Properties

Label 169.2.c.a.146.2
Level $169$
Weight $2$
Character 169.146
Analytic conductor $1.349$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(22,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.22");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 169.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34947179416\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 146.2
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 169.146
Dual form 169.2.c.a.22.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 1.50000i) q^{2} +(-1.00000 - 1.73205i) q^{3} +(-0.500000 + 0.866025i) q^{4} +1.73205 q^{5} +(1.73205 - 3.00000i) q^{6} +1.73205 q^{8} +(-0.500000 + 0.866025i) q^{9} +(1.50000 + 2.59808i) q^{10} +2.00000 q^{12} +(-1.73205 - 3.00000i) q^{15} +(2.50000 + 4.33013i) q^{16} +(-1.50000 + 2.59808i) q^{17} -1.73205 q^{18} +(-1.73205 + 3.00000i) q^{19} +(-0.866025 + 1.50000i) q^{20} +(-3.00000 - 5.19615i) q^{23} +(-1.73205 - 3.00000i) q^{24} -2.00000 q^{25} -4.00000 q^{27} +(-1.50000 - 2.59808i) q^{29} +(3.00000 - 5.19615i) q^{30} -3.46410 q^{31} +(-2.59808 + 4.50000i) q^{32} -5.19615 q^{34} +(-0.500000 - 0.866025i) q^{36} +(4.33013 + 7.50000i) q^{37} -6.00000 q^{38} +3.00000 q^{40} +(2.59808 + 4.50000i) q^{41} +(4.00000 - 6.92820i) q^{43} +(-0.866025 + 1.50000i) q^{45} +(5.19615 - 9.00000i) q^{46} -3.46410 q^{47} +(5.00000 - 8.66025i) q^{48} +(3.50000 + 6.06218i) q^{49} +(-1.73205 - 3.00000i) q^{50} +6.00000 q^{51} -3.00000 q^{53} +(-3.46410 - 6.00000i) q^{54} +6.92820 q^{57} +(2.59808 - 4.50000i) q^{58} +(-3.46410 + 6.00000i) q^{59} +3.46410 q^{60} +(-0.500000 + 0.866025i) q^{61} +(-3.00000 - 5.19615i) q^{62} +1.00000 q^{64} +(-1.73205 - 3.00000i) q^{67} +(-1.50000 - 2.59808i) q^{68} +(-6.00000 + 10.3923i) q^{69} +(1.73205 - 3.00000i) q^{71} +(-0.866025 + 1.50000i) q^{72} +1.73205 q^{73} +(-7.50000 + 12.9904i) q^{74} +(2.00000 + 3.46410i) q^{75} +(-1.73205 - 3.00000i) q^{76} +4.00000 q^{79} +(4.33013 + 7.50000i) q^{80} +(5.50000 + 9.52628i) q^{81} +(-4.50000 + 7.79423i) q^{82} -13.8564 q^{83} +(-2.59808 + 4.50000i) q^{85} +13.8564 q^{86} +(-3.00000 + 5.19615i) q^{87} +(-3.46410 - 6.00000i) q^{89} -3.00000 q^{90} +6.00000 q^{92} +(3.46410 + 6.00000i) q^{93} +(-3.00000 - 5.19615i) q^{94} +(-3.00000 + 5.19615i) q^{95} +10.3923 q^{96} +(3.46410 - 6.00000i) q^{97} +(-6.06218 + 10.5000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} - 2 q^{4} - 2 q^{9} + 6 q^{10} + 8 q^{12} + 10 q^{16} - 6 q^{17} - 12 q^{23} - 8 q^{25} - 16 q^{27} - 6 q^{29} + 12 q^{30} - 2 q^{36} - 24 q^{38} + 12 q^{40} + 16 q^{43} + 20 q^{48} + 14 q^{49}+ \cdots - 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 1.50000i 0.612372 + 1.06066i 0.990839 + 0.135045i \(0.0431180\pi\)
−0.378467 + 0.925615i \(0.623549\pi\)
\(3\) −1.00000 1.73205i −0.577350 1.00000i −0.995782 0.0917517i \(-0.970753\pi\)
0.418432 0.908248i \(-0.362580\pi\)
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 1.73205 0.774597 0.387298 0.921954i \(-0.373408\pi\)
0.387298 + 0.921954i \(0.373408\pi\)
\(6\) 1.73205 3.00000i 0.707107 1.22474i
\(7\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(8\) 1.73205 0.612372
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 1.50000 + 2.59808i 0.474342 + 0.821584i
\(11\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(12\) 2.00000 0.577350
\(13\) 0 0
\(14\) 0 0
\(15\) −1.73205 3.00000i −0.447214 0.774597i
\(16\) 2.50000 + 4.33013i 0.625000 + 1.08253i
\(17\) −1.50000 + 2.59808i −0.363803 + 0.630126i −0.988583 0.150675i \(-0.951855\pi\)
0.624780 + 0.780801i \(0.285189\pi\)
\(18\) −1.73205 −0.408248
\(19\) −1.73205 + 3.00000i −0.397360 + 0.688247i −0.993399 0.114708i \(-0.963407\pi\)
0.596040 + 0.802955i \(0.296740\pi\)
\(20\) −0.866025 + 1.50000i −0.193649 + 0.335410i
\(21\) 0 0
\(22\) 0 0
\(23\) −3.00000 5.19615i −0.625543 1.08347i −0.988436 0.151642i \(-0.951544\pi\)
0.362892 0.931831i \(-0.381789\pi\)
\(24\) −1.73205 3.00000i −0.353553 0.612372i
\(25\) −2.00000 −0.400000
\(26\) 0 0
\(27\) −4.00000 −0.769800
\(28\) 0 0
\(29\) −1.50000 2.59808i −0.278543 0.482451i 0.692480 0.721437i \(-0.256518\pi\)
−0.971023 + 0.238987i \(0.923185\pi\)
\(30\) 3.00000 5.19615i 0.547723 0.948683i
\(31\) −3.46410 −0.622171 −0.311086 0.950382i \(-0.600693\pi\)
−0.311086 + 0.950382i \(0.600693\pi\)
\(32\) −2.59808 + 4.50000i −0.459279 + 0.795495i
\(33\) 0 0
\(34\) −5.19615 −0.891133
\(35\) 0 0
\(36\) −0.500000 0.866025i −0.0833333 0.144338i
\(37\) 4.33013 + 7.50000i 0.711868 + 1.23299i 0.964155 + 0.265340i \(0.0854841\pi\)
−0.252286 + 0.967653i \(0.581183\pi\)
\(38\) −6.00000 −0.973329
\(39\) 0 0
\(40\) 3.00000 0.474342
\(41\) 2.59808 + 4.50000i 0.405751 + 0.702782i 0.994409 0.105601i \(-0.0336766\pi\)
−0.588657 + 0.808383i \(0.700343\pi\)
\(42\) 0 0
\(43\) 4.00000 6.92820i 0.609994 1.05654i −0.381246 0.924473i \(-0.624505\pi\)
0.991241 0.132068i \(-0.0421616\pi\)
\(44\) 0 0
\(45\) −0.866025 + 1.50000i −0.129099 + 0.223607i
\(46\) 5.19615 9.00000i 0.766131 1.32698i
\(47\) −3.46410 −0.505291 −0.252646 0.967559i \(-0.581301\pi\)
−0.252646 + 0.967559i \(0.581301\pi\)
\(48\) 5.00000 8.66025i 0.721688 1.25000i
\(49\) 3.50000 + 6.06218i 0.500000 + 0.866025i
\(50\) −1.73205 3.00000i −0.244949 0.424264i
\(51\) 6.00000 0.840168
\(52\) 0 0
\(53\) −3.00000 −0.412082 −0.206041 0.978543i \(-0.566058\pi\)
−0.206041 + 0.978543i \(0.566058\pi\)
\(54\) −3.46410 6.00000i −0.471405 0.816497i
\(55\) 0 0
\(56\) 0 0
\(57\) 6.92820 0.917663
\(58\) 2.59808 4.50000i 0.341144 0.590879i
\(59\) −3.46410 + 6.00000i −0.450988 + 0.781133i −0.998448 0.0556984i \(-0.982261\pi\)
0.547460 + 0.836832i \(0.315595\pi\)
\(60\) 3.46410 0.447214
\(61\) −0.500000 + 0.866025i −0.0640184 + 0.110883i −0.896258 0.443533i \(-0.853725\pi\)
0.832240 + 0.554416i \(0.187058\pi\)
\(62\) −3.00000 5.19615i −0.381000 0.659912i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) −1.73205 3.00000i −0.211604 0.366508i 0.740613 0.671932i \(-0.234535\pi\)
−0.952217 + 0.305424i \(0.901202\pi\)
\(68\) −1.50000 2.59808i −0.181902 0.315063i
\(69\) −6.00000 + 10.3923i −0.722315 + 1.25109i
\(70\) 0 0
\(71\) 1.73205 3.00000i 0.205557 0.356034i −0.744753 0.667340i \(-0.767433\pi\)
0.950310 + 0.311305i \(0.100766\pi\)
\(72\) −0.866025 + 1.50000i −0.102062 + 0.176777i
\(73\) 1.73205 0.202721 0.101361 0.994850i \(-0.467680\pi\)
