Properties

Label 169.2.b.a.168.2
Level 169169
Weight 22
Character 169.168
Analytic conductor 1.3491.349
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,2,Mod(168,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.168");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 169=132 169 = 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 169.b (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.349471794161.34947179416
Analytic rank: 00
Dimension: 22
Coefficient field: Q(ζ6)\Q(\zeta_{6})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 168.2
Root 0.5000000.866025i0.500000 - 0.866025i of defining polynomial
Character χ\chi == 169.168
Dual form 169.2.b.a.168.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+1.73205iq2+2.00000q31.00000q41.73205iq5+3.46410iq6+1.73205iq8+1.00000q9+3.00000q102.00000q123.46410iq155.00000q163.00000q17+1.73205iq183.46410iq19+1.73205iq206.00000q23+3.46410iq24+2.00000q254.00000q27+3.00000q29+6.00000q30+3.46410iq315.19615iq325.19615iq341.00000q368.66025iq37+6.00000q38+3.00000q40+5.19615iq41+8.00000q431.73205iq4510.3923iq463.46410iq4710.0000q48+7.00000q49+3.46410iq506.00000q513.00000q536.92820iq546.92820iq57+5.19615iq58+6.92820iq59+3.46410iq60+1.00000q616.00000q621.00000q643.46410iq67+3.00000q6812.0000q69+3.46410iq71+1.73205iq72+1.73205iq73+15.0000q74+4.00000q75+3.46410iq76+4.00000q79+8.66025iq8011.0000q819.00000q82+13.8564iq83+5.19615iq85+13.8564iq86+6.00000q87+6.92820iq89+3.00000q90+6.00000q92+6.92820iq93+6.00000q946.00000q9510.3923iq96+6.92820iq97+12.1244iq98+O(q100)q+1.73205i q^{2} +2.00000 q^{3} -1.00000 q^{4} -1.73205i q^{5} +3.46410i q^{6} +1.73205i q^{8} +1.00000 q^{9} +3.00000 q^{10} -2.00000 q^{12} -3.46410i q^{15} -5.00000 q^{16} -3.00000 q^{17} +1.73205i q^{18} -3.46410i q^{19} +1.73205i q^{20} -6.00000 q^{23} +3.46410i q^{24} +2.00000 q^{25} -4.00000 q^{27} +3.00000 q^{29} +6.00000 q^{30} +3.46410i q^{31} -5.19615i q^{32} -5.19615i q^{34} -1.00000 q^{36} -8.66025i q^{37} +6.00000 q^{38} +3.00000 q^{40} +5.19615i q^{41} +8.00000 q^{43} -1.73205i q^{45} -10.3923i q^{46} -3.46410i q^{47} -10.0000 q^{48} +7.00000 q^{49} +3.46410i q^{50} -6.00000 q^{51} -3.00000 q^{53} -6.92820i q^{54} -6.92820i q^{57} +5.19615i q^{58} +6.92820i q^{59} +3.46410i q^{60} +1.00000 q^{61} -6.00000 q^{62} -1.00000 q^{64} -3.46410i q^{67} +3.00000 q^{68} -12.0000 q^{69} +3.46410i q^{71} +1.73205i q^{72} +1.73205i q^{73} +15.0000 q^{74} +4.00000 q^{75} +3.46410i q^{76} +4.00000 q^{79} +8.66025i q^{80} -11.0000 q^{81} -9.00000 q^{82} +13.8564i q^{83} +5.19615i q^{85} +13.8564i q^{86} +6.00000 q^{87} +6.92820i q^{89} +3.00000 q^{90} +6.00000 q^{92} +6.92820i q^{93} +6.00000 q^{94} -6.00000 q^{95} -10.3923i q^{96} +6.92820i q^{97} +12.1244i q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+4q32q4+2q9+6q104q1210q166q1712q23+4q258q27+6q29+12q302q36+12q38+6q40+16q4320q48+14q49+12q95+O(q100) 2 q + 4 q^{3} - 2 q^{4} + 2 q^{9} + 6 q^{10} - 4 q^{12} - 10 q^{16} - 6 q^{17} - 12 q^{23} + 4 q^{25} - 8 q^{27} + 6 q^{29} + 12 q^{30} - 2 q^{36} + 12 q^{38} + 6 q^{40} + 16 q^{43} - 20 q^{48} + 14 q^{49}+ \cdots - 12 q^{95}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/169Z)×\left(\mathbb{Z}/169\mathbb{Z}\right)^\times.

