-0.130867\pi\)
\(264\) 0 0
\(265\) 14.3634 12.7005i 0.882339 0.780187i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 4.11142 0.250678 0.125339 0.992114i \(-0.459998\pi\)
0.125339 + 0.992114i \(0.459998\pi\)
\(270\) 0 0
\(271\) 16.4241 0.997691 0.498846 0.866691i \(-0.333757\pi\)
0.498846 + 0.866691i \(0.333757\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.22425 + 9.92478i −0.0738253 + 0.598487i
\(276\) 0 0
\(277\) 11.0738i 0.665361i 0.943040 + 0.332680i \(0.107953\pi\)
−0.943040 + 0.332680i \(0.892047\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −14.3733 −0.857438 −0.428719 0.903438i \(-0.641035\pi\)
−0.428719 + 0.903438i \(0.641035\pi\)
\(282\) 0 0
\(283\) 1.14903i 0.0683028i −0.999417 0.0341514i \(-0.989127\pi\)
0.999417 0.0341514i \(-0.0108728\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3.73813i 0.220655i
\(288\) 0 0
\(289\) 5.77575 0.339750
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0.649738i 0.0379581i −0.999820 0.0189791i \(-0.993958\pi\)
0.999820 0.0189791i \(-0.00604158\pi\)
\(294\) 0 0
\(295\) 12.7757 + 14.4485i 0.743833 + 0.841225i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −6.70052 −0.387501
\(300\) 0 0
\(301\) 12.6253 0.727710
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −12.8872 14.5745i −0.737917 0.834534i
\(306\) 0 0
\(307\) 24.1016i 1.37555i 0.725924 + 0.687775i \(0.241412\pi\)
−0.725924 + 0.687775i \(0.758588\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 8.25202 0.467929 0.233964 0.972245i \(-0.424830\pi\)
0.233964 + 0.972245i \(0.424830\pi\)
\(312\) 0 0
\(313\) 14.9018i 0.842297i −0.906992 0.421148i \(-0.861627\pi\)
0.906992 0.421148i \(-0.138373\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 10.1260i 0.568733i 0.958716 + 0.284367i \(0.0917833\pi\)
−0.958716 + 0.284367i \(0.908217\pi\)
\(318\) 0 0
\(319\) 15.8496 0.887405
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 17.9248i 0.997361i
\(324\) 0 0
\(325\) −6.70052 0.826531i −0.371678 0.0458477i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −9.92478 −0.547171
\(330\) 0 0
\(331\) −27.8496 −1.53075 −0.765375 0.643585i \(-0.777446\pi\)
−0.765375 + 0.643585i \(0.777446\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −16.6253 + 14.7005i −0.908337 + 0.803175i
\(336\) 0 0
\(337\) 3.84955i 0.209699i 0.994488 + 0.104849i \(0.0334360\pi\)
−0.994488 + 0.104849i \(0.966564\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −9.14903 −0.495448
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 9.58769i 0.514694i −0.966319 0.257347i \(-0.917152\pi\)
0.966319 0.257347i \(-0.0828484\pi\)
\(348\) 0 0
\(349\) 15.1490 0.810909 0.405455 0.914115i \(-0.367113\pi\)
0.405455 + 0.914115i \(0.367113\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 20.3488i 1.08306i 0.840681 + 0.541530i \(0.182155\pi\)
−0.840681 + 0.541530i \(0.817845\pi\)
\(354\) 0 0
\(355\) 2.96239 + 3.35026i 0.157227 + 0.177813i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 31.4010 1.65728 0.828642 0.559779i \(-0.189114\pi\)
0.828642 + 0.559779i \(0.189114\pi\)
\(360\) 0 0
\(361\) 9.62530 0.506595
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 15.6629 13.8496i 0.819834 0.724919i
\(366\) 0 0
\(367\) 29.4010i 1.53472i −0.641215 0.767361i \(-0.721569\pi\)
0.641215 0.767361i \(-0.278431\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −8.57452 −0.445167
\(372\) 0 0
\(373\) 16.0000i 0.828449i 0.910175 + 0.414224i \(0.135947\pi\)
−0.910175 + 0.414224i \(0.864053\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 10.7005i 0.551105i
