L(s) = 1 | − 3·5-s + 3·11-s + 4·13-s − 6·17-s − 2·19-s − 2·23-s + 6·25-s − 6·29-s + 4·31-s + 6·37-s − 6·41-s + 2·43-s + 14·47-s − 7·49-s − 6·53-s − 9·55-s + 4·59-s − 12·65-s + 12·67-s + 10·71-s − 6·73-s + 4·79-s + 4·83-s + 18·85-s − 12·89-s + 6·95-s + 2·97-s + ⋯ |
L(s) = 1 | − 1.34·5-s + 0.904·11-s + 1.10·13-s − 1.45·17-s − 0.458·19-s − 0.417·23-s + 6/5·25-s − 1.11·29-s + 0.718·31-s + 0.986·37-s − 0.937·41-s + 0.304·43-s + 2.04·47-s − 49-s − 0.824·53-s − 1.21·55-s + 0.520·59-s − 1.48·65-s + 1.46·67-s + 1.18·71-s − 0.702·73-s + 0.450·79-s + 0.439·83-s + 1.95·85-s − 1.27·89-s + 0.615·95-s + 0.203·97-s + ⋯ |
Λ(s)=(=((212⋅36⋅53⋅113)s/2ΓC(s)3L(s)Λ(2−s)
Λ(s)=(=((212⋅36⋅53⋅113)s/2ΓC(s+1/2)3L(s)Λ(1−s)
Degree: |
6 |
Conductor: |
212⋅36⋅53⋅113
|
Sign: |
1
|
Analytic conductor: |
252933. |
Root analytic conductor: |
7.95245 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(6, 212⋅36⋅53⋅113, ( :1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
3.045012035 |
L(21) |
≈ |
3.045012035 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
| 5 | C1 | (1+T)3 |
| 11 | C1 | (1−T)3 |
good | 7 | S4×C2 | 1+pT2−16T3+p2T4+p3T6 |
| 13 | S4×C2 | 1−4T+pT2−8T3+p2T4−4p2T5+p3T6 |
| 17 | S4×C2 | 1+6T+49T2+168T3+49pT4+6p2T5+p3T6 |
| 19 | S4×C2 | 1+2T+33T2+60T3+33pT4+2p2T5+p3T6 |
| 23 | S4×C2 | 1+2T+45T2+76T3+45pT4+2p2T5+p3T6 |
| 29 | C2 | (1+2T+pT2)3 |
| 31 | S4×C2 | 1−4T+73T2−216T3+73pT4−4p2T5+p3T6 |
| 37 | C2 | (1−2T+pT2)3 |
| 41 | C2 | (1+2T+pT2)3 |
| 43 | S4×C2 | 1−2T+83T2−16T3+83pT4−2p2T5+p3T6 |
| 47 | S4×C2 | 1−14T+181T2−1300T3+181pT4−14p2T5+p3T6 |
| 53 | S4×C2 | 1+6T+115T2+404T3+115pT4+6p2T5+p3T6 |
| 59 | S4×C2 | 1−4T+157T2−440T3+157pT4−4p2T5+p3T6 |
| 61 | S4×C2 | 1−45T2−16T3−45pT4+p3T6 |
| 67 | S4×C2 | 1−12T+193T2−1576T3+193pT4−12p2T5+p3T6 |
| 71 | S4×C2 | 1−10T+121T2−1492T3+121pT4−10p2T5+p3T6 |
| 73 | S4×C2 | 1+6T+105T2+200T3+105pT4+6p2T5+p3T6 |
| 79 | S4×C2 | 1−4T+117T2−920T3+117pT4−4p2T5+p3T6 |
| 83 | S4×C2 | 1−4T−21T2+1168T3−21pT4−4p2T5+p3T6 |
| 89 | S4×C2 | 1+12T−17T2−1320T3−17pT4+12p2T5+p3T6 |
| 97 | S4×C2 | 1−2T+103T2−1260T3+103pT4−2p2T5+p3T6 |
show more | | |
show less | | |
L(s)=p∏ j=1∏6(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.08588538246036496353085511327, −6.57565914071588866255000517095, −6.46952288873415835745020589509, −6.42923900041193145096099218526, −6.00607031873828036620076040268, −5.83294363793922668496261532781, −5.65182422483677650554724055030, −5.09463510357571939565624763040, −4.94769682880040317224161619617, −4.92186902152704414789994707432, −4.28713143687582927553303061746, −4.21440329507926158668823124887, −4.09962227094541030688644284897, −3.82555965982813357286118015104, −3.67989048443947794201973746108, −3.31197152145623431429711060555, −3.02496804240663165493719755301, −2.62448910976994393767144653487, −2.53773993258718925036281094637, −1.99230321558861440120664656278, −1.69169927610135160158495235336, −1.59549443629513187607759390112, −0.927976871389569294018248088191, −0.59546545722128343648614875853, −0.40568118235162382630963376134,
0.40568118235162382630963376134, 0.59546545722128343648614875853, 0.927976871389569294018248088191, 1.59549443629513187607759390112, 1.69169927610135160158495235336, 1.99230321558861440120664656278, 2.53773993258718925036281094637, 2.62448910976994393767144653487, 3.02496804240663165493719755301, 3.31197152145623431429711060555, 3.67989048443947794201973746108, 3.82555965982813357286118015104, 4.09962227094541030688644284897, 4.21440329507926158668823124887, 4.28713143687582927553303061746, 4.92186902152704414789994707432, 4.94769682880040317224161619617, 5.09463510357571939565624763040, 5.65182422483677650554724055030, 5.83294363793922668496261532781, 6.00607031873828036620076040268, 6.42923900041193145096099218526, 6.46952288873415835745020589509, 6.57565914071588866255000517095, 7.08588538246036496353085511327