L(s) = 1 | − 2·2-s + 12·3-s − 3·4-s + 18·5-s − 24·6-s − 10·7-s − 4·8-s + 90·9-s − 36·10-s − 14·11-s − 36·12-s − 56·13-s + 20·14-s + 216·15-s + 39·16-s − 186·17-s − 180·18-s − 54·20-s − 120·21-s + 28·22-s − 84·23-s − 48·24-s − 173·25-s + 112·26-s + 540·27-s + 30·28-s + 236·29-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 2.30·3-s − 3/8·4-s + 1.60·5-s − 1.63·6-s − 0.539·7-s − 0.176·8-s + 10/3·9-s − 1.13·10-s − 0.383·11-s − 0.866·12-s − 1.19·13-s + 0.381·14-s + 3.71·15-s + 0.609·16-s − 2.65·17-s − 2.35·18-s − 0.603·20-s − 1.24·21-s + 0.271·22-s − 0.761·23-s − 0.408·24-s − 1.38·25-s + 0.844·26-s + 3.84·27-s + 0.202·28-s + 1.51·29-s + ⋯ |
Λ(s)=(=((34⋅198)s/2ΓC(s)4L(s)Λ(4−s)
Λ(s)=(=((34⋅198)s/2ΓC(s+3/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
34⋅198
|
Sign: |
1
|
Analytic conductor: |
1.66716×107 |
Root analytic conductor: |
7.99368 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
4
|
Selberg data: |
(8, 34⋅198, ( :3/2,3/2,3/2,3/2), 1)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C1 | (1−pT)4 |
| 19 | | 1 |
good | 2 | C2≀S4 | 1+pT+7T2+3p3T3+19pT4+3p6T5+7p6T6+p10T7+p12T8 |
| 5 | C2≀S4 | 1−18T+497T2−5634T3+89156T4−5634p3T5+497p6T6−18p9T7+p12T8 |
| 7 | C2≀S4 | 1+10T+957T2+11898T3+419908T4+11898p3T5+957p6T6+10p9T7+p12T8 |
| 11 | C2≀S4 | 1+14T+2049T2+16954T3+3844088T4+16954p3T5+2049p6T6+14p9T7+p12T8 |
| 13 | C2≀S4 | 1+56T+7388T2+271368T3+22128422T4+271368p3T5+7388p6T6+56p9T7+p12T8 |
| 17 | C2≀S4 | 1+186T+89p2T2+2469834T3+193997780T4+2469834p3T5+89p8T6+186p9T7+p12T8 |
| 23 | C2≀S4 | 1+84T+30344T2+1222788T3+17501794pT4+1222788p3T5+30344p6T6+84p9T7+p12T8 |
| 29 | C2≀S4 | 1−236T+38296T2−2172756T3+400254782T4−2172756p3T5+38296p6T6−236p9T7+p12T8 |
| 31 | C2≀S4 | 1+112T+76212T2+6302064T3+2836990870T4+6302064p3T5+76212p6T6+112p9T7+p12T8 |
| 37 | C2≀S4 | 1+544T+224364T2+1677600pT3+16007180134T4+1677600p4T5+224364p6T6+544p9T7+p12T8 |
| 41 | C2≀S4 | 1−68T+159832T2−24974988T3+12851495438T4−24974988p3T5+159832p6T6−68p9T7+p12T8 |
| 43 | C2≀S4 | 1+674T+355397T2+126100458T3+39633391484T4+126100458p3T5+355397p6T6+674p9T7+p12T8 |
| 47 | C2≀S4 | 1+114T+171337T2−6705570T3+18249717032T4−6705570p3T5+171337p6T6+114p9T7+p12T8 |
| 53 | C2≀S4 | 1+540T+372744T2+73265892T3+44247102910T4+73265892p3T5+372744p6T6+540p9T7+p12T8 |
| 59 | C2≀S4 | 1+582764T2+677376T3+165505100406T4+677376p3T5+582764p6T6+p12T8 |
| 61 | C2≀S4 | 1+558T+87745T2−60123114T3−12563228676T4−60123114p3T5+87745p6T6+558p9T7+p12T8 |
| 67 | C2≀S4 | 1−320T+567788T2−76531008T3+195546355478T4−76531008p3T5+567788p6T6−320p9T7+p12T8 |
| 71 | C2≀S4 | 1+872T+1195948T2+855329544T3+617068843718T4+855329544p3T5+1195948p6T6+872p9T7+p12T8 |
| 73 | C2≀S4 | 1−446T+949913T2−497765814T3+450278879396T4−497765814p3T5+949913p6T6−446p9T7+p12T8 |
| 79 | C2≀S4 | 1−1232T+1638900T2−1309543440T3+1185149213782T4−1309543440p3T5+1638900p6T6−1232p9T7+p12T8 |
| 83 | C2≀S4 | 1+780T+1378672T2+750270540T3+1034898364334T4+750270540p3T5+1378672p6T6+780p9T7+p12T8 |
| 89 | C2≀S4 | 1+60T+670872T2+799448436T3−22570573490T4+799448436p3T5+670872p6T6+60p9T7+p12T8 |
| 97 | C2≀S4 | 1−2224T+3918308T2−4720818960T3+5246860342598T4−4720818960p3T5+3918308p6T6−2224p9T7+p12T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.99444767617302964160401139723, −6.78880942880939623954790292796, −6.78544317402228197397232799293, −6.47369784806651124658929465325, −6.36346002547948805656316049875, −6.34842099289411731514810344484, −5.61852994564036756428898907069, −5.57216143999279570689579074591, −5.30308179764151773959137744652, −5.06933111729948751757873268485, −4.71292160729323287850402362016, −4.65936687596261913338138112576, −4.30230345622050608631866897412, −3.98013480037129183245341730098, −3.69339932173430345584360085638, −3.62542530743543034024802280781, −3.16182031585906213137865382418, −2.95894232225769712613865729955, −2.78833382287160930987867901153, −2.23475035145670986801937773515, −2.22194112583618831754088508531, −2.16145006169813327280591812159, −1.58843449863729883963914821559, −1.41068531544588663315762371292, −1.39488154571977503729677050011, 0, 0, 0, 0,
1.39488154571977503729677050011, 1.41068531544588663315762371292, 1.58843449863729883963914821559, 2.16145006169813327280591812159, 2.22194112583618831754088508531, 2.23475035145670986801937773515, 2.78833382287160930987867901153, 2.95894232225769712613865729955, 3.16182031585906213137865382418, 3.62542530743543034024802280781, 3.69339932173430345584360085638, 3.98013480037129183245341730098, 4.30230345622050608631866897412, 4.65936687596261913338138112576, 4.71292160729323287850402362016, 5.06933111729948751757873268485, 5.30308179764151773959137744652, 5.57216143999279570689579074591, 5.61852994564036756428898907069, 6.34842099289411731514810344484, 6.36346002547948805656316049875, 6.47369784806651124658929465325, 6.78544317402228197397232799293, 6.78880942880939623954790292796, 6.99444767617302964160401139723