nn 22
χ(n)\chi(n) 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.73205i 1.22474i 0.790569 + 0.612372i 0.209785π0.209785\pi
−0.790569 + 0.612372i 0.790215π0.790215\pi
33 2.00000 1.15470 0.577350 0.816497i 0.304087π-0.304087\pi
0.577350 + 0.816497i 0.304087π0.304087\pi
44 −1.00000 −0.500000
55 − 1.73205i − 0.774597i −0.921954 0.387298i 0.873408π-0.873408\pi
0.921954 0.387298i 0.126592π-0.126592\pi
66 3.46410i 1.41421i
77 0 0 1.00000 00
−1.00000 π\pi
88 1.73205i 0.612372i
99 1.00000 0.333333
1010 3.00000 0.948683
1111 0 0 1.00000 00
−1.00000 π\pi
1212 −2.00000 −0.577350
1313 0 0
1414 0 0
1515 − 3.46410i − 0.894427i
1616 −5.00000 −1.25000
1717 −3.00000 −0.727607 −0.363803 0.931476i 0.618522π-0.618522\pi
−0.363803 + 0.931476i 0.618522π0.618522\pi
1818 1.73205i 0.408248i
1919 − 3.46410i − 0.794719i −0.917663 0.397360i 0.869927π-0.869927\pi
0.917663 0.397360i 0.130073π-0.130073\pi
2020 1.73205i 0.387298i
2121 0 0
2222 0 0
2323 −6.00000 −1.25109 −0.625543 0.780189i 0.715123π-0.715123\pi
−0.625543 + 0.780189i 0.715123π0.715123\pi
2424 3.46410i 0.707107i
2525 2.00000 0.400000
2626 0 0
2727 −4.00000 −0.769800
2828 0 0
2929 3.00000 0.557086 0.278543 0.960424i 0.410149π-0.410149\pi
0.278543 + 0.960424i 0.410149π0.410149\pi
3030 6.00000 1.09545
3131 3.46410i 0.622171i 0.950382 + 0.311086i 0.100693π0.100693\pi
−0.950382 + 0.311086i 0.899307π0.899307\pi
3232 − 5.19615i − 0.918559i
3333 0 0
3434 − 5.19615i − 0.891133i
3535 0 0
3636 −1.00000 −0.166667
3737 − 8.66025i − 1.42374i −0.702313 0.711868i 0.747849π-0.747849\pi
0.702313 0.711868i 0.252151π-0.252151\pi
3838 6.00000 0.973329
3939 0 0
4040 3.00000 0.474342
4141 5.19615i 0.811503i 0.913984 + 0.405751i 0.132990π0.132990\pi
−0.913984 + 0.405751i 0.867010π0.867010\pi
4242 0 0
4343 8.00000 1.21999 0.609994 0.792406i 0.291172π-0.291172\pi
0.609994 + 0.792406i 0.291172π0.291172\pi
4444 0 0
4545 − 1.73205i − 0.258199i
4646 − 10.3923i − 1.53226i
4747 − 3.46410i − 0.505291i −0.967559 0.252646i 0.918699π-0.918699\pi
0.967559 0.252646i 0.0813007π-0.0813007\pi
4848 −10.0000 −1.44338
4949 7.00000 1.00000
5050 3.46410i 0.489898i
5151 −6.00000 −0.840168
5252 0 0
5353 −3.00000 −0.412082 −0.206041 0.978543i 0.566058π-0.566058\pi
−0.206041 + 0.978543i 0.566058π0.566058\pi
5454 − 6.92820i − 0.942809i
5555 0 0
5656 0 0
5757 − 6.92820i − 0.917663i
5858 5.19615i 0.682288i
5959 6.92820i 0.901975i 0.892530 + 0.450988i 0.148928π0.148928\pi
−0.892530 + 0.450988i 0.851072π0.851072\pi
6060 3.46410i 0.447214i
6161 1.00000 0.128037 0.0640184 0.997949i 0.479608π-0.479608\pi
0.0640184 + 0.997949i 0.479608π0.479608\pi
6262 −6.00000 −0.762001
6363 0 0
6464 −1.00000 −0.125000
6565 0 0
6666 0 0
6767 − 3.46410i − 0.423207i −0.977356 0.211604i 0.932131π-0.932131\pi
0.977356 0.211604i 0.0678686π-0.0678686\pi
6868 3.00000 0.363803
6969 −12.0000 −1.44463
7070 0 0
7171 3.46410i 0.411113i 0.978645 + 0.205557i 0.0659005π0.0659005\pi