0.101361 + 0.994850i \(0.467680\pi\)
\(74\) −7.50000 + 12.9904i −0.871857 + 1.51010i
\(75\) 2.00000 + 3.46410i 0.230940 + 0.400000i
\(76\) −1.73205 3.00000i −0.198680 0.344124i
\(77\) 0 0
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 4.33013 + 7.50000i 0.484123 + 0.838525i
\(81\) 5.50000 + 9.52628i 0.611111 + 1.05848i
\(82\) −4.50000 + 7.79423i −0.496942 + 0.860729i
\(83\) −13.8564 −1.52094 −0.760469 0.649374i \(-0.775031\pi\)
−0.760469 + 0.649374i \(0.775031\pi\)
\(84\) 0 0
\(85\) −2.59808 + 4.50000i −0.281801 + 0.488094i
\(86\) 13.8564 1.49417
\(87\) −3.00000 + 5.19615i −0.321634 + 0.557086i
\(88\) 0 0
\(89\) −3.46410 6.00000i −0.367194 0.635999i 0.621932 0.783072i \(-0.286348\pi\)
−0.989126 + 0.147073i \(0.953015\pi\)
\(90\) −3.00000 −0.316228
\(91\) 0 0
\(92\) 6.00000 0.625543
\(93\) 3.46410 + 6.00000i 0.359211 + 0.622171i
\(94\) −3.00000 5.19615i −0.309426 0.535942i
\(95\) −3.00000 + 5.19615i −0.307794 + 0.533114i
\(96\) 10.3923 1.06066
\(97\) 3.46410 6.00000i 0.351726 0.609208i −0.634826 0.772655i \(-0.718928\pi\)
0.986552 + 0.163448i \(0.0522615\pi\)
\(98\) −6.06218 + 10.5000i −0.612372 + 1.06066i
\(99\) 0 0
\(100\) 1.00000 1.73205i 0.100000 0.173205i
\(101\) −1.50000 2.59808i −0.149256 0.258518i 0.781697 0.623658i \(-0.214354\pi\)
−0.930953 + 0.365140i \(0.881021\pi\)
\(102\) 5.19615 + 9.00000i 0.514496 + 0.891133i
\(103\) 10.0000 0.985329 0.492665 0.870219i \(-0.336023\pi\)
0.492665 + 0.870219i \(0.336023\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −2.59808 4.50000i −0.252347 0.437079i
\(107\) −3.00000 5.19615i −0.290021 0.502331i 0.683793 0.729676i \(-0.260329\pi\)
−0.973814 + 0.227345i \(0.926996\pi\)
\(108\) 2.00000 3.46410i 0.192450 0.333333i
\(109\) 13.8564 1.32720 0.663602 0.748086i \(-0.269027\pi\)
0.663602 + 0.748086i \(0.269027\pi\)
\(110\) 0 0
\(111\) 8.66025 15.0000i 0.821995 1.42374i
\(112\) 0 0
\(113\) 7.50000 12.9904i 0.705541 1.22203i −0.260955 0.965351i \(-0.584038\pi\)
0.966496 0.256681i \(-0.0826291\pi\)
\(114\) 6.00000 + 10.3923i 0.561951 + 0.973329i
\(115\) −5.19615 9.00000i −0.484544 0.839254i
\(116\) 3.00000 0.278543
\(117\) 0 0
\(118\) −12.0000 −1.10469
\(119\) 0 0
\(120\) −3.00000 5.19615i −0.273861 0.474342i
\(121\) 5.50000 9.52628i 0.500000 0.866025i
\(122\) −1.73205 −0.156813
\(123\) 5.19615 9.00000i 0.468521 0.811503i
\(124\) 1.73205 3.00000i 0.155543 0.269408i
\(125\) −12.1244 −1.08444
\(126\) 0 0
\(127\) −1.00000 1.73205i −0.0887357 0.153695i 0.818241 0.574875i \(-0.194949\pi\)
−0.906977 + 0.421180i \(0.861616\pi\)
\(128\) 6.06218 + 10.5000i 0.535826 + 0.928078i
\(129\) −16.0000 −1.40872
\(130\) 0 0
\(131\) 18.0000 1.57267 0.786334 0.617802i \(-0.211977\pi\)
0.786334 + 0.617802i \(0.211977\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 3.00000 5.19615i 0.259161 0.448879i
\(135\) −6.92820 −0.596285
\(136\) −2.59808 + 4.50000i −0.222783 + 0.385872i
\(137\) 7.79423 13.5000i 0.665906 1.15338i −0.313133 0.949709i \(-0.601379\pi\)
0.979039 0.203674i \(-0.0652881\pi\)
\(138\) −20.7846 −1.76930
\(139\) 2.00000 3.46410i 0.169638 0.293821i −0.768655 0.639664i \(-0.779074\pi\)
0.938293 + 0.345843i \(0.112407\pi\)
\(140\) 0 0
\(141\) 3.46410 + 6.00000i 0.291730 + 0.505291i
\(142\) 6.00000 0.503509
\(143\) 0 0
\(144\) −5.00000 −0.416667
\(145\) −2.59808 4.50000i −0.215758 0.373705i
\(146\) 1.50000 + 2.59808i 0.124141 + 0.215018i
\(147\) 7.00000 12.1244i 0.577350 1.00000i
\(148\) −8.66025 −0.711868
\(149\) −9.52628 + 16.5000i −0.780423 + 1.35173i 0.151272 + 0.988492i \(0.451663\pi\)
−0.931695 + 0.363241i \(0.881670\pi\)
\(150\) −3.46410 + 6.00000i −0.282843 + 0.489898i
\(151\) 17.3205 1.40952 0.704761 0.709444i \(-0.251054\pi\)
0.704761 + 0.709444i \(0.251054\pi\)
\(152\) −3.00000 + 5.19615i −0.243332 + 0.421464i
\(153\) −1.50000 2.59808i −0.121268 0.210042i
\(154\) 0 0
\(155\) −6.00000 −0.481932
\(156\) 0 0
\(157\) −13.0000 −1.03751 −0.518756 0.854922i \(-0.673605\pi\)
−0.518756 + 0.854922i \(0.673605\pi\)
\(158\) 3.46410 + 6.00000i 0.275589 + 0.477334i
\(159\) 3.00000 + 5.19615i 0.237915 + 0.412082i
\(160\) −4.50000 + 7.79423i −0.355756 + 0.616188i
\(161\) 0 0
\(162\) −9.52628 + 16.5000i −0.748455 + 1.29636i
\(163\) −10.3923 + 18.0000i −0.813988 + 1.40987i 0.0960641 + 0.995375i \(0.469375\pi\)
−0.910052 + 0.414494i \(0.863959\pi\)
\(164\) −5.19615 −0.405751
\(165\) 0 0
\(166\) −12.0000 20.7846i −0.931381 1.61320i
\(167\) −6.92820 12.0000i −0.536120 0.928588i −0.999108 0.0422232i \(-0.986556\pi\)
0.462988 0.886365i \(-0.346777\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) −9.00000 −0.690268
\(171\) −1.73205 3.00000i −0.132453 0.229416i
\(172\) 4.00000 + 6.92820i 0.304997 + 0.528271i
\(173\) 3.00000 5.19615i 0.228086 0.395056i −0.729155 0.684349i \(-0.760087\pi\)
0.957241 + 0.289292i \(0.0934200\pi\)
\(174\) −10.3923 −0.787839
\(175\) 0 0
\(176\) 0 0
\(177\) 13.8564 1.04151
\(178\) 6.00000 10.3923i 0.449719 0.778936i
\(179\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(180\) −0.866025 1.50000i −0.0645497 0.111803i
\(181\) −11.0000 −0.817624 −0.408812 0.912619i \(-0.634057\pi\)
−0.408812 + 0.912619i \(0.634057\pi\)
\(182\) 0 0
\(183\) 2.00000 0.147844
\(184\) −5.19615 9.00000i −0.383065 0.663489i
\(185\) 7.50000 + 12.9904i 0.551411 + 0.955072i
\(186\) −6.00000 + 10.3923i −0.439941 + 0.762001i
\(187\) 0 0
\(188\) 1.73205 3.00000i 0.126323 0.218797i
\(189\) 0 0
\(190\) −10.3923 −0.753937
\(191\) −9.00000 + 15.5885i −0.651217 + 1.12794i 0.331611 + 0.943416i \(0.392408\pi\)
−0.982828 + 0.184525i \(0.940925\pi\)
\(192\) −1.00000 1.73205i −0.0721688 0.125000i
\(193\) −2.59808 4.50000i −0.187014 0.323917i 0.757240 0.653137i \(-0.226548\pi\)
−0.944253 + 0.329220i \(0.893214\pi\)
\(194\) 12.0000 0.861550
\(195\) 0 0
\(196\) −7.00000 −0.500000
\(197\) −6.92820 12.0000i −0.493614 0.854965i 0.506359 0.862323i \(-0.330991\pi\)
−0.999973 + 0.00735824i \(0.997658\pi\)
\(198\) 0 0
\(199\) −1.00000 + 1.73205i −0.0708881 + 0.122782i −0.899291 0.437351i \(-0.855917\pi\)
0.828403 + 0.560133i \(0.189250\pi\)
\(200\) −3.46410 −0.244949
\(201\) −3.46410 + 6.00000i −0.244339 + 0.423207i
\(202\) 2.59808 4.50000i 0.182800 0.316619i
\(203\) 0 0
\(204\) −3.00000 + 5.19615i −0.210042 + 0.363803i
\(205\) 4.50000 + 7.79423i 0.314294 + 0.544373i
\(206\) 8.66025 + 15.0000i 0.603388 + 1.04510i
\(207\) 6.00000 0.417029