\(378\) 0 0
\(379\) 10.7005 0.549649 0.274824 0.961494i \(-0.411380\pi\)
0.274824 + 0.961494i \(0.411380\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 16.7757i 0.857201i −0.903494 0.428600i \(-0.859007\pi\)
0.903494 0.428600i \(-0.140993\pi\)
\(384\) 0 0
\(385\) 3.35026 2.96239i 0.170745 0.150977i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −29.3258 −1.48688 −0.743439 0.668804i \(-0.766807\pi\)
−0.743439 + 0.668804i \(0.766807\pi\)
\(390\) 0 0
\(391\) 16.6253 0.840778
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 15.8496 + 17.9248i 0.797478 + 0.901893i
\(396\) 0 0
\(397\) 18.3488i 0.920902i −0.887685 0.460451i \(-0.847688\pi\)
0.887685 0.460451i \(-0.152312\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 37.3258 1.86396 0.931981 0.362506i \(-0.118079\pi\)
0.931981 + 0.362506i \(0.118079\pi\)
\(402\) 0 0
\(403\) 6.17679i 0.307688i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.55149i 0.0769046i
\(408\) 0 0
\(409\) 22.3733 1.10629 0.553144 0.833086i \(-0.313428\pi\)
0.553144 + 0.833086i \(0.313428\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 8.62530i 0.424423i
\(414\) 0 0
\(415\) −5.40105 + 4.77575i −0.265127 + 0.234432i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −23.4763 −1.14689 −0.573445 0.819244i \(-0.694394\pi\)
−0.573445 + 0.819244i \(0.694394\pi\)
\(420\) 0 0
\(421\) −25.2243 −1.22935 −0.614677 0.788779i \(-0.710714\pi\)
−0.614677 + 0.788779i \(0.710714\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 16.6253 + 2.05079i 0.806446 + 0.0994777i
\(426\) 0 0
\(427\) 8.70052i 0.421048i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −19.4010 −0.934516 −0.467258 0.884121i \(-0.654758\pi\)
−0.467258 + 0.884121i \(0.654758\pi\)
\(432\) 0 0
\(433\) 6.49929i 0.312336i 0.987731 + 0.156168i \(0.0499141\pi\)
−0.987731 + 0.156168i \(0.950086\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 26.5501i 1.27006i
\(438\) 0 0
\(439\) −14.6497 −0.699194 −0.349597 0.936900i \(-0.613681\pi\)
−0.349597 + 0.936900i \(0.613681\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 19.1392i 0.909330i 0.890663 + 0.454665i \(0.150241\pi\)
−0.890663 + 0.454665i \(0.849759\pi\)
\(444\) 0 0
\(445\) 1.53690 + 1.73813i 0.0728562 + 0.0823955i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −32.8021 −1.54803 −0.774013 0.633169i \(-0.781754\pi\)
−0.774013 + 0.633169i \(0.781754\pi\)
\(450\) 0 0
\(451\) −7.47627 −0.352044
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 2.00000 + 2.26187i 0.0937614 + 0.106038i
\(456\) 0 0
\(457\) 18.7005i 0.874774i 0.899273 + 0.437387i \(0.144096\pi\)
−0.899273 + 0.437387i \(0.855904\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 6.96239 0.324271 0.162135 0.986769i \(-0.448162\pi\)
0.162135 + 0.986769i \(0.448162\pi\)
\(462\) 0 0
\(463\) 5.29948i 0.246288i −0.992389 0.123144i \(-0.960702\pi\)
0.992389 0.123144i \(-0.0392976\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 13.1490i 0.608465i 0.952598 + 0.304232i \(0.0983999\pi\)
−0.952598 + 0.304232i \(0.901600\pi\)
\(468\) 0 0
\(469\) 9.92478 0.458284
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 25.2506i 1.16102i
\(474\) 0 0
\(475\) −3.27504 + 26.5501i −0.150269 + 1.21820i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −5.14903 −0.235265 −0.117633 0.993057i \(-0.537531\pi\)
−0.117633 + 0.993057i \(0.537531\pi\)
\(480\) 0 0
\(481\) −1.04746 −0.0477601
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −30.9887 + 27.4010i −1.40713 + 1.24422i