−0.978645 + 0.205557i 0.934100π0.934100\pi
7272 1.73205i 0.204124i
7373 1.73205i 0.202721i 0.994850 + 0.101361i 0.0323196π0.0323196\pi
−0.994850 + 0.101361i 0.967680π0.967680\pi
7474 15.0000 1.74371
7575 4.00000 0.461880
7676 3.46410i 0.397360i
7777 0 0
7878 0 0
7979 4.00000 0.450035 0.225018 0.974355i 0.427756π-0.427756\pi
0.225018 + 0.974355i 0.427756π0.427756\pi
8080 8.66025i 0.968246i
8181 −11.0000 −1.22222
8282 −9.00000 −0.993884
8383 13.8564i 1.52094i 0.649374 + 0.760469i 0.275031π0.275031\pi
−0.649374 + 0.760469i 0.724969π0.724969\pi
8484 0 0
8585 5.19615i 0.563602i
8686 13.8564i 1.49417i
8787 6.00000 0.643268
8888 0 0
8989 6.92820i 0.734388i 0.930144 + 0.367194i 0.119682π0.119682\pi
−0.930144 + 0.367194i 0.880318π0.880318\pi
9090 3.00000 0.316228
9191 0 0
9292 6.00000 0.625543
9393 6.92820i 0.718421i
9494 6.00000 0.618853
9595 −6.00000 −0.615587
9696 − 10.3923i − 1.06066i
9797 6.92820i 0.703452i 0.936103 + 0.351726i 0.114405π0.114405\pi
−0.936103 + 0.351726i 0.885595π0.885595\pi
9898 12.1244i 1.22474i
9999 0 0
100100 −2.00000 −0.200000
101101 −3.00000 −0.298511 −0.149256 0.988799i 0.547688π-0.547688\pi
−0.149256 + 0.988799i 0.547688π0.547688\pi
102102 − 10.3923i − 1.02899i
103103 −10.0000 −0.985329 −0.492665 0.870219i 0.663977π-0.663977\pi
−0.492665 + 0.870219i 0.663977π0.663977\pi
104104 0 0
105105 0 0
106106 − 5.19615i − 0.504695i
107107 6.00000 0.580042 0.290021 0.957020i 0.406338π-0.406338\pi
0.290021 + 0.957020i 0.406338π0.406338\pi
108108 4.00000 0.384900
109109 − 13.8564i − 1.32720i −0.748086 0.663602i 0.769027π-0.769027\pi
0.748086 0.663602i 0.230973π-0.230973\pi
110110 0 0
111111 − 17.3205i − 1.64399i
112112 0 0
113113 −15.0000 −1.41108 −0.705541 0.708669i 0.749296π-0.749296\pi
−0.705541 + 0.708669i 0.749296π0.749296\pi
114114 12.0000 1.12390
115115 10.3923i 0.969087i
116116 −3.00000 −0.278543
117117 0 0
118118 −12.0000 −1.10469
119119 0 0
120120 6.00000 0.547723
121121 11.0000 1.00000
122122 1.73205i 0.156813i
123123 10.3923i 0.937043i
124124 − 3.46410i − 0.311086i
125125 − 12.1244i − 1.08444i
126126 0 0
127127 −2.00000 −0.177471 −0.0887357 0.996055i 0.528283π-0.528283\pi
−0.0887357 + 0.996055i 0.528283π0.528283\pi
128128 − 12.1244i − 1.07165i
129129 16.0000 1.40872
130130 0 0
131131 18.0000 1.57267 0.786334 0.617802i 0.211977π-0.211977\pi
0.786334 + 0.617802i 0.211977π0.211977\pi
132132 0 0
133133 0 0
134134 6.00000 0.518321
135135 6.92820i 0.596285i
136136 − 5.19615i − 0.445566i
137137 − 15.5885i − 1.33181i −0.746036 0.665906i 0.768045π-0.768045\pi
0.746036 0.665906i 0.231955π-0.231955\pi
138138 − 20.7846i − 1.76930i
139139 −4.00000 −0.339276 −0.169638 0.985506i 0.554260π-0.554260\pi
−0.169638 + 0.985506i 0.554260π0.554260\pi
140140 0 0
141141 − 6.92820i − 0.583460i
142142 −6.00000 −0.503509
143143 0 0
144144 −5.00000 −0.416667
145145 − 5.19615i − 0.431517i
146146 −3.00000 −0.248282
147147 14.0000 1.15470