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −5.00000 8.66025i −0.344214 0.596196i 0.640996 0.767544i \(-0.278521\pi\)
−0.985211 + 0.171347i \(0.945188\pi\)
\(212\) 1.50000 2.59808i 0.103020 0.178437i
\(213\) −6.92820 −0.474713
\(214\) 5.19615 9.00000i 0.355202 0.615227i
\(215\) 6.92820 12.0000i 0.472500 0.818393i
\(216\) −6.92820 −0.471405
\(217\) 0 0
\(218\) 12.0000 + 20.7846i 0.812743 + 1.40771i
\(219\) −1.73205 3.00000i −0.117041 0.202721i
\(220\) 0 0
\(221\) 0 0
\(222\) 30.0000 2.01347
\(223\) 5.19615 + 9.00000i 0.347960 + 0.602685i 0.985887 0.167412i \(-0.0535411\pi\)
−0.637927 + 0.770097i \(0.720208\pi\)
\(224\) 0 0
\(225\) 1.00000 1.73205i 0.0666667 0.115470i
\(226\) 25.9808 1.72821
\(227\) 12.1244 21.0000i 0.804722 1.39382i −0.111757 0.993736i \(-0.535648\pi\)
0.916479 0.400083i \(-0.131019\pi\)
\(228\) −3.46410 + 6.00000i −0.229416 + 0.397360i
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 9.00000 15.5885i 0.593442 1.02787i
\(231\) 0 0
\(232\) −2.59808 4.50000i −0.170572 0.295439i
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 0 0
\(235\) −6.00000 −0.391397
\(236\) −3.46410 6.00000i −0.225494 0.390567i
\(237\) −4.00000 6.92820i −0.259828 0.450035i
\(238\) 0 0
\(239\) 20.7846 1.34444 0.672222 0.740349i \(-0.265340\pi\)
0.672222 + 0.740349i \(0.265340\pi\)
\(240\) 8.66025 15.0000i 0.559017 0.968246i
\(241\) 0.866025 1.50000i 0.0557856 0.0966235i −0.836784 0.547533i \(-0.815567\pi\)
0.892570 + 0.450910i \(0.148900\pi\)
\(242\) 19.0526 1.22474
\(243\) 5.00000 8.66025i 0.320750 0.555556i
\(244\) −0.500000 0.866025i −0.0320092 0.0554416i
\(245\) 6.06218 + 10.5000i 0.387298 + 0.670820i
\(246\) 18.0000 1.14764
\(247\) 0 0
\(248\) −6.00000 −0.381000
\(249\) 13.8564 + 24.0000i 0.878114 + 1.52094i
\(250\) −10.5000 18.1865i −0.664078 1.15022i
\(251\) −9.00000 + 15.5885i −0.568075 + 0.983935i 0.428681 + 0.903456i \(0.358978\pi\)
−0.996756 + 0.0804789i \(0.974355\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 1.73205 3.00000i 0.108679 0.188237i
\(255\) 10.3923 0.650791
\(256\) −9.50000 + 16.4545i −0.593750 + 1.02841i
\(257\) 1.50000 + 2.59808i 0.0935674 + 0.162064i 0.909010 0.416775i \(-0.136840\pi\)
−0.815442 + 0.578838i \(0.803506\pi\)
\(258\) −13.8564 24.0000i −0.862662 1.49417i
\(259\) 0 0
\(260\) 0 0
\(261\) 3.00000 0.185695
\(262\) 15.5885 + 27.0000i 0.963058 + 1.66807i
\(263\) −6.00000 10.3923i −0.369976 0.640817i 0.619586 0.784929i \(-0.287301\pi\)
−0.989561 + 0.144112i \(0.953967\pi\)
\(264\) 0 0
\(265\) −5.19615 −0.319197
\(266\) 0 0
\(267\) −6.92820 + 12.0000i −0.423999 + 0.734388i
\(268\) 3.46410 0.211604
\(269\) 3.00000 5.19615i 0.182913 0.316815i −0.759958 0.649972i \(-0.774781\pi\)
0.942871 + 0.333157i \(0.108114\pi\)
\(270\) −6.00000 10.3923i −0.365148 0.632456i
\(271\) 10.3923 + 18.0000i 0.631288 + 1.09342i 0.987289 + 0.158937i \(0.0508066\pi\)
−0.356001 + 0.934485i \(0.615860\pi\)
\(272\) −15.0000 −0.909509
\(273\) 0 0
\(274\) 27.0000 1.63113
\(275\) 0 0
\(276\) −6.00000 10.3923i −0.361158 0.625543i
\(277\) −3.50000 + 6.06218i −0.210295 + 0.364241i −0.951807 0.306699i \(-0.900776\pi\)
0.741512 + 0.670940i \(0.234109\pi\)
\(278\) 6.92820 0.415526
\(279\) 1.73205 3.00000i 0.103695 0.179605i
\(280\) 0 0
\(281\) −22.5167 −1.34323 −0.671616 0.740900i \(-0.734399\pi\)
−0.671616 + 0.740900i \(0.734399\pi\)
\(282\) −6.00000 + 10.3923i −0.357295 + 0.618853i
\(283\) 2.00000 + 3.46410i 0.118888 + 0.205919i 0.919327 0.393494i \(-0.128734\pi\)
−0.800439 + 0.599414i \(0.795400\pi\)
\(284\) 1.73205 + 3.00000i 0.102778 + 0.178017i
\(285\) 12.0000 0.710819
\(286\) 0 0
\(287\) 0 0
\(288\) −2.59808 4.50000i −0.153093 0.265165i
\(289\) 4.00000 + 6.92820i 0.235294 + 0.407541i
\(290\) 4.50000 7.79423i 0.264249 0.457693i
\(291\) −13.8564 −0.812277
\(292\) −0.866025 + 1.50000i −0.0506803 + 0.0877809i
\(293\) −2.59808 + 4.50000i −0.151781 + 0.262893i −0.931882 0.362761i \(-0.881834\pi\)
0.780101 + 0.625653i \(0.215168\pi\)
\(294\) 24.2487 1.41421
\(295\) −6.00000 + 10.3923i −0.349334 + 0.605063i
\(296\) 7.50000 + 12.9904i 0.435929 + 0.755051i
\(297\) 0 0
\(298\) −33.0000 −1.91164
\(299\) 0 0
\(300\) −4.00000 −0.230940
\(301\) 0 0
\(302\) 15.0000 + 25.9808i 0.863153 + 1.49502i
\(303\) −3.00000 + 5.19615i −0.172345 + 0.298511i
\(304\) −17.3205 −0.993399
\(305\) −0.866025 + 1.50000i −0.0495885 + 0.0858898i
\(306\) 2.59808 4.50000i 0.148522 0.257248i
\(307\) −17.3205 −0.988534 −0.494267 0.869310i \(-0.664563\pi\)
−0.494267 + 0.869310i \(0.664563\pi\)
\(308\) 0 0
\(309\) −10.0000 17.3205i −0.568880 0.985329i
\(310\) −5.19615 9.00000i −0.295122 0.511166i
\(311\) 30.0000 1.70114 0.850572 0.525859i \(-0.176256\pi\)
0.850572 + 0.525859i \(0.176256\pi\)
\(312\) 0 0
\(313\) 10.0000 0.565233 0.282617 0.959233i \(-0.408798\pi\)
0.282617 + 0.959233i \(0.408798\pi\)
\(314\) −11.2583 19.5000i −0.635344 1.10045i
\(315\) 0 0
\(316\) −2.00000 + 3.46410i −0.112509 + 0.194871i
\(317\) 5.19615 0.291845 0.145922 0.989296i \(-0.453385\pi\)
0.145922 + 0.989296i \(0.453385\pi\)
\(318\) −5.19615 + 9.00000i −0.291386 + 0.504695i
\(319\) 0 0
\(320\) 1.73205 0.0968246
\(321\) −6.00000 + 10.3923i −0.334887 + 0.580042i
\(322\) 0 0
\(323\) −5.19615 9.00000i −0.289122 0.500773i
\(324\) −11.0000 −0.611111
\(325\) 0 0
\(326\) −36.0000 −1.99386
\(327\) −13.8564 24.0000i −0.766261 1.32720i
\(328\) 4.50000 + 7.79423i 0.248471 + 0.430364i
\(329\) 0 0
\(330\) 0 0
\(331\) −13.8564 + 24.0000i −0.761617 + 1.31916i 0.180400 + 0.983593i \(0.442261\pi\)
−0.942017 + 0.335566i \(0.891072\pi\)
\(332\) 6.92820 12.0000i 0.380235 0.658586i
\(333\) −8.66025 −0.474579
\(334\) 12.0000 20.7846i 0.656611 1.13728i
\(335\) −3.00000 5.19615i −0.163908 0.283896i
\(336\) 0 0
\(337\) 23.0000 1.25289 0.626445 0.779466i \(-0.284509\pi\)
0.626445 + 0.779466i \(0.284509\pi\)
\(338\) 0 0
\(339\) −30.0000 −1.62938
\(340\) −2.59808 4.50000i −0.140900 0.244047i
\(341\) 0 0
\(342\) 3.00000 5.19615i 0.162221 0.280976i
\(343\) 0 0
\(344\) 6.92820 12.0000i 0.373544 0.646997i
\(345\) −10.3923 + 18.0000i −0.559503 + 0.969087i
\(346\) 10.3923 0.558694
\(347\) 15.0000 25.9808i 0.805242 1.39472i −0.110885 0.993833i \(-0.535369\pi\)
0.916127 0.400887i \(-0.131298\pi\)
\(348\) −3.00000 5.19615i −0.160817 0.278543i
\(349\) 6.92820 + 12.0000i 0.370858 + 0.642345i 0.989698 0.143172i \(-0.0457302\pi\)