\(486\) 0 0
\(487\) 22.1768i 1.00493i −0.864599 0.502463i \(-0.832427\pi\)
0.864599 0.502463i \(-0.167573\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 2.00000 0.0902587 0.0451294 0.998981i \(-0.485630\pi\)
0.0451294 + 0.998981i \(0.485630\pi\)
\(492\) 0 0
\(493\) 26.5501i 1.19576i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2.00000i 0.0897123i
\(498\) 0 0
\(499\) −6.55008 −0.293222 −0.146611 0.989194i \(-0.546837\pi\)
−0.146611 + 0.989194i \(0.546837\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 8.77575i 0.391291i 0.980675 + 0.195646i \(0.0626802\pi\)
−0.980675 + 0.195646i \(0.937320\pi\)
\(504\) 0 0
\(505\) 26.1622 + 29.5877i 1.16420 + 1.31663i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 13.1392 0.582384 0.291192 0.956665i \(-0.405948\pi\)
0.291192 + 0.956665i \(0.405948\pi\)
\(510\) 0 0
\(511\) −9.35026 −0.413631
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 11.2243 9.92478i 0.494600 0.437338i
\(516\) 0 0
\(517\) 19.8496i 0.872982i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 37.6629 1.65004 0.825021 0.565102i \(-0.191163\pi\)
0.825021 + 0.565102i \(0.191163\pi\)
\(522\) 0 0
\(523\) 4.00000i 0.174908i 0.996169 + 0.0874539i \(0.0278730\pi\)
−0.996169 + 0.0874539i \(0.972127\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 15.3258i 0.667603i
\(528\) 0 0
\(529\) −1.62530 −0.0706652
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 5.04746i 0.218630i
\(534\) 0 0
\(535\) 23.0132 20.3488i 0.994946 0.879757i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −2.00000 −0.0861461
\(540\) 0 0
\(541\) −22.4749 −0.966269 −0.483135 0.875546i \(-0.660502\pi\)
−0.483135 + 0.875546i \(0.660502\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 4.11142 + 4.64974i 0.176114 + 0.199173i
\(546\) 0 0
\(547\) 25.9248i 1.10846i −0.832362 0.554232i \(-0.813012\pi\)
0.832362 0.554232i \(-0.186988\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 42.3996 1.80629
\(552\) 0 0
\(553\) 10.7005i 0.455033i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 28.5256i 1.20867i −0.796730 0.604335i \(-0.793439\pi\)
0.796730 0.604335i \(-0.206561\pi\)
\(558\) 0 0
\(559\) −17.0475 −0.721031
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 11.6267i 0.490008i −0.969522 0.245004i \(-0.921211\pi\)
0.969522 0.245004i \(-0.0787892\pi\)
\(564\) 0 0
\(565\) 20.1866 17.8496i 0.849258 0.750936i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 9.32582 0.390959 0.195479 0.980708i \(-0.437374\pi\)
0.195479 + 0.980708i \(0.437374\pi\)
\(570\) 0 0
\(571\) 19.6991 0.824382 0.412191 0.911097i \(-0.364764\pi\)
0.412191 + 0.911097i \(0.364764\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −24.6253 3.03761i −1.02695 0.126677i
\(576\) 0 0
\(577\) 32.7974i 1.36537i −0.730712 0.682686i \(-0.760812\pi\)
0.730712 0.682686i \(-0.239188\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 3.22425 0.133765
\(582\) 0 0
\(583\) 17.1490i 0.710240i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 18.8218i 0.776859i −0.921479 0.388429i \(-0.873018\pi\)
0.921479 0.388429i \(-0.126982\pi\)
\(588\) 0 0
\(589\) −24.4749 −1.00847
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 33.7499i 1.38594i −0.720965 0.692971i \(-0.756301\pi\)
0.720965 0.692971i \(-0.243699\pi\)
\(594\) 0 0
\(595\) −4.96239 5.61213i −0.203438 0.230075i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 20.2981 0.829356 0.414678 0.909968i \(-0.363894\pi\)
0.414678 + 0.909968i \(0.363894\pi\)
\(600\) 0 0