148148 8.66025i 0.711868i
149149 − 19.0526i − 1.56085i −0.625252 0.780423i 0.715004π-0.715004\pi
0.625252 0.780423i 0.284996π-0.284996\pi
150150 6.92820i 0.565685i
151151 17.3205i 1.40952i 0.709444 + 0.704761i 0.248946π0.248946\pi
−0.709444 + 0.704761i 0.751054π0.751054\pi
152152 6.00000 0.486664
153153 −3.00000 −0.242536
154154 0 0
155155 6.00000 0.481932
156156 0 0
157157 −13.0000 −1.03751 −0.518756 0.854922i 0.673605π-0.673605\pi
−0.518756 + 0.854922i 0.673605π0.673605\pi
158158 6.92820i 0.551178i
159159 −6.00000 −0.475831
160160 −9.00000 −0.711512
161161 0 0
162162 − 19.0526i − 1.49691i
163163 20.7846i 1.62798i 0.580881 + 0.813988i 0.302708π0.302708\pi
−0.580881 + 0.813988i 0.697292π0.697292\pi
164164 − 5.19615i − 0.405751i
165165 0 0
166166 −24.0000 −1.86276
167167 13.8564i 1.07224i 0.844141 + 0.536120i 0.180111π0.180111\pi
−0.844141 + 0.536120i 0.819889π0.819889\pi
168168 0 0
169169 0 0
170170 −9.00000 −0.690268
171171 − 3.46410i − 0.264906i
172172 −8.00000 −0.609994
173173 6.00000 0.456172 0.228086 0.973641i 0.426753π-0.426753\pi
0.228086 + 0.973641i 0.426753π0.426753\pi
174174 10.3923i 0.787839i
175175 0 0
176176 0 0
177177 13.8564i 1.04151i
178178 −12.0000 −0.899438
179179 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
180180 1.73205i 0.129099i
181181 11.0000 0.817624 0.408812 0.912619i 0.365943π-0.365943\pi
0.408812 + 0.912619i 0.365943π0.365943\pi
182182 0 0
183183 2.00000 0.147844
184184 − 10.3923i − 0.766131i
185185 −15.0000 −1.10282
186186 −12.0000 −0.879883
187187 0 0
188188 3.46410i 0.252646i
189189 0 0
190190 − 10.3923i − 0.753937i
191191 18.0000 1.30243 0.651217 0.758891i 0.274259π-0.274259\pi
0.651217 + 0.758891i 0.274259π0.274259\pi
192192 −2.00000 −0.144338
193193 5.19615i 0.374027i 0.982357 + 0.187014i 0.0598809π0.0598809\pi
−0.982357 + 0.187014i 0.940119π0.940119\pi
194194 −12.0000 −0.861550
195195 0 0
196196 −7.00000 −0.500000
197197 − 13.8564i − 0.987228i −0.869681 0.493614i 0.835676π-0.835676\pi
0.869681 0.493614i 0.164324π-0.164324\pi
198198 0 0
199199 −2.00000 −0.141776 −0.0708881 0.997484i 0.522583π-0.522583\pi
−0.0708881 + 0.997484i 0.522583π0.522583\pi
200200 3.46410i 0.244949i
201201 − 6.92820i − 0.488678i
202202 − 5.19615i − 0.365600i
203203 0 0
204204 6.00000 0.420084
205205 9.00000 0.628587
206206 − 17.3205i − 1.20678i
207207 −6.00000 −0.417029
208208 0 0
209209 0 0
210210 0 0
211211 10.0000 0.688428 0.344214 0.938891i 0.388145π-0.388145\pi
0.344214 + 0.938891i 0.388145π0.388145\pi
212212 3.00000 0.206041
213213 6.92820i 0.474713i
214214 10.3923i 0.710403i
215215 − 13.8564i − 0.944999i
216216 − 6.92820i − 0.471405i
217217 0 0
218218 24.0000 1.62549
219219 3.46410i 0.234082i
220220 0 0
221221 0 0
222222 30.0000 2.01347
223223 10.3923i 0.695920i 0.937509 + 0.347960i 0.113126π0.113126\pi
−0.937509 + 0.347960i 0.886874π0.886874\pi
224224 0 0
225225 2.00000 0.133333
226226 − 25.9808i − 1.72821i
