Properties

Label 8-13e8-1.1-c1e4-0-0
Degree $8$
Conductor $815730721$
Sign $1$
Analytic cond. $3.31631$
Root an. cond. $1.16166$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·3-s + 4-s + 10·9-s − 4·12-s + 4·16-s − 6·17-s − 12·23-s − 14·25-s − 32·27-s − 6·29-s + 10·36-s + 16·43-s − 16·48-s + 14·49-s + 24·51-s − 12·53-s − 2·61-s + 11·64-s − 6·68-s + 48·69-s + 56·75-s + 16·79-s + 89·81-s + 24·87-s − 12·92-s − 14·100-s − 6·101-s + ⋯
L(s)  = 1  − 2.30·3-s + 1/2·4-s + 10/3·9-s − 1.15·12-s + 16-s − 1.45·17-s − 2.50·23-s − 2.79·25-s − 6.15·27-s − 1.11·29-s + 5/3·36-s + 2.43·43-s − 2.30·48-s + 2·49-s + 3.36·51-s − 1.64·53-s − 0.256·61-s + 11/8·64-s − 0.727·68-s + 5.77·69-s + 6.46·75-s + 1.80·79-s + 89/9·81-s + 2.57·87-s − 1.25·92-s − 7/5·100-s − 0.597·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(13^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(13^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(13^{8}\)
Sign: $1$
Analytic conductor: \(3.31631\)
Root analytic conductor: \(1.16166\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 13^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.3697243870\)
\(L(\frac12)\) \(\approx\) \(0.3697243870\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad13 \( 1 \)
good2$C_2^3$ \( 1 - T^{2} - 3 T^{4} - p^{2} T^{6} + p^{4} T^{8} \)
3$C_2^2$ \( ( 1 + 2 T + T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
5$C_2^2$ \( ( 1 + 7 T^{2} + p^{2} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 + 3 T - 8 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \)
19$C_2^2$$\times$$C_2^2$ \( ( 1 - 37 T^{2} + p^{2} T^{4} )( 1 + 11 T^{2} + p^{2} T^{4} ) \)
23$C_2^2$ \( ( 1 + 6 T + 13 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 + 3 T - 20 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + 50 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2^3$ \( 1 + T^{2} - 1368 T^{4} + p^{2} T^{6} + p^{4} T^{8} \)
41$C_2^3$ \( 1 - 55 T^{2} + 1344 T^{4} - 55 p^{2} T^{6} + p^{4} T^{8} \)
43$C_2$ \( ( 1 - 13 T + p T^{2} )^{2}( 1 + 5 T + p T^{2} )^{2} \)
47$C_2^2$ \( ( 1 + 82 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2$ \( ( 1 + 3 T + p T^{2} )^{4} \)
59$C_2^3$ \( 1 - 70 T^{2} + 1419 T^{4} - 70 p^{2} T^{6} + p^{4} T^{8} \)
61$C_2$ \( ( 1 - 13 T + p T^{2} )^{2}( 1 + 14 T + p T^{2} )^{2} \)
67$C_2^2$$\times$$C_2^2$ \( ( 1 - 109 T^{2} + p^{2} T^{4} )( 1 - 13 T^{2} + p^{2} T^{4} ) \)
71$C_2^3$ \( 1 - 130 T^{2} + 11859 T^{4} - 130 p^{2} T^{6} + p^{4} T^{8} \)
73$C_2^2$ \( ( 1 + 143 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \)
83$C_2^2$ \( ( 1 - 26 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^3$ \( 1 - 130 T^{2} + 8979 T^{4} - 130 p^{2} T^{6} + p^{4} T^{8} \)
97$C_2^3$ \( 1 - 146 T^{2} + 11907 T^{4} - 146 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.349665201872342313588955562620, −9.293738423359049310958431943775, −9.199571952202992873146175998705, −8.276433748151106426137030070353, −8.138632461951013330312426057722, −8.108558979652241302615090395837, −7.45145844507463007729883656062, −7.34049854202209080245702459206, −7.25815811685853860469678321852, −6.96304453987406784930278395185, −6.15359377268972769751707187780, −6.03641800405607795597681235072, −5.91962893181555972810241465281, −5.86009954120082912247415771514, −5.78011015459741765677317590653, −4.92344190111112481042795812599, −4.82934182953175803873413901625, −4.34192001417676835383240037133, −3.91237810568063505552473766069, −3.75789500024280062620500480945, −3.55982381203645878803030763207, −2.16477055288425466478804862196, −2.16476351842961474470588166149, −1.80752134955969724882689588861, −0.48155172633364216074792975011, 0.48155172633364216074792975011, 1.80752134955969724882689588861, 2.16476351842961474470588166149, 2.16477055288425466478804862196, 3.55982381203645878803030763207, 3.75789500024280062620500480945, 3.91237810568063505552473766069, 4.34192001417676835383240037133, 4.82934182953175803873413901625, 4.92344190111112481042795812599, 5.78011015459741765677317590653, 5.86009954120082912247415771514, 5.91962893181555972810241465281, 6.03641800405607795597681235072, 6.15359377268972769751707187780, 6.96304453987406784930278395185, 7.25815811685853860469678321852, 7.34049854202209080245702459206, 7.45145844507463007729883656062, 8.108558979652241302615090395837, 8.138632461951013330312426057722, 8.276433748151106426137030070353, 9.199571952202992873146175998705, 9.293738423359049310958431943775, 9.349665201872342313588955562620

Graph of the $Z$-function along the critical line