\(601\) −13.8496 −0.564935 −0.282468 0.959277i \(-0.591153\pi\)
−0.282468 + 0.959277i \(0.591153\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −10.3684 11.7259i −0.421534 0.476726i
\(606\) 0 0
\(607\) 25.2506i 1.02489i −0.858720 0.512445i \(-0.828740\pi\)
0.858720 0.512445i \(-0.171260\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 13.4010 0.542148
\(612\) 0 0
\(613\) 9.14903i 0.369526i −0.982783 0.184763i \(-0.940848\pi\)
0.982783 0.184763i \(-0.0591517\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 15.9492i 0.642091i 0.947064 + 0.321046i \(0.104034\pi\)
−0.947064 + 0.321046i \(0.895966\pi\)
\(618\) 0 0
\(619\) 11.1735 0.449100 0.224550 0.974463i \(-0.427909\pi\)
0.224550 + 0.974463i \(0.427909\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 1.03761i 0.0415710i
\(624\) 0 0
\(625\) −24.2506 6.07522i −0.970024 0.243009i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 2.59895 0.103627
\(630\) 0 0
\(631\) 14.5501 0.579229 0.289615 0.957143i \(-0.406473\pi\)
0.289615 + 0.957143i \(0.406473\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −4.52373 + 4.00000i −0.179519 + 0.158735i
\(636\) 0 0
\(637\) 1.35026i 0.0534993i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 38.7269 1.52962 0.764810 0.644256i \(-0.222833\pi\)
0.764810 + 0.644256i \(0.222833\pi\)
\(642\) 0 0
\(643\) 11.9511i 0.471306i 0.971837 + 0.235653i \(0.0757229\pi\)
−0.971837 + 0.235653i \(0.924277\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 14.5501i 0.572023i 0.958226 + 0.286011i \(0.0923295\pi\)
−0.958226 + 0.286011i \(0.907671\pi\)
\(648\) 0 0
\(649\) 17.2506 0.677145
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 49.9756i 1.95569i −0.209319 0.977847i \(-0.567125\pi\)
0.209319 0.977847i \(-0.432875\pi\)
\(654\) 0 0
\(655\) 30.5501 + 34.5501i 1.19369 + 1.34998i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 16.9525 0.660377 0.330189 0.943915i \(-0.392888\pi\)
0.330189 + 0.943915i \(0.392888\pi\)
\(660\) 0 0
\(661\) −15.6531 −0.608834 −0.304417 0.952539i \(-0.598462\pi\)
−0.304417 + 0.952539i \(0.598462\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 8.96239 7.92478i 0.347547 0.307310i
\(666\) 0 0
\(667\) 39.3258i 1.52270i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −17.4010 −0.671760
\(672\) 0 0
\(673\) 26.0263i 1.00324i 0.865088 + 0.501621i \(0.167263\pi\)
−0.865088 + 0.501621i \(0.832737\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 35.4518i 1.36252i −0.732039 0.681262i \(-0.761431\pi\)
0.732039 0.681262i \(-0.238569\pi\)
\(678\) 0 0
\(679\) 18.4993 0.709938
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 23.6629i 0.905436i −0.891654 0.452718i \(-0.850454\pi\)
0.891654 0.452718i \(-0.149546\pi\)
\(684\) 0 0
\(685\) −37.6893 + 33.3258i −1.44003 + 1.27331i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 11.5778 0.441081
\(690\) 0 0
\(691\) 0.574515 0.0218556 0.0109278 0.999940i \(-0.496522\pi\)
0.0109278 + 0.999940i \(0.496522\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4.85097 5.48612i −0.184008 0.208100i
\(696\) 0 0
\(697\) 12.5237i 0.474370i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −42.7269 −1.61377 −0.806886 0.590707i \(-0.798849\pi\)
−0.806886 + 0.590707i \(0.798849\pi\)
\(702\) 0 0
\(703\) 4.15045i 0.156537i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 17.6629i 0.664282i
\(708\) 0 0
\(709\) −27.2506 −1.02342 −0.511709 0.859159i \(-0.670987\pi\)
−0.511709 + 0.859159i \(0.670987\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 22.7005i 0.850141i