227227 24.2487i 1.60944i 0.593652 + 0.804722i 0.297686π0.297686\pi
−0.593652 + 0.804722i 0.702314π0.702314\pi
228228 6.92820i 0.458831i
229229 0 0 1.00000 00
−1.00000 π\pi
230230 −18.0000 −1.18688
231231 0 0
232232 5.19615i 0.341144i
233233 6.00000 0.393073 0.196537 0.980497i 0.437031π-0.437031\pi
0.196537 + 0.980497i 0.437031π0.437031\pi
234234 0 0
235235 −6.00000 −0.391397
236236 − 6.92820i − 0.450988i
237237 8.00000 0.519656
238238 0 0
239239 − 20.7846i − 1.34444i −0.740349 0.672222i 0.765340π-0.765340\pi
0.740349 0.672222i 0.234660π-0.234660\pi
240240 17.3205i 1.11803i
241241 − 1.73205i − 0.111571i −0.998443 0.0557856i 0.982234π-0.982234\pi
0.998443 0.0557856i 0.0177663π-0.0177663\pi
242242 19.0526i 1.22474i
243243 −10.0000 −0.641500
244244 −1.00000 −0.0640184
245245 − 12.1244i − 0.774597i
246246 −18.0000 −1.14764
247247 0 0
248248 −6.00000 −0.381000
249249 27.7128i 1.75623i
250250 21.0000 1.32816
251251 −18.0000 −1.13615 −0.568075 0.822977i 0.692312π-0.692312\pi
−0.568075 + 0.822977i 0.692312π0.692312\pi
252252 0 0
253253 0 0
254254 − 3.46410i − 0.217357i
255255 10.3923i 0.650791i
256256 19.0000 1.18750
257257 3.00000 0.187135 0.0935674 0.995613i 0.470173π-0.470173\pi
0.0935674 + 0.995613i 0.470173π0.470173\pi
258258 27.7128i 1.72532i
259259 0 0
260260 0 0
261261 3.00000 0.185695
262262 31.1769i 1.92612i
263263 12.0000 0.739952 0.369976 0.929041i 0.379366π-0.379366\pi
0.369976 + 0.929041i 0.379366π0.379366\pi
264264 0 0
265265 5.19615i 0.319197i
266266 0 0
267267 13.8564i 0.847998i
268268 3.46410i 0.211604i
269269 −6.00000 −0.365826 −0.182913 0.983129i 0.558553π-0.558553\pi
−0.182913 + 0.983129i 0.558553π0.558553\pi
270270 −12.0000 −0.730297
271271 − 20.7846i − 1.26258i −0.775549 0.631288i 0.782527π-0.782527\pi
0.775549 0.631288i 0.217473π-0.217473\pi
272272 15.0000 0.909509
273273 0 0
274274 27.0000 1.63113
275275 0 0
276276 12.0000 0.722315
277277 −7.00000 −0.420589 −0.210295 0.977638i 0.567442π-0.567442\pi
−0.210295 + 0.977638i 0.567442π0.567442\pi
278278 − 6.92820i − 0.415526i
279279 3.46410i 0.207390i
280280 0 0
281281 − 22.5167i − 1.34323i −0.740900 0.671616i 0.765601π-0.765601\pi
0.740900 0.671616i 0.234399π-0.234399\pi
282282 12.0000 0.714590
283283 4.00000 0.237775 0.118888 0.992908i 0.462067π-0.462067\pi
0.118888 + 0.992908i 0.462067π0.462067\pi
284284 − 3.46410i − 0.205557i
285285 −12.0000 −0.710819
286286 0 0
287287 0 0
288288 − 5.19615i − 0.306186i
289289 −8.00000 −0.470588
290290 9.00000 0.528498
291291 13.8564i 0.812277i
292292 − 1.73205i − 0.101361i
293293 5.19615i 0.303562i 0.988414 + 0.151781i 0.0485009π0.0485009\pi
−0.988414 + 0.151781i 0.951499π0.951499\pi
294294 24.2487i 1.41421i
295295 12.0000 0.698667
296296 15.0000 0.871857
297297 0 0
298298 33.0000 1.91164
299299 0 0
300300 −4.00000 −0.230940
301301 0 0
302302 −30.0000 −1.72631
303303 −6.00000 −0.344691
304304 17.3205i 0.993399i
305305 − 1.73205i − 0.0991769i