−0.618840 + 0.785517i \(0.712397\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −16.4545 28.5000i −0.875784 1.51690i −0.855926 0.517099i \(-0.827012\pi\)
−0.0198582 0.999803i \(-0.506321\pi\)
\(354\) 12.0000 + 20.7846i 0.637793 + 1.10469i
\(355\) 3.00000 5.19615i 0.159223 0.275783i
\(356\) 6.92820 0.367194
\(357\) 0 0
\(358\) 0 0
\(359\) −6.92820 −0.365657 −0.182828 0.983145i \(-0.558525\pi\)
−0.182828 + 0.983145i \(0.558525\pi\)
\(360\) −1.50000 + 2.59808i −0.0790569 + 0.136931i
\(361\) 3.50000 + 6.06218i 0.184211 + 0.319062i
\(362\) −9.52628 16.5000i −0.500690 0.867221i
\(363\) −22.0000 −1.15470
\(364\) 0 0
\(365\) 3.00000 0.157027
\(366\) 1.73205 + 3.00000i 0.0905357 + 0.156813i
\(367\) 11.0000 + 19.0526i 0.574195 + 0.994535i 0.996129 + 0.0879086i \(0.0280183\pi\)
−0.421933 + 0.906627i \(0.638648\pi\)
\(368\) 15.0000 25.9808i 0.781929 1.35434i
\(369\) −5.19615 −0.270501
\(370\) −12.9904 + 22.5000i −0.675338 + 1.16972i
\(371\) 0 0
\(372\) −6.92820 −0.359211
\(373\) −9.50000 + 16.4545i −0.491891 + 0.851981i −0.999956 0.00933789i \(-0.997028\pi\)
0.508065 + 0.861319i \(0.330361\pi\)
\(374\) 0 0
\(375\) 12.1244 + 21.0000i 0.626099 + 1.08444i
\(376\) −6.00000 −0.309426
\(377\) 0 0
\(378\) 0 0
\(379\) 12.1244 + 21.0000i 0.622786 + 1.07870i 0.988964 + 0.148153i \(0.0473327\pi\)
−0.366178 + 0.930545i \(0.619334\pi\)
\(380\) −3.00000 5.19615i −0.153897 0.266557i
\(381\) −2.00000 + 3.46410i −0.102463 + 0.177471i
\(382\) −31.1769 −1.59515
\(383\) −10.3923 + 18.0000i −0.531022 + 0.919757i 0.468323 + 0.883558i \(0.344859\pi\)
−0.999345 + 0.0361995i \(0.988475\pi\)
\(384\) 12.1244 21.0000i 0.618718 1.07165i
\(385\) 0 0
\(386\) 4.50000 7.79423i 0.229044 0.396716i
\(387\) 4.00000 + 6.92820i 0.203331 + 0.352180i
\(388\) 3.46410 + 6.00000i 0.175863 + 0.304604i
\(389\) 9.00000 0.456318 0.228159 0.973624i \(-0.426729\pi\)
0.228159 + 0.973624i \(0.426729\pi\)
\(390\) 0 0
\(391\) 18.0000 0.910299
\(392\) 6.06218 + 10.5000i 0.306186 + 0.530330i
\(393\) −18.0000 31.1769i −0.907980 1.57267i
\(394\) 12.0000 20.7846i 0.604551 1.04711i
\(395\) 6.92820 0.348596
\(396\) 0 0
\(397\) 6.92820 12.0000i 0.347717 0.602263i −0.638127 0.769931i \(-0.720290\pi\)
0.985843 + 0.167668i \(0.0536238\pi\)
\(398\) −3.46410 −0.173640
\(399\) 0 0
\(400\) −5.00000 8.66025i −0.250000 0.433013i
\(401\) −0.866025 1.50000i −0.0432472 0.0749064i 0.843592 0.536985i \(-0.180437\pi\)
−0.886839 + 0.462079i \(0.847104\pi\)
\(402\) −12.0000 −0.598506
\(403\) 0 0
\(404\) 3.00000 0.149256
\(405\) 9.52628 + 16.5000i 0.473365 + 0.819892i
\(406\) 0 0
\(407\) 0 0
\(408\) 10.3923 0.514496
\(409\) 7.79423 13.5000i 0.385400 0.667532i −0.606425 0.795141i \(-0.707397\pi\)
0.991825 + 0.127609i \(0.0407302\pi\)
\(410\) −7.79423 + 13.5000i −0.384930 + 0.666717i
\(411\) −31.1769 −1.53784
\(412\) −5.00000 + 8.66025i −0.246332 + 0.426660i
\(413\) 0 0
\(414\) 5.19615 + 9.00000i 0.255377 + 0.442326i
\(415\) −24.0000 −1.17811
\(416\) 0 0
\(417\) −8.00000 −0.391762
\(418\) 0 0
\(419\) −9.00000 15.5885i −0.439679 0.761546i 0.557986 0.829851i \(-0.311574\pi\)
−0.997665 + 0.0683046i \(0.978241\pi\)
\(420\) 0 0
\(421\) −15.5885 −0.759735 −0.379867 0.925041i \(-0.624030\pi\)
−0.379867 + 0.925041i \(0.624030\pi\)
\(422\) 8.66025 15.0000i 0.421575 0.730189i
\(423\) 1.73205 3.00000i 0.0842152 0.145865i
\(424\) −5.19615 −0.252347
\(425\) 3.00000 5.19615i 0.145521 0.252050i
\(426\) −6.00000 10.3923i −0.290701 0.503509i
\(427\) 0 0
\(428\) 6.00000 0.290021
\(429\) 0 0
\(430\) 24.0000 1.15738
\(431\) 3.46410 + 6.00000i 0.166860 + 0.289010i 0.937314 0.348485i \(-0.113304\pi\)
−0.770454 + 0.637495i \(0.779971\pi\)
\(432\) −10.0000 17.3205i −0.481125 0.833333i
\(433\) −8.50000 + 14.7224i −0.408484 + 0.707515i −0.994720 0.102625i \(-0.967276\pi\)
0.586236 + 0.810140i \(0.300609\pi\)
\(434\) 0 0
\(435\) −5.19615 + 9.00000i −0.249136 + 0.431517i
\(436\) −6.92820 + 12.0000i −0.331801 + 0.574696i
\(437\) 20.7846 0.994263
\(438\) 3.00000 5.19615i 0.143346 0.248282i
\(439\) −14.0000 24.2487i −0.668184 1.15733i −0.978412 0.206666i \(-0.933739\pi\)
0.310228 0.950662i \(-0.399595\pi\)
\(440\) 0 0
\(441\) −7.00000 −0.333333
\(442\) 0 0
\(443\) −12.0000 −0.570137 −0.285069 0.958507i \(-0.592016\pi\)
−0.285069 + 0.958507i \(0.592016\pi\)
\(444\) 8.66025 + 15.0000i 0.410997 + 0.711868i
\(445\) −6.00000 10.3923i −0.284427 0.492642i
\(446\) −9.00000 + 15.5885i −0.426162 + 0.738135i
\(447\) 38.1051 1.80231
\(448\) 0 0
\(449\) 3.46410 6.00000i 0.163481 0.283158i −0.772634 0.634852i \(-0.781061\pi\)
0.936115 + 0.351694i \(0.114394\pi\)
\(450\) 3.46410 0.163299
\(451\) 0 0
\(452\) 7.50000 + 12.9904i 0.352770 + 0.611016i
\(453\) −17.3205 30.0000i −0.813788 1.40952i
\(454\) 42.0000 1.97116
\(455\) 0 0
\(456\) 12.0000 0.561951
\(457\) −0.866025 1.50000i −0.0405110 0.0701670i 0.845059 0.534673i \(-0.179565\pi\)
−0.885570 + 0.464506i \(0.846232\pi\)
\(458\) 0 0
\(459\) 6.00000 10.3923i 0.280056 0.485071i
\(460\) 10.3923 0.484544
\(461\) 11.2583 19.5000i 0.524353 0.908206i −0.475245 0.879853i \(-0.657641\pi\)
0.999598 0.0283522i \(-0.00902599\pi\)
\(462\) 0 0
\(463\) 13.8564 0.643962 0.321981 0.946746i \(-0.395651\pi\)
0.321981 + 0.946746i \(0.395651\pi\)
\(464\) 7.50000 12.9904i 0.348179 0.603063i
\(465\) 6.00000 + 10.3923i 0.278243 + 0.481932i
\(466\) −5.19615 9.00000i −0.240707 0.416917i
\(467\) −12.0000 −0.555294 −0.277647 0.960683i \(-0.589555\pi\)
−0.277647 + 0.960683i \(0.589555\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −5.19615 9.00000i −0.239681 0.415139i
\(471\) 13.0000 + 22.5167i 0.599008 + 1.03751i
\(472\) −6.00000 + 10.3923i −0.276172 + 0.478345i
\(473\) 0 0
\(474\) 6.92820 12.0000i 0.318223 0.551178i
\(475\) 3.46410 6.00000i 0.158944 0.275299i
\(476\) 0 0
\(477\) 1.50000 2.59808i 0.0686803 0.118958i
\(478\) 18.0000 + 31.1769i 0.823301 + 1.42600i
\(479\) 12.1244 + 21.0000i 0.553976 + 0.959514i 0.997982 + 0.0634909i \(0.0202234\pi\)
−0.444006 + 0.896024i \(0.646443\pi\)
\(480\) 18.0000 0.821584
\(481\) 0 0
\(482\) 3.00000 0.136646
\(483\) 0 0
\(484\) 5.50000 + 9.52628i 0.250000 + 0.433013i
\(485\) 6.00000 10.3923i 0.272446 0.471890i
\(486\) 17.3205 0.785674
\(487\) −3.46410 + 6.00000i −0.156973 + 0.271886i −0.933776 0.357858i \(-0.883507\pi\)
0.776802 + 0.629744i \(0.216840\pi\)
\(488\) −0.866025 + 1.50000i −0.0392031 + 0.0679018i
\(489\) 41.5692 1.87983
\(490\) −10.5000 + 18.1865i −0.474342 + 0.821584i