\(714\) 0 0
\(715\) −4.52373 + 4.00000i −0.169178 + 0.149592i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 10.7005 0.399062 0.199531 0.979891i \(-0.436058\pi\)
0.199531 + 0.979891i \(0.436058\pi\)
\(720\) 0 0
\(721\) −6.70052 −0.249541
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −4.85097 + 39.3258i −0.180160 + 1.46052i
\(726\) 0 0
\(727\) 39.9511i 1.48171i 0.671668 + 0.740853i \(0.265578\pi\)
−0.671668 + 0.740853i \(0.734422\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 42.2981 1.56445
\(732\) 0 0
\(733\) 30.3488i 1.12096i −0.828168 0.560480i \(-0.810617\pi\)
0.828168 0.560480i \(-0.189383\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 19.8496i 0.731168i
\(738\) 0 0
\(739\) 37.2506 1.37029 0.685143 0.728409i \(-0.259740\pi\)
0.685143 + 0.728409i \(0.259740\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 26.3634i 0.967181i 0.875294 + 0.483590i \(0.160668\pi\)
−0.875294 + 0.483590i \(0.839332\pi\)
\(744\) 0 0
\(745\) −6.58910 7.45183i −0.241406 0.273014i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −13.7381 −0.501981
\(750\) 0 0
\(751\) −50.6516 −1.84830 −0.924152 0.382024i \(-0.875227\pi\)
−0.924152 + 0.382024i \(0.875227\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −1.92478 2.17679i −0.0700498 0.0792216i
\(756\) 0 0
\(757\) 38.9525i 1.41575i −0.706336 0.707877i \(-0.749653\pi\)
0.706336 0.707877i \(-0.250347\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −48.2130 −1.74772 −0.873860 0.486178i \(-0.838391\pi\)
−0.873860 + 0.486178i \(0.838391\pi\)
\(762\) 0 0
\(763\) 2.77575i 0.100489i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 11.6464i 0.420528i
\(768\) 0 0
\(769\) −4.44851 −0.160417 −0.0802086 0.996778i \(-0.525559\pi\)
−0.0802086 + 0.996778i \(0.525559\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 39.3014i 1.41357i −0.707427 0.706786i \(-0.750144\pi\)
0.707427 0.706786i \(-0.249856\pi\)
\(774\) 0 0
\(775\) 2.80018 22.7005i 0.100586 0.815427i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −20.0000 −0.716574
\(780\) 0 0
\(781\) 4.00000 0.143131
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −4.43866 + 3.92478i −0.158423 + 0.140081i
\(786\) 0 0
\(787\) 0.897015i 0.0319751i 0.999872 + 0.0159876i \(0.00508922\pi\)
−0.999872 + 0.0159876i \(0.994911\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −12.0508 −0.428477
\(792\) 0 0
\(793\) 11.7480i 0.417183i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 3.19982i 0.113343i 0.998393 + 0.0566717i \(0.0180488\pi\)
−0.998393 + 0.0566717i \(0.981951\pi\)
\(798\) 0 0
\(799\) −33.2506 −1.17632
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 18.7005i 0.659927i
\(804\) 0 0
\(805\) 7.35026 + 8.31265i 0.259063 + 0.292982i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 4.44851 0.156401 0.0782006 0.996938i \(-0.475083\pi\)
0.0782006 + 0.996938i \(0.475083\pi\)
\(810\) 0 0
\(811\) −37.6747 −1.32294 −0.661468 0.749973i \(-0.730066\pi\)
−0.661468 + 0.749973i \(0.730066\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 8.87732 7.84955i 0.310959 0.274958i
\(816\) 0 0
\(817\) 67.5487i 2.36323i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0.749399 0.0261542 0.0130771 0.999914i \(-0.495837\pi\)
0.0130771 + 0.999914i \(0.495837\pi\)
\(822\) 0 0
\(823\) 26.3996i 0.920233i 0.887858 + 0.460117i \(0.152192\pi\)
−0.887858 + 0.460117i \(0.847808\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 5.43724i 0.189071i −0.995521 0.0945357i \(-0.969863\pi\)
0.995521 0.0945357i \(-0.0301367\pi\)