306306 − 5.19615i − 0.297044i
307307 − 17.3205i − 0.988534i −0.869310 0.494267i 0.835437π-0.835437\pi
0.869310 0.494267i 0.164563π-0.164563\pi
308308 0 0
309309 −20.0000 −1.13776
310310 10.3923i 0.590243i
311311 −30.0000 −1.70114 −0.850572 0.525859i 0.823744π-0.823744\pi
−0.850572 + 0.525859i 0.823744π0.823744\pi
312312 0 0
313313 10.0000 0.565233 0.282617 0.959233i 0.408798π-0.408798\pi
0.282617 + 0.959233i 0.408798π0.408798\pi
314314 − 22.5167i − 1.27069i
315315 0 0
316316 −4.00000 −0.225018
317317 − 5.19615i − 0.291845i −0.989296 0.145922i 0.953385π-0.953385\pi
0.989296 0.145922i 0.0466150π-0.0466150\pi
318318 − 10.3923i − 0.582772i
319319 0 0
320320 1.73205i 0.0968246i
321321 12.0000 0.669775
322322 0 0
323323 10.3923i 0.578243i
324324 11.0000 0.611111
325325 0 0
326326 −36.0000 −1.99386
327327 − 27.7128i − 1.53252i
328328 −9.00000 −0.496942
329329 0 0
330330 0 0
331331 − 27.7128i − 1.52323i −0.648027 0.761617i 0.724406π-0.724406\pi
0.648027 0.761617i 0.275594π-0.275594\pi
332332 − 13.8564i − 0.760469i
333333 − 8.66025i − 0.474579i
334334 −24.0000 −1.31322
335335 −6.00000 −0.327815
336336 0 0
337337 −23.0000 −1.25289 −0.626445 0.779466i 0.715491π-0.715491\pi
−0.626445 + 0.779466i 0.715491π0.715491\pi
338338 0 0
339339 −30.0000 −1.62938
340340 − 5.19615i − 0.281801i
341341 0 0
342342 6.00000 0.324443
343343 0 0
344344 13.8564i 0.747087i
345345 20.7846i 1.11901i
346346 10.3923i 0.558694i
347347 −30.0000 −1.61048 −0.805242 0.592946i 0.797965π-0.797965\pi
−0.805242 + 0.592946i 0.797965π0.797965\pi
348348 −6.00000 −0.321634
349349 − 13.8564i − 0.741716i −0.928689 0.370858i 0.879064π-0.879064\pi
0.928689 0.370858i 0.120936π-0.120936\pi
350350 0 0
351351 0 0
352352 0 0
353353 − 32.9090i − 1.75157i −0.482704 0.875784i 0.660345π-0.660345\pi
0.482704 0.875784i 0.339655π-0.339655\pi
354354 −24.0000 −1.27559
355355 6.00000 0.318447
356356 − 6.92820i − 0.367194i
357357 0 0
358358 0 0
359359 − 6.92820i − 0.365657i −0.983145 0.182828i 0.941475π-0.941475\pi
0.983145 0.182828i 0.0585252π-0.0585252\pi
360360 3.00000 0.158114
361361 7.00000 0.368421
362362 19.0526i 1.00138i
363363 22.0000 1.15470
364364 0 0
365365 3.00000 0.157027
366366 3.46410i 0.181071i
367367 −22.0000 −1.14839 −0.574195 0.818718i 0.694685π-0.694685\pi
−0.574195 + 0.818718i 0.694685π0.694685\pi
368368 30.0000 1.56386
369369 5.19615i 0.270501i
370370 − 25.9808i − 1.35068i
371371 0 0
372372 − 6.92820i − 0.359211i
373373 19.0000 0.983783 0.491891 0.870657i 0.336306π-0.336306\pi
0.491891 + 0.870657i 0.336306π0.336306\pi
374374 0 0
375375 − 24.2487i − 1.25220i
376376 6.00000 0.309426
377377 0 0
378378 0 0
379379 24.2487i 1.24557i 0.782392 + 0.622786i 0.213999π0.213999\pi
−0.782392 + 0.622786i 0.786001π0.786001\pi
380380 6.00000 0.307794
381381 −4.00000 −0.204926
382382 31.1769i 1.59515i
383383 − 20.7846i − 1.06204i −0.847358 0.531022i 0.821808π-0.821808\pi
0.847358 0.531022i 0.178192π-0.178192\pi