\(491\) 6.00000 + 10.3923i 0.270776 + 0.468998i 0.969061 0.246822i \(-0.0793863\pi\)
−0.698285 + 0.715820i \(0.746053\pi\)
\(492\) 5.19615 + 9.00000i 0.234261 + 0.405751i
\(493\) 9.00000 0.405340
\(494\) 0 0
\(495\) 0 0
\(496\) −8.66025 15.0000i −0.388857 0.673520i
\(497\) 0 0
\(498\) −24.0000 + 41.5692i −1.07547 + 1.86276i
\(499\) −31.1769 −1.39567 −0.697835 0.716258i \(-0.745853\pi\)
−0.697835 + 0.716258i \(0.745853\pi\)
\(500\) 6.06218 10.5000i 0.271109 0.469574i
\(501\) −13.8564 + 24.0000i −0.619059 + 1.07224i
\(502\) −31.1769 −1.39149
\(503\) −18.0000 + 31.1769i −0.802580 + 1.39011i 0.115332 + 0.993327i \(0.463207\pi\)
−0.917912 + 0.396783i \(0.870127\pi\)
\(504\) 0 0
\(505\) −2.59808 4.50000i −0.115613 0.200247i
\(506\) 0 0
\(507\) 0 0
\(508\) 2.00000 0.0887357
\(509\) −9.52628 16.5000i −0.422245 0.731350i 0.573914 0.818916i \(-0.305424\pi\)
−0.996159 + 0.0875661i \(0.972091\pi\)
\(510\) 9.00000 + 15.5885i 0.398527 + 0.690268i
\(511\) 0 0
\(512\) −8.66025 −0.382733
\(513\) 6.92820 12.0000i 0.305888 0.529813i
\(514\) −2.59808 + 4.50000i −0.114596 + 0.198486i
\(515\) 17.3205 0.763233
\(516\) 8.00000 13.8564i 0.352180 0.609994i
\(517\) 0 0
\(518\) 0 0
\(519\) −12.0000 −0.526742
\(520\) 0 0
\(521\) 9.00000 0.394297 0.197149 0.980374i \(-0.436832\pi\)
0.197149 + 0.980374i \(0.436832\pi\)
\(522\) 2.59808 + 4.50000i 0.113715 + 0.196960i
\(523\) 8.00000 + 13.8564i 0.349816 + 0.605898i 0.986216 0.165460i \(-0.0529109\pi\)
−0.636401 + 0.771358i \(0.719578\pi\)
\(524\) −9.00000 + 15.5885i −0.393167 + 0.680985i
\(525\) 0 0
\(526\) 10.3923 18.0000i 0.453126 0.784837i
\(527\) 5.19615 9.00000i 0.226348 0.392046i
\(528\) 0 0
\(529\) −6.50000 + 11.2583i −0.282609 + 0.489493i
\(530\) −4.50000 7.79423i −0.195468 0.338560i
\(531\) −3.46410 6.00000i −0.150329 0.260378i
\(532\) 0 0
\(533\) 0 0
\(534\) −24.0000 −1.03858
\(535\) −5.19615 9.00000i −0.224649 0.389104i
\(536\) −3.00000 5.19615i −0.129580 0.224440i
\(537\) 0 0
\(538\) 10.3923 0.448044
\(539\) 0 0
\(540\) 3.46410 6.00000i 0.149071 0.258199i
\(541\) 29.4449 1.26593 0.632967 0.774179i \(-0.281837\pi\)
0.632967 + 0.774179i \(0.281837\pi\)
\(542\) −18.0000 + 31.1769i −0.773166 + 1.33916i
\(543\) 11.0000 + 19.0526i 0.472055 + 0.817624i
\(544\) −7.79423 13.5000i −0.334175 0.578808i
\(545\) 24.0000 1.02805
\(546\) 0 0
\(547\) −22.0000 −0.940652 −0.470326 0.882493i \(-0.655864\pi\)
−0.470326 + 0.882493i \(0.655864\pi\)
\(548\) 7.79423 + 13.5000i 0.332953 + 0.576691i
\(549\) −0.500000 0.866025i −0.0213395 0.0369611i
\(550\) 0 0
\(551\) 10.3923 0.442727
\(552\) −10.3923 + 18.0000i −0.442326 + 0.766131i
\(553\) 0 0
\(554\) −12.1244 −0.515115
\(555\) 15.0000 25.9808i 0.636715 1.10282i
\(556\) 2.00000 + 3.46410i 0.0848189 + 0.146911i
\(557\) −7.79423 13.5000i −0.330252 0.572013i 0.652309 0.757953i \(-0.273800\pi\)
−0.982561 + 0.185940i \(0.940467\pi\)
\(558\) 6.00000 0.254000
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −19.5000 33.7750i −0.822558 1.42471i
\(563\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(564\) −6.92820 −0.291730
\(565\) 12.9904 22.5000i 0.546509 0.946582i
\(566\) −3.46410 + 6.00000i −0.145607 + 0.252199i
\(567\) 0 0
\(568\) 3.00000 5.19615i 0.125877 0.218026i
\(569\) −21.0000 36.3731i −0.880366 1.52484i −0.850935 0.525271i \(-0.823964\pi\)
−0.0294311 0.999567i \(-0.509370\pi\)
\(570\) 10.3923 + 18.0000i 0.435286 + 0.753937i
\(571\) −40.0000 −1.67395 −0.836974 0.547243i \(-0.815677\pi\)
−0.836974 + 0.547243i \(0.815677\pi\)
\(572\) 0 0
\(573\) 36.0000 1.50392
\(574\) 0 0
\(575\) 6.00000 + 10.3923i 0.250217 + 0.433389i
\(576\) −0.500000 + 0.866025i −0.0208333 + 0.0360844i
\(577\) 19.0526 0.793168 0.396584 0.917998i \(-0.370195\pi\)
0.396584 + 0.917998i \(0.370195\pi\)
\(578\) −6.92820 + 12.0000i −0.288175 + 0.499134i
\(579\) −5.19615 + 9.00000i −0.215945 + 0.374027i
\(580\) 5.19615 0.215758
\(581\) 0 0
\(582\) −12.0000 20.7846i −0.497416 0.861550i
\(583\) 0 0
\(584\) 3.00000 0.124141
\(585\) 0 0
\(586\) −9.00000 −0.371787
\(587\) 10.3923 + 18.0000i 0.428936 + 0.742940i 0.996779 0.0801976i \(-0.0255551\pi\)
−0.567843 + 0.823137i \(0.692222\pi\)
\(588\) 7.00000 + 12.1244i 0.288675 + 0.500000i
\(589\) 6.00000 10.3923i 0.247226 0.428207i
\(590\) −20.7846 −0.855689
\(591\) −13.8564 + 24.0000i −0.569976 + 0.987228i
\(592\) −21.6506 + 37.5000i −0.889836 + 1.54124i
\(593\) −25.9808 −1.06690 −0.533451 0.845831i \(-0.679105\pi\)
−0.533451 + 0.845831i \(0.679105\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −9.52628 16.5000i −0.390212 0.675866i
\(597\) 4.00000 0.163709
\(598\) 0 0
\(599\) 30.0000 1.22577 0.612883 0.790173i \(-0.290010\pi\)
0.612883 + 0.790173i \(0.290010\pi\)
\(600\) 3.46410 + 6.00000i 0.141421 + 0.244949i
\(601\) −12.5000 21.6506i −0.509886 0.883148i −0.999934 0.0114528i \(-0.996354\pi\)
0.490049 0.871695i \(-0.336979\pi\)
\(602\) 0 0
\(603\) 3.46410 0.141069
\(604\) −8.66025 + 15.0000i −0.352381 + 0.610341i
\(605\) 9.52628 16.5000i 0.387298 0.670820i
\(606\) −10.3923 −0.422159
\(607\) 17.0000 29.4449i 0.690009 1.19513i −0.281826 0.959466i \(-0.590940\pi\)
0.971834 0.235665i \(-0.0757267\pi\)
\(608\) −9.00000 15.5885i −0.364998 0.632195i
\(609\) 0 0
\(610\) −3.00000 −0.121466
\(611\) 0 0
\(612\) 3.00000 0.121268
\(613\) 6.06218 + 10.5000i 0.244849 + 0.424091i 0.962089 0.272735i \(-0.0879283\pi\)
−0.717240 + 0.696826i \(0.754595\pi\)
\(614\) −15.0000 25.9808i −0.605351 1.04850i
\(615\) 9.00000 15.5885i 0.362915 0.628587i
\(616\) 0 0
\(617\) −11.2583 + 19.5000i −0.453243 + 0.785040i −0.998585 0.0531732i \(-0.983066\pi\)
0.545342 + 0.838214i \(0.316400\pi\)
\(618\) 17.3205 30.0000i 0.696733 1.20678i
\(619\) −20.7846 −0.835404 −0.417702 0.908584i \(-0.637164\pi\)
−0.417702 + 0.908584i \(0.637164\pi\)
\(620\) 3.00000 5.19615i 0.120483 0.208683i
\(621\) 12.0000 + 20.7846i 0.481543 + 0.834058i
\(622\) 25.9808 + 45.0000i 1.04173 + 1.80434i
\(623\) 0 0
\(624\) 0 0
\(625\) −11.0000 −0.440000
\(626\) 8.66025 + 15.0000i 0.346133 + 0.599521i
\(627\) 0 0
\(628\) 6.50000 11.2583i 0.259378 0.449256i
\(629\) −25.9808 −1.03592
\(630\) 0 0
\(631\) 24.2487 42.0000i 0.965326 1.67199i 0.256589 0.966521i \(-0.417401\pi\)
0.708737 0.705473i \(-0.249265\pi\)
\(632\) 6.92820 0.275589
\(633\) −10.0000 + 17.3205i −0.397464 + 0.688428i
\(634\) 4.50000 + 7.79423i 0.178718 + 0.309548i