\(828\) 0 0
\(829\) −22.7757 −0.791034 −0.395517 0.918459i \(-0.629435\pi\)
−0.395517 + 0.918459i \(0.629435\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 3.35026i 0.116080i
\(834\) 0 0
\(835\) −24.3733 + 21.5515i −0.843472 + 0.745820i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −15.8496 −0.547187 −0.273594 0.961845i \(-0.588212\pi\)
−0.273594 + 0.961845i \(0.588212\pi\)
\(840\) 0 0
\(841\) 33.8021 1.16559
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 16.5550 + 18.7226i 0.569509 + 0.644077i
\(846\) 0 0
\(847\) 7.00000i 0.240523i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −3.84955 −0.131961
\(852\) 0 0
\(853\) 21.0494i 0.720717i −0.932814 0.360358i \(-0.882654\pi\)
0.932814 0.360358i \(-0.117346\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 50.1524i 1.71317i 0.516004 + 0.856586i \(0.327419\pi\)
−0.516004 + 0.856586i \(0.672581\pi\)
\(858\) 0 0
\(859\) −5.35026 −0.182549 −0.0912743 0.995826i \(-0.529094\pi\)
−0.0912743 + 0.995826i \(0.529094\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 33.6893i 1.14680i −0.819277 0.573398i \(-0.805625\pi\)
0.819277 0.573398i \(-0.194375\pi\)
\(864\) 0 0
\(865\) −7.53690 + 6.66433i −0.256262 + 0.226594i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 21.4010 0.725981
\(870\) 0 0
\(871\) −13.4010 −0.454077
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 6.32487 + 9.21933i 0.213820 + 0.311670i
\(876\) 0 0
\(877\) 21.5026i 0.726092i 0.931771 + 0.363046i \(0.118263\pi\)
−0.931771 + 0.363046i \(0.881737\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −32.3634 −1.09035 −0.545176 0.838322i \(-0.683537\pi\)
−0.545176 + 0.838322i \(0.683537\pi\)
\(882\) 0 0
\(883\) 2.59895i 0.0874617i 0.999043 + 0.0437309i \(0.0139244\pi\)
−0.999043 + 0.0437309i \(0.986076\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 38.2784i 1.28526i −0.766176 0.642631i \(-0.777843\pi\)
0.766176 0.642631i \(-0.222157\pi\)
\(888\) 0 0
\(889\) 2.70052 0.0905727
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 53.1002i 1.77693i
\(894\) 0 0
\(895\) −14.8119 16.7513i −0.495109 0.559934i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −36.2520 −1.20907
\(900\) 0 0
\(901\) −28.7269 −0.957031
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 15.7381 + 17.7988i 0.523153 + 0.591651i
\(906\) 0 0
\(907\) 49.9972i 1.66013i −0.557668 0.830064i \(-0.688304\pi\)
0.557668 0.830064i \(-0.311696\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −24.9525 −0.826715 −0.413357 0.910569i \(-0.635644\pi\)
−0.413357 + 0.910569i \(0.635644\pi\)
\(912\) 0 0
\(913\) 6.44851i 0.213414i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 20.6253i 0.681107i
\(918\) 0 0
\(919\) −11.6991 −0.385918 −0.192959 0.981207i \(-0.561808\pi\)
−0.192959 + 0.981207i \(0.561808\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 2.70052i 0.0888888i
\(924\) 0 0
\(925\) −3.84955 0.474855i −0.126573 0.0156131i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 23.7090 0.777866 0.388933 0.921266i \(-0.372844\pi\)
0.388933 + 0.921266i \(0.372844\pi\)
\(930\) 0 0
\(931\) −5.35026 −0.175348
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 11.2243 9.92478i 0.367072 0.324575i
\(936\) 0 0
\(937\) 19.9003i 0.650116i 0.945694 + 0.325058i \(0.105384\pi\)
−0.945694 + 0.325058i \(0.894616\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 6.28821 0.204990 0.102495 0.994734i \(-0.467317\pi\)
0.102495 + 0.994734i \(0.467317\pi\)
\(942\) 0 0
