L(s) = 1 | − 4·3-s + 4-s + 10·9-s − 4·12-s + 4·16-s − 6·17-s − 12·23-s − 14·25-s − 32·27-s − 6·29-s + 10·36-s + 16·43-s − 16·48-s + 14·49-s + 24·51-s − 12·53-s − 2·61-s + 11·64-s − 6·68-s + 48·69-s + 56·75-s + 16·79-s + 89·81-s + 24·87-s − 12·92-s − 14·100-s − 6·101-s + ⋯ |
L(s) = 1 | − 2.30·3-s + 1/2·4-s + 10/3·9-s − 1.15·12-s + 16-s − 1.45·17-s − 2.50·23-s − 2.79·25-s − 6.15·27-s − 1.11·29-s + 5/3·36-s + 2.43·43-s − 2.30·48-s + 2·49-s + 3.36·51-s − 1.64·53-s − 0.256·61-s + 11/8·64-s − 0.727·68-s + 5.77·69-s + 6.46·75-s + 1.80·79-s + 89/9·81-s + 2.57·87-s − 1.25·92-s − 7/5·100-s − 0.597·101-s + ⋯ |
Λ(s)=(=((138)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((138)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
138
|
Sign: |
1
|
Analytic conductor: |
3.31631 |
Root analytic conductor: |
1.16166 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 138, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.3697243870 |
L(21) |
≈ |
0.3697243870 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 13 | | 1 |
good | 2 | C23 | 1−T2−3T4−p2T6+p4T8 |
| 3 | C22 | (1+2T+T2+2pT3+p2T4)2 |
| 5 | C22 | (1+7T2+p2T4)2 |
| 7 | C22 | (1−pT2+p2T4)2 |
| 11 | C22 | (1−pT2+p2T4)2 |
| 17 | C22 | (1+3T−8T2+3pT3+p2T4)2 |
| 19 | C22×C22 | (1−37T2+p2T4)(1+11T2+p2T4) |
| 23 | C22 | (1+6T+13T2+6pT3+p2T4)2 |
| 29 | C22 | (1+3T−20T2+3pT3+p2T4)2 |
| 31 | C22 | (1+50T2+p2T4)2 |
| 37 | C23 | 1+T2−1368T4+p2T6+p4T8 |
| 41 | C23 | 1−55T2+1344T4−55p2T6+p4T8 |
| 43 | C2 | (1−13T+pT2)2(1+5T+pT2)2 |
| 47 | C22 | (1+82T2+p2T4)2 |
| 53 | C2 | (1+3T+pT2)4 |
| 59 | C23 | 1−70T2+1419T4−70p2T6+p4T8 |
| 61 | C2 | (1−13T+pT2)2(1+14T+pT2)2 |
| 67 | C22×C22 | (1−109T2+p2T4)(1−13T2+p2T4) |
| 71 | C23 | 1−130T2+11859T4−130p2T6+p4T8 |
| 73 | C22 | (1+143T2+p2T4)2 |
| 79 | C2 | (1−4T+pT2)4 |
| 83 | C22 | (1−26T2+p2T4)2 |
| 89 | C23 | 1−130T2+8979T4−130p2T6+p4T8 |
| 97 | C23 | 1−146T2+11907T4−146p2T6+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.349665201872342313588955562620, −9.293738423359049310958431943775, −9.199571952202992873146175998705, −8.276433748151106426137030070353, −8.138632461951013330312426057722, −8.108558979652241302615090395837, −7.45145844507463007729883656062, −7.34049854202209080245702459206, −7.25815811685853860469678321852, −6.96304453987406784930278395185, −6.15359377268972769751707187780, −6.03641800405607795597681235072, −5.91962893181555972810241465281, −5.86009954120082912247415771514, −5.78011015459741765677317590653, −4.92344190111112481042795812599, −4.82934182953175803873413901625, −4.34192001417676835383240037133, −3.91237810568063505552473766069, −3.75789500024280062620500480945, −3.55982381203645878803030763207, −2.16477055288425466478804862196, −2.16476351842961474470588166149, −1.80752134955969724882689588861, −0.48155172633364216074792975011,
0.48155172633364216074792975011, 1.80752134955969724882689588861, 2.16476351842961474470588166149, 2.16477055288425466478804862196, 3.55982381203645878803030763207, 3.75789500024280062620500480945, 3.91237810568063505552473766069, 4.34192001417676835383240037133, 4.82934182953175803873413901625, 4.92344190111112481042795812599, 5.78011015459741765677317590653, 5.86009954120082912247415771514, 5.91962893181555972810241465281, 6.03641800405607795597681235072, 6.15359377268972769751707187780, 6.96304453987406784930278395185, 7.25815811685853860469678321852, 7.34049854202209080245702459206, 7.45145844507463007729883656062, 8.108558979652241302615090395837, 8.138632461951013330312426057722, 8.276433748151106426137030070353, 9.199571952202992873146175998705, 9.293738423359049310958431943775, 9.349665201872342313588955562620