\(635\) −1.73205 3.00000i −0.0687343 0.119051i
\(636\) −6.00000 −0.237915
\(637\) 0 0
\(638\) 0 0
\(639\) 1.73205 + 3.00000i 0.0685189 + 0.118678i
\(640\) 10.5000 + 18.1865i 0.415049 + 0.718886i
\(641\) 16.5000 28.5788i 0.651711 1.12880i −0.330997 0.943632i \(-0.607385\pi\)
0.982708 0.185164i \(-0.0592817\pi\)
\(642\) −20.7846 −0.820303
\(643\) 6.92820 12.0000i 0.273222 0.473234i −0.696463 0.717592i \(-0.745244\pi\)
0.969685 + 0.244359i \(0.0785774\pi\)
\(644\) 0 0
\(645\) −27.7128 −1.09119
\(646\) 9.00000 15.5885i 0.354100 0.613320i
\(647\) 9.00000 + 15.5885i 0.353827 + 0.612845i 0.986916 0.161233i \(-0.0515470\pi\)
−0.633090 + 0.774078i \(0.718214\pi\)
\(648\) 9.52628 + 16.5000i 0.374228 + 0.648181i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −10.3923 18.0000i −0.406994 0.704934i
\(653\) 15.0000 + 25.9808i 0.586995 + 1.01671i 0.994623 + 0.103558i \(0.0330227\pi\)
−0.407628 + 0.913148i \(0.633644\pi\)
\(654\) 24.0000 41.5692i 0.938474 1.62549i
\(655\) 31.1769 1.21818
\(656\) −12.9904 + 22.5000i −0.507189 + 0.878477i
\(657\) −0.866025 + 1.50000i −0.0337869 + 0.0585206i
\(658\) 0 0
\(659\) 6.00000 10.3923i 0.233727 0.404827i −0.725175 0.688565i \(-0.758241\pi\)
0.958902 + 0.283738i \(0.0915745\pi\)
\(660\) 0 0
\(661\) −23.3827 40.5000i −0.909481 1.57527i −0.814787 0.579761i \(-0.803146\pi\)
−0.0946945 0.995506i \(-0.530187\pi\)
\(662\) −48.0000 −1.86557
\(663\) 0 0
\(664\) −24.0000 −0.931381
\(665\) 0 0
\(666\) −7.50000 12.9904i −0.290619 0.503367i
\(667\) −9.00000 + 15.5885i −0.348481 + 0.603587i
\(668\) 13.8564 0.536120
\(669\) 10.3923 18.0000i 0.401790 0.695920i
\(670\) 5.19615 9.00000i 0.200745 0.347700i
\(671\) 0 0
\(672\) 0 0
\(673\) −9.50000 16.4545i −0.366198 0.634274i 0.622770 0.782405i \(-0.286007\pi\)
−0.988968 + 0.148132i \(0.952674\pi\)
\(674\) 19.9186 + 34.5000i 0.767235 + 1.32889i
\(675\) 8.00000 0.307920
\(676\) 0 0
\(677\) −6.00000 −0.230599 −0.115299 0.993331i \(-0.536783\pi\)
−0.115299 + 0.993331i \(0.536783\pi\)
\(678\) −25.9808 45.0000i −0.997785 1.72821i
\(679\) 0 0
\(680\) −4.50000 + 7.79423i −0.172567 + 0.298895i
\(681\) −48.4974 −1.85843
\(682\) 0 0
\(683\) −12.1244 + 21.0000i −0.463926 + 0.803543i −0.999152 0.0411658i \(-0.986893\pi\)
0.535227 + 0.844708i \(0.320226\pi\)
\(684\) 3.46410 0.132453
\(685\) 13.5000 23.3827i 0.515808 0.893407i
\(686\) 0 0
\(687\) 0 0
\(688\) 40.0000 1.52499
\(689\) 0 0
\(690\) −36.0000 −1.37050
\(691\) −6.92820 12.0000i −0.263561 0.456502i 0.703624 0.710572i \(-0.251564\pi\)
−0.967186 + 0.254071i \(0.918230\pi\)
\(692\) 3.00000 + 5.19615i 0.114043 + 0.197528i
\(693\) 0 0
\(694\) 51.9615 1.97243
\(695\) 3.46410 6.00000i 0.131401 0.227593i
\(696\) −5.19615 + 9.00000i −0.196960 + 0.341144i
\(697\) −15.5885 −0.590455
\(698\) −12.0000 + 20.7846i −0.454207 + 0.786709i
\(699\) 6.00000 + 10.3923i 0.226941 + 0.393073i
\(700\) 0 0
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) 0 0
\(703\) −30.0000 −1.13147
\(704\) 0 0
\(705\) 6.00000 + 10.3923i 0.225973 + 0.391397i
\(706\) 28.5000 49.3634i 1.07261 1.85782i
\(707\) 0 0
\(708\) −6.92820 + 12.0000i −0.260378 + 0.450988i
\(709\) 2.59808 4.50000i 0.0975728 0.169001i −0.813107 0.582115i \(-0.802225\pi\)
0.910679 + 0.413114i \(0.135559\pi\)
\(710\) 10.3923 0.390016
\(711\) −2.00000 + 3.46410i −0.0750059 + 0.129914i
\(712\) −6.00000 10.3923i −0.224860 0.389468i
\(713\) 10.3923 + 18.0000i 0.389195 + 0.674105i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −20.7846 36.0000i −0.776215 1.34444i
\(718\) −6.00000 10.3923i −0.223918 0.387837i
\(719\) −24.0000 + 41.5692i −0.895049 + 1.55027i −0.0613050 + 0.998119i \(0.519526\pi\)
−0.833744 + 0.552151i \(0.813807\pi\)
\(720\) −8.66025 −0.322749
\(721\) 0 0
\(722\) −6.06218 + 10.5000i −0.225611 + 0.390770i
\(723\) −3.46410 −0.128831
\(724\) 5.50000 9.52628i 0.204406 0.354041i
\(725\) 3.00000 + 5.19615i 0.111417 + 0.192980i
\(726\) −19.0526 33.0000i −0.707107 1.22474i
\(727\) 32.0000 1.18681 0.593407 0.804902i \(-0.297782\pi\)
0.593407 + 0.804902i \(0.297782\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 2.59808 + 4.50000i 0.0961591 + 0.166552i
\(731\) 12.0000 + 20.7846i 0.443836 + 0.768747i
\(732\) −1.00000 + 1.73205i −0.0369611 + 0.0640184i
\(733\) −12.1244 −0.447823 −0.223912 0.974609i \(-0.571883\pi\)
−0.223912 + 0.974609i \(0.571883\pi\)
\(734\) −19.0526 + 33.0000i −0.703243 + 1.21805i
\(735\) 12.1244 21.0000i 0.447214 0.774597i
\(736\) 31.1769 1.14920
\(737\) 0 0
\(738\) −4.50000 7.79423i −0.165647 0.286910i
\(739\) −10.3923 18.0000i −0.382287 0.662141i 0.609102 0.793092i \(-0.291530\pi\)
−0.991389 + 0.130951i \(0.958197\pi\)
\(740\) −15.0000 −0.551411
\(741\) 0 0
\(742\) 0 0
\(743\) 17.3205 + 30.0000i 0.635428 + 1.10059i 0.986424 + 0.164216i \(0.0525096\pi\)
−0.350997 + 0.936377i \(0.614157\pi\)
\(744\) 6.00000 + 10.3923i 0.219971 + 0.381000i
\(745\) −16.5000 + 28.5788i −0.604513 + 1.04705i
\(746\) −32.9090 −1.20488
\(747\) 6.92820 12.0000i 0.253490 0.439057i
\(748\) 0 0
\(749\) 0 0
\(750\) −21.0000 + 36.3731i −0.766812 + 1.32816i
\(751\) −8.00000 13.8564i −0.291924 0.505627i 0.682341 0.731034i \(-0.260962\pi\)
−0.974265 + 0.225407i \(0.927629\pi\)
\(752\) −8.66025 15.0000i −0.315807 0.546994i
\(753\) 36.0000 1.31191
\(754\) 0 0
\(755\) 30.0000 1.09181
\(756\) 0 0
\(757\) 13.0000 + 22.5167i 0.472493 + 0.818382i 0.999505 0.0314762i \(-0.0100208\pi\)
−0.527011 + 0.849858i \(0.676688\pi\)
\(758\) −21.0000 + 36.3731i −0.762754 + 1.32113i
\(759\) 0 0
\(760\) −5.19615 + 9.00000i −0.188484 + 0.326464i
\(761\) −17.3205 + 30.0000i −0.627868 + 1.08750i 0.360111 + 0.932910i \(0.382739\pi\)
−0.987979 + 0.154590i \(0.950594\pi\)
\(762\) −6.92820 −0.250982
\(763\) 0 0
\(764\) −9.00000 15.5885i −0.325609 0.563971i
\(765\) −2.59808 4.50000i −0.0939336 0.162698i
\(766\) −36.0000 −1.30073
\(767\) 0 0
\(768\) 38.0000 1.37121
\(769\) −3.46410 6.00000i −0.124919 0.216366i 0.796782 0.604266i \(-0.206534\pi\)
−0.921701 + 0.387901i \(0.873200\pi\)
\(770\) 0 0
\(771\) 3.00000 5.19615i 0.108042 0.187135i
\(772\) 5.19615 0.187014
\(773\) −17.3205 + 30.0000i −0.622975 + 1.07903i 0.365953 + 0.930633i \(0.380743\pi\)
−0.988929 + 0.148392i \(0.952590\pi\)
\(774\) −6.92820 + 12.0000i −0.249029 + 0.431331i
\(775\) 6.92820 0.248868
\(776\) 6.00000 10.3923i 0.215387 0.373062i
\(777\) 0 0
\(778\) 7.79423 + 13.5000i 0.279437 + 0.483998i
\(779\) −18.0000 −0.644917