\(943\) 18.5501i 0.604074i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 40.0362i 1.30100i 0.759506 + 0.650501i \(0.225441\pi\)
−0.759506 + 0.650501i \(0.774559\pi\)
\(948\) 0 0
\(949\) 12.6253 0.409835
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 40.9478i 1.32643i −0.748429 0.663215i \(-0.769192\pi\)
0.748429 0.663215i \(-0.230808\pi\)
\(954\) 0 0
\(955\) −20.5139 23.1998i −0.663814 0.750728i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 22.4993 0.726540
\(960\) 0 0
\(961\) −10.0738 −0.324962
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −25.6728 + 22.7005i −0.826435 + 0.730756i
\(966\) 0 0
\(967\) 38.2784i 1.23095i 0.788157 + 0.615475i \(0.211036\pi\)
−0.788157 + 0.615475i \(0.788964\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −28.7269 −0.921889 −0.460945 0.887429i \(-0.652489\pi\)
−0.460945 + 0.887429i \(0.652489\pi\)
\(972\) 0 0
\(973\) 3.27504i 0.104993i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 41.3014i 1.32135i −0.750673 0.660674i \(-0.770270\pi\)
0.750673 0.660674i \(-0.229730\pi\)
\(978\) 0 0
\(979\) 2.07522 0.0663244
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 24.0000i 0.765481i −0.923856 0.382741i \(-0.874980\pi\)
0.923856 0.382741i \(-0.125020\pi\)
\(984\) 0 0
\(985\) 0.962389 0.850969i 0.0306643 0.0271141i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −62.6516 −1.99221
\(990\) 0 0
\(991\) −25.1002 −0.797333 −0.398666 0.917096i \(-0.630527\pi\)
−0.398666 + 0.917096i \(0.630527\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −0.298062 0.337088i −0.00944920 0.0106864i
\(996\) 0 0
\(997\) 32.7974i 1.03870i −0.854561 0.519351i \(-0.826174\pi\)
0.854561 0.519351i \(-0.173826\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5040.2.t.v.1009.6 6
3.2 odd 2 1680.2.t.k.1009.4 6
4.3 odd 2 315.2.d.e.64.4 6
5.4 even 2 inner 5040.2.t.v.1009.5 6
12.11 even 2 105.2.d.b.64.3 6
15.2 even 4 8400.2.a.dj.1.3 3
15.8 even 4 8400.2.a.dg.1.1 3
15.14 odd 2 1680.2.t.k.1009.1 6
20.3 even 4 1575.2.a.x.1.2 3
20.7 even 4 1575.2.a.w.1.2 3
20.19 odd 2 315.2.d.e.64.3 6
28.27 even 2 2205.2.d.l.1324.4 6
60.23 odd 4 525.2.a.j.1.2 3
60.47 odd 4 525.2.a.k.1.2 3
60.59 even 2 105.2.d.b.64.4 yes 6
84.11 even 6 735.2.q.e.79.4 12
84.23 even 6 735.2.q.e.214.3 12
84.47 odd 6 735.2.q.f.214.3 12
84.59 odd 6 735.2.q.f.79.4 12
84.83 odd 2 735.2.d.b.589.3 6
140.139 even 2 2205.2.d.l.1324.3 6
420.59 odd 6 735.2.q.f.79.3 12
420.83 even 4 3675.2.a.bi.1.2 3
420.167 even 4 3675.2.a.bj.1.2 3
420.179 even 6 735.2.q.e.79.3 12
420.299 odd 6 735.2.q.f.214.4 12
420.359 even 6 735.2.q.e.214.4 12
420.419 odd 2 735.2.d.b.589.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.d.b.64.3 6 12.11 even 2
105.2.d.b.64.4 yes 6 60.59 even 2
315.2.d.e.64.3 6 20.19 odd 2
315.2.d.e.64.4 6 4.3 odd 2
525.2.a.j.1.2 3 60.23 odd 4
525.2.a.k.1.2 3 60.47 odd 4
735.2.d.b.589.3 6 84.83 odd 2
735.2.d.b.589.4 6 420.419 odd 2
735.2.q.e.79.3 12 420.179 even 6
735.2.q.e.79.4 12 84.11 even 6
735.2.q.e.214.3 12 84.23 even 6
735.2.q.e.214.4 12 420.359 even 6
735.2.q.f.79.3 12 420.59 odd 6
735.2.q.f.79.4 12 84.59 odd 6
735.2.q.f.214.3 12 84.47 odd 6
735.2.q.f.214.4 12 420.299 odd 6
1575.2.a.w.1.2 3 20.7 even 4
1575.2.a.x.1.2 3 20.3 even 4
1680.2.t.k.1009.1 6 15.14 odd 2
1680.2.t.k.1009.4 6 3.2 odd 2
2205.2.d.l.1324.3 6 140.139 even 2
2205.2.d.l.1324.4 6 28.27 even 2
3675.2.a.bi.1.2 3 420.83 even 4
3675.2.a.bj.1.2 3 420.167 even 4
5040.2.t.v.1009.5 6 5.4 even 2 inner
5040.2.t.v.1009.6 6 1.1 even 1 trivial
8400.2.a.dg.1.1 3 15.8 even 4
8400.2.a.dj.1.3 3 15.2 even 4