\(780\) 0 0
\(781\) 0 0
\(782\) 15.5885 + 27.0000i 0.557442 + 0.965518i
\(783\) 6.00000 + 10.3923i 0.214423 + 0.371391i
\(784\) −17.5000 + 30.3109i −0.625000 + 1.08253i
\(785\) −22.5167 −0.803654
\(786\) 31.1769 54.0000i 1.11204 1.92612i
\(787\) −19.0526 + 33.0000i −0.679150 + 1.17632i 0.296087 + 0.955161i \(0.404318\pi\)
−0.975237 + 0.221162i \(0.929015\pi\)
\(788\) 13.8564 0.493614
\(789\) −12.0000 + 20.7846i −0.427211 + 0.739952i
\(790\) 6.00000 + 10.3923i 0.213470 + 0.369742i
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 24.0000 0.851728
\(795\) 5.19615 + 9.00000i 0.184289 + 0.319197i
\(796\) −1.00000 1.73205i −0.0354441 0.0613909i
\(797\) 21.0000 36.3731i 0.743858 1.28840i −0.206868 0.978369i \(-0.566327\pi\)
0.950726 0.310031i \(-0.100340\pi\)
\(798\) 0 0
\(799\) 5.19615 9.00000i 0.183827 0.318397i
\(800\) 5.19615 9.00000i 0.183712 0.318198i
\(801\) 6.92820 0.244796
\(802\) 1.50000 2.59808i 0.0529668 0.0917413i
\(803\) 0 0
\(804\) −3.46410 6.00000i −0.122169 0.211604i
\(805\) 0 0
\(806\) 0 0
\(807\) −12.0000 −0.422420
\(808\) −2.59808 4.50000i −0.0914000 0.158309i
\(809\) −16.5000 28.5788i −0.580109 1.00478i −0.995466 0.0951198i \(-0.969677\pi\)
0.415357 0.909659i \(-0.363657\pi\)
\(810\) −16.5000 + 28.5788i −0.579751 + 1.00416i
\(811\) 38.1051 1.33805 0.669026 0.743239i \(-0.266712\pi\)
0.669026 + 0.743239i \(0.266712\pi\)
\(812\) 0 0
\(813\) 20.7846 36.0000i 0.728948 1.26258i
\(814\) 0 0
\(815\) −18.0000 + 31.1769i −0.630512 + 1.09208i
\(816\) 15.0000 + 25.9808i 0.525105 + 0.909509i
\(817\) 13.8564 + 24.0000i 0.484774 + 0.839654i
\(818\) 27.0000 0.944033
\(819\) 0 0
\(820\) −9.00000 −0.314294
\(821\) 20.7846 + 36.0000i 0.725388 + 1.25641i 0.958814 + 0.284034i \(0.0916729\pi\)
−0.233426 + 0.972375i \(0.574994\pi\)
\(822\) −27.0000 46.7654i −0.941733 1.63113i
\(823\) −2.00000 + 3.46410i −0.0697156 + 0.120751i −0.898776 0.438408i \(-0.855543\pi\)
0.829060 + 0.559159i \(0.188876\pi\)
\(824\) 17.3205 0.603388
\(825\) 0 0
\(826\) 0 0
\(827\) 20.7846 0.722752 0.361376 0.932420i \(-0.382307\pi\)
0.361376 + 0.932420i \(0.382307\pi\)
\(828\) −3.00000 + 5.19615i −0.104257 + 0.180579i
\(829\) 12.5000 + 21.6506i 0.434143 + 0.751958i 0.997225 0.0744432i \(-0.0237179\pi\)
−0.563082 + 0.826401i \(0.690385\pi\)
\(830\) −20.7846 36.0000i −0.721444 1.24958i
\(831\) 14.0000 0.485655
\(832\) 0 0
\(833\) −21.0000 −0.727607
\(834\) −6.92820 12.0000i −0.239904 0.415526i
\(835\) −12.0000 20.7846i −0.415277 0.719281i
\(836\) 0 0
\(837\) 13.8564 0.478947
\(838\) 15.5885 27.0000i 0.538494 0.932700i
\(839\) −22.5167 + 39.0000i −0.777361 + 1.34643i 0.156096 + 0.987742i \(0.450109\pi\)
−0.933458 + 0.358688i \(0.883224\pi\)
\(840\) 0 0
\(841\) 10.0000 17.3205i 0.344828 0.597259i
\(842\) −13.5000 23.3827i −0.465241 0.805821i
\(843\) 22.5167 + 39.0000i 0.775515 + 1.34323i
\(844\) 10.0000 0.344214
\(845\) 0 0
\(846\) 6.00000 0.206284
\(847\) 0 0
\(848\) −7.50000 12.9904i −0.257551 0.446092i
\(849\) 4.00000 6.92820i 0.137280 0.237775i
\(850\) 10.3923 0.356453
\(851\) 25.9808 45.0000i 0.890609 1.54258i
\(852\) 3.46410 6.00000i 0.118678 0.205557i
\(853\) 25.9808 0.889564 0.444782 0.895639i \(-0.353281\pi\)
0.444782 + 0.895639i \(0.353281\pi\)
\(854\) 0 0
\(855\) −3.00000 5.19615i −0.102598 0.177705i
\(856\) −5.19615 9.00000i −0.177601 0.307614i
\(857\) −3.00000 −0.102478 −0.0512390 0.998686i \(-0.516317\pi\)
−0.0512390 + 0.998686i \(0.516317\pi\)
\(858\) 0 0
\(859\) −14.0000 −0.477674 −0.238837 0.971060i \(-0.576766\pi\)
−0.238837 + 0.971060i \(0.576766\pi\)
\(860\) 6.92820 + 12.0000i 0.236250 + 0.409197i
\(861\) 0 0
\(862\) −6.00000 + 10.3923i −0.204361 + 0.353963i
\(863\) 27.7128 0.943355 0.471678 0.881771i \(-0.343649\pi\)
0.471678 + 0.881771i \(0.343649\pi\)
\(864\) 10.3923 18.0000i 0.353553 0.612372i
\(865\) 5.19615 9.00000i 0.176674 0.306009i
\(866\) −29.4449 −1.00058
\(867\) 8.00000 13.8564i 0.271694 0.470588i
\(868\) 0 0
\(869\) 0 0
\(870\) −18.0000 −0.610257
\(871\) 0 0
\(872\) 24.0000 0.812743
\(873\) 3.46410 + 6.00000i 0.117242 + 0.203069i
\(874\) 18.0000 + 31.1769i 0.608859 + 1.05457i
\(875\) 0 0
\(876\) 3.46410 0.117041
\(877\) 6.06218 10.5000i 0.204705 0.354560i −0.745334 0.666692i \(-0.767710\pi\)
0.950039 + 0.312132i \(0.101043\pi\)
\(878\) 24.2487 42.0000i 0.818354 1.41743i
\(879\) 10.3923 0.350524
\(880\) 0 0
\(881\) 13.5000 + 23.3827i 0.454827 + 0.787783i 0.998678 0.0513987i \(-0.0163679\pi\)
−0.543852 + 0.839181i \(0.683035\pi\)
\(882\) −6.06218 10.5000i −0.204124 0.353553i
\(883\) −10.0000 −0.336527 −0.168263 0.985742i \(-0.553816\pi\)
−0.168263 + 0.985742i \(0.553816\pi\)
\(884\) 0 0
\(885\) 24.0000 0.806751
\(886\) −10.3923 18.0000i −0.349136 0.604722i
\(887\) −18.0000 31.1769i −0.604381 1.04682i −0.992149 0.125061i \(-0.960087\pi\)
0.387768 0.921757i \(-0.373246\pi\)
\(888\) 15.0000 25.9808i 0.503367 0.871857i
\(889\) 0 0
\(890\) 10.3923 18.0000i 0.348351 0.603361i
\(891\) 0 0
\(892\) −10.3923 −0.347960
\(893\) 6.00000 10.3923i 0.200782 0.347765i
\(894\) 33.0000 + 57.1577i 1.10369 + 1.91164i
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 12.0000 0.400445
\(899\) 5.19615 + 9.00000i 0.173301 + 0.300167i
\(900\) 1.00000 + 1.73205i 0.0333333 + 0.0577350i
\(901\) 4.50000 7.79423i 0.149917 0.259663i
\(902\) 0 0
\(903\) 0 0
\(904\) 12.9904 22.5000i 0.432054 0.748339i
\(905\) −19.0526 −0.633328
\(906\) 30.0000 51.9615i 0.996683 1.72631i
\(907\) 14.0000 + 24.2487i 0.464862 + 0.805165i 0.999195 0.0401089i \(-0.0127705\pi\)
−0.534333 + 0.845274i \(0.679437\pi\)
\(908\) 12.1244 + 21.0000i 0.402361 + 0.696909i
\(909\) 3.00000 0.0995037
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 17.3205 + 30.0000i 0.573539 + 0.993399i
\(913\) 0 0
\(914\) 1.50000 2.59808i 0.0496156 0.0859367i
\(915\) 3.46410 0.114520
\(916\) 0 0
\(917\) 0 0
\(918\) 20.7846 0.685994
\(919\) −11.0000 + 19.0526i −0.362857 + 0.628486i −0.988430 0.151680i \(-0.951532\pi\)
0.625573 + 0.780165i \(0.284865\pi\)
\(920\) −9.00000 15.5885i −0.296721 0.513936i
\(921\) 17.3205 + 30.0000i 0.570730 + 0.988534i
\(922\) 39.0000 1.28440
\(923\) 0 0
\(924\) 0 0
\(925\) −8.66025 15.0000i −0.284747 0.493197i
\(926\) 12.0000 + 20.7846i 0.394344 + 0.683025i
\(927\) −5.00000 + 8.66025i −0.164222 + 0.284440i
\(928\) 15.5885 0.511716
\(929\) −23.3827 + 40.5000i −0.767161 + 1.32876i 0.171935 + 0.985108i \(0.444998\pi\)
−0.939096 + 0.343654i \(0.888335\pi\)
\(930\) −10.3923 + 18.0000i −0.340777 + 0.590243i
\(931\) −24.2487 −0.794719
\(932\) 3.00000 5.19615i 0.0982683 0.170206i
\(933\) −30.0000 51.9615i −0.982156 1.70114i
\(934\) −10.3923 18.0000i −0.340047 0.588978i
\(935\) 0 0
\(936\) 0 0
\(937\) 7.00000 0.228680 0.114340 0.993442i \(-0.463525\pi\)
0.114340 + 0.993442i \(0.463525\pi\)
\(938\) 0 0
\(939\) −10.0000 17.3205i −0.326338 0.565233i
\(940\) 3.00000 5.19615i 0.0978492 0.169480i
\(941\) −20.7846 −0.677559 −0.338779 0.940866i \(-0.610014\pi\)
−0.338779 + 0.940866i \(0.610014\pi\)
\(942\) −22.5167 + 39.0000i −0.733632 + 1.27069i
\(943\) 15.5885 27.0000i 0.507630 0.879241i
\(944\) −34.6410 −1.12747
\(945\) 0 0
\(946\) 0 0
\(947\) −8.66025 15.0000i −0.281420 0.487435i 0.690314 0.723510i \(-0.257472\pi\)
−0.971735 + 0.236075i \(0.924139\pi\)
\(948\) 8.00000 0.259828
\(949\) 0 0
\(950\) 12.0000 0.389331
\(951\) −5.19615 9.00000i −0.168497 0.291845i
\(952\) 0 0
\(953\) −3.00000 + 5.19615i −0.0971795 + 0.168320i −0.910516 0.413473i \(-0.864315\pi\)
0.813337 + 0.581793i \(0.197649\pi\)
\(954\) 5.19615 0.168232
\(955\) −15.5885 + 27.0000i −0.504431 + 0.873699i
\(956\) −10.3923 + 18.0000i −0.336111 + 0.582162i
\(957\) 0 0
\(958\) −21.0000 + 36.3731i −0.678479 + 1.17516i
\(959\) 0 0
\(960\) −1.73205 3.00000i −0.0559017 0.0968246i
\(961\) −19.0000 −0.612903
\(962\) 0 0
\(963\) 6.00000 0.193347
\(964\) 0.866025 + 1.50000i 0.0278928 + 0.0483117i
\(965\) −4.50000 7.79423i −0.144860 0.250905i
\(966\) 0 0
\(967\) −58.8897 −1.89377 −0.946883 0.321578i \(-0.895787\pi\)
−0.946883 + 0.321578i \(0.895787\pi\)
\(968\) 9.52628 16.5000i 0.306186 0.530330i
\(969\) −10.3923 + 18.0000i −0.333849 + 0.578243i
\(970\) 20.7846 0.667354
\(971\) −3.00000 + 5.19615i −0.0962746 + 0.166752i −0.910140 0.414301i \(-0.864026\pi\)
0.813865 + 0.581054i \(0.197359\pi\)
\(972\) 5.00000 + 8.66025i 0.160375 + 0.277778i
\(973\) 0 0
\(974\) −12.0000 −0.384505
\(975\) 0 0
\(976\) −5.00000 −0.160046
\(977\) −21.6506 37.5000i −0.692665 1.19973i −0.970961 0.239236i \(-0.923103\pi\)
0.278296 0.960495i \(-0.410230\pi\)
\(978\) 36.0000 + 62.3538i 1.15115 + 1.99386i
\(979\) 0 0
\(980\) −12.1244 −0.387298
\(981\) −6.92820 + 12.0000i −0.221201 + 0.383131i
\(982\) −10.3923 + 18.0000i −0.331632 + 0.574403i
\(983\) 51.9615 1.65732 0.828658 0.559756i \(-0.189105\pi\)
0.828658 + 0.559756i \(0.189105\pi\)
\(984\) 9.00000 15.5885i 0.286910 0.496942i
\(985\) −12.0000 20.7846i −0.382352 0.662253i
\(986\) 7.79423 + 13.5000i 0.248219 + 0.429928i
\(987\) 0 0
\(988\) 0 0
\(989\) −48.0000 −1.52631
\(990\) 0 0
\(991\) −1.00000 1.73205i −0.0317660 0.0550204i 0.849705 0.527258i \(-0.176780\pi\)
−0.881471 + 0.472237i \(0.843446\pi\)
\(992\) 9.00000 15.5885i 0.285750 0.494934i
\(993\) 55.4256 1.75888
\(994\) 0 0
\(995\) −1.73205 + 3.00000i −0.0549097 + 0.0951064i
\(996\) −27.7128 −0.878114
\(997\) −8.50000 + 14.7224i −0.269198 + 0.466264i −0.968655 0.248410i \(-0.920092\pi\)
0.699457 + 0.714675i \(0.253425\pi\)
\(998\) −27.0000 46.7654i −0.854670 1.48033i
\(999\) −17.3205 30.0000i −0.547997 0.949158i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.2.c.a.146.2 4
13.2 odd 12 169.2.b.a.168.2 2
13.3 even 3 169.2.a.a.1.1 2
13.4 even 6 inner 169.2.c.a.22.1 4
13.5 odd 4 169.2.e.a.23.1 2
13.6 odd 12 13.2.e.a.4.1 2
13.7 odd 12 169.2.e.a.147.1 2
13.8 odd 4 13.2.e.a.10.1 yes 2
13.9 even 3 inner 169.2.c.a.22.2 4
13.10 even 6 169.2.a.a.1.2 2
13.11 odd 12 169.2.b.a.168.1 2
13.12 even 2 inner 169.2.c.a.146.1 4
39.2 even 12 1521.2.b.a.1351.1 2
39.8 even 4 117.2.q.c.10.1 2
39.11 even 12 1521.2.b.a.1351.2 2
39.23 odd 6 1521.2.a.k.1.1 2
39.29 odd 6 1521.2.a.k.1.2 2
39.32 even 12 117.2.q.c.82.1 2
52.3 odd 6 2704.2.a.o.1.2 2
52.11 even 12 2704.2.f.b.337.2 2
52.15 even 12 2704.2.f.b.337.1 2
52.19 even 12 208.2.w.b.17.1 2
52.23 odd 6 2704.2.a.o.1.1 2
52.47 even 4 208.2.w.b.49.1 2
65.8 even 4 325.2.m.a.49.2 4
65.19 odd 12 325.2.n.a.251.1 2
65.29 even 6 4225.2.a.v.1.2 2
65.32 even 12 325.2.m.a.199.2 4
65.34 odd 4 325.2.n.a.101.1 2
65.47 even 4 325.2.m.a.49.1 4
65.49 even 6 4225.2.a.v.1.1 2
65.58 even 12 325.2.m.a.199.1 4
91.6 even 12 637.2.q.a.589.1 2
91.19 even 12 637.2.k.c.459.1 2
91.32 odd 12 637.2.u.c.30.1 2
91.34 even 4 637.2.q.a.491.1 2
91.45 even 12 637.2.u.b.30.1 2
91.47 even 12 637.2.u.b.361.1 2
91.55 odd 6 8281.2.a.q.1.1 2
91.58 odd 12 637.2.k.a.459.1 2
91.60 odd 12 637.2.k.a.569.1 2
91.62 odd 6 8281.2.a.q.1.2 2
91.73 even 12 637.2.k.c.569.1 2
91.86 odd 12 637.2.u.c.361.1 2
104.19 even 12 832.2.w.a.641.1 2
104.21 odd 4 832.2.w.d.257.1 2
104.45 odd 12 832.2.w.d.641.1 2
104.99 even 4 832.2.w.a.257.1 2
156.47 odd 4 1872.2.by.d.1297.1 2
156.71 odd 12 1872.2.by.d.433.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.2.e.a.4.1 2 13.6 odd 12
13.2.e.a.10.1 yes 2 13.8 odd 4
117.2.q.c.10.1 2 39.8 even 4
117.2.q.c.82.1 2 39.32 even 12
169.2.a.a.1.1 2 13.3 even 3
169.2.a.a.1.2 2 13.10 even 6
169.2.b.a.168.1 2 13.11 odd 12
169.2.b.a.168.2 2 13.2 odd 12
169.2.c.a.22.1 4 13.4 even 6 inner
169.2.c.a.22.2 4 13.9 even 3 inner
169.2.c.a.146.1 4 13.12 even 2 inner
169.2.c.a.146.2 4 1.1 even 1 trivial
169.2.e.a.23.1 2 13.5 odd 4
169.2.e.a.147.1 2 13.7 odd 12
208.2.w.b.17.1 2 52.19 even 12
208.2.w.b.49.1 2 52.47 even 4
325.2.m.a.49.1 4 65.47 even 4
325.2.m.a.49.2 4 65.8 even 4
325.2.m.a.199.1 4 65.58 even 12
325.2.m.a.199.2 4 65.32 even 12
325.2.n.a.101.1 2 65.34 odd 4
325.2.n.a.251.1 2 65.19 odd 12
637.2.k.a.459.1 2 91.58 odd 12
637.2.k.a.569.1 2 91.60 odd 12
637.2.k.c.459.1 2 91.19 even 12
637.2.k.c.569.1 2 91.73 even 12
637.2.q.a.491.1 2 91.34 even 4
637.2.q.a.589.1 2 91.6 even 12
637.2.u.b.30.1 2 91.45 even 12
637.2.u.b.361.1 2 91.47 even 12
637.2.u.c.30.1 2 91.32 odd 12
637.2.u.c.361.1 2 91.86 odd 12
832.2.w.a.257.1 2 104.99 even 4
832.2.w.a.641.1 2 104.19 even 12
832.2.w.d.257.1 2 104.21 odd 4
832.2.w.d.641.1 2 104.45 odd 12
1521.2.a.k.1.1 2 39.23 odd 6
1521.2.a.k.1.2 2 39.29 odd 6
1521.2.b.a.1351.1 2 39.2 even 12
1521.2.b.a.1351.2 2 39.11 even 12
1872.2.by.d.433.1 2 156.71 odd 12
1872.2.by.d.1297.1 2 156.47 odd 4
2704.2.a.o.1.1 2 52.23 odd 6
2704.2.a.o.1.2 2 52.3 odd 6
2704.2.f.b.337.1 2 52.15 even 12
2704.2.f.b.337.2 2 52.11 even 12
4225.2.a.v.1.1 2 65.49 even 6
4225.2.a.v.1.2 2 65.29 even 6
8281.2.a.q.1.1 2 91.55 odd 6
8281.2.a.q.1.2 2 91.62 odd 6