384384 − 24.2487i − 1.23744i
385385 0 0
386386 −9.00000 −0.458088
387387 8.00000 0.406663
388388 − 6.92820i − 0.351726i
389389 −9.00000 −0.456318 −0.228159 0.973624i 0.573271π-0.573271\pi
−0.228159 + 0.973624i 0.573271π0.573271\pi
390390 0 0
391391 18.0000 0.910299
392392 12.1244i 0.612372i
393393 36.0000 1.81596
394394 24.0000 1.20910
395395 − 6.92820i − 0.348596i
396396 0 0
397397 − 13.8564i − 0.695433i −0.937600 0.347717i 0.886957π-0.886957\pi
0.937600 0.347717i 0.113043π-0.113043\pi
398398 − 3.46410i − 0.173640i
399399 0 0
400400 −10.0000 −0.500000
401401 1.73205i 0.0864945i 0.999064 + 0.0432472i 0.0137703π0.0137703\pi
−0.999064 + 0.0432472i 0.986230π0.986230\pi
402402 12.0000 0.598506
403403 0 0
404404 3.00000 0.149256
405405 19.0526i 0.946729i
406406 0 0
407407 0 0
408408 − 10.3923i − 0.514496i
409409 15.5885i 0.770800i 0.922750 + 0.385400i 0.125936π0.125936\pi
−0.922750 + 0.385400i 0.874064π0.874064\pi
410410 15.5885i 0.769859i
411411 − 31.1769i − 1.53784i
412412 10.0000 0.492665
413413 0 0
414414 − 10.3923i − 0.510754i
415415 24.0000 1.17811
416416 0 0
417417 −8.00000 −0.391762
418418 0 0
419419 18.0000 0.879358 0.439679 0.898155i 0.355092π-0.355092\pi
0.439679 + 0.898155i 0.355092π0.355092\pi
420420 0 0
421421 15.5885i 0.759735i 0.925041 + 0.379867i 0.124030π0.124030\pi
−0.925041 + 0.379867i 0.875970π0.875970\pi
422422 17.3205i 0.843149i
423423 − 3.46410i − 0.168430i
424424 − 5.19615i − 0.252347i
425425 −6.00000 −0.291043
426426 −12.0000 −0.581402
427427 0 0
428428 −6.00000 −0.290021
429429 0 0
430430 24.0000 1.15738
431431 6.92820i 0.333720i 0.985981 + 0.166860i 0.0533628π0.0533628\pi
−0.985981 + 0.166860i 0.946637π0.946637\pi
432432 20.0000 0.962250
433433 −17.0000 −0.816968 −0.408484 0.912766i 0.633942π-0.633942\pi
−0.408484 + 0.912766i 0.633942π0.633942\pi
434434 0 0
435435 − 10.3923i − 0.498273i
436436 13.8564i 0.663602i
437437 20.7846i 0.994263i
438438 −6.00000 −0.286691
439439 −28.0000 −1.33637 −0.668184 0.743996i 0.732928π-0.732928\pi
−0.668184 + 0.743996i 0.732928π0.732928\pi
440440 0 0
441441 7.00000 0.333333
442442 0 0
443443 −12.0000 −0.570137 −0.285069 0.958507i 0.592016π-0.592016\pi
−0.285069 + 0.958507i 0.592016π0.592016\pi
444444 17.3205i 0.821995i
445445 12.0000 0.568855
446446 −18.0000 −0.852325
447447 − 38.1051i − 1.80231i
448448 0 0
449449 − 6.92820i − 0.326962i −0.986546 0.163481i 0.947728π-0.947728\pi
0.986546 0.163481i 0.0522723π-0.0522723\pi
450450 3.46410i 0.163299i
451451 0 0
452452 15.0000 0.705541
453453 34.6410i 1.62758i
454454 −42.0000 −1.97116
455455 0 0
456456 12.0000 0.561951
457457 − 1.73205i − 0.0810219i −0.999179 0.0405110i 0.987101π-0.987101\pi
0.999179 0.0405110i 0.0128986π-0.0128986\pi
458458 0 0
459459 12.0000 0.560112
460460 − 10.3923i − 0.484544i
461461 22.5167i 1.04871i 0.851501 + 0.524353i 0.175693π0.175693\pi
−0.851501 + 0.524353i 0.824307π0.824307\pi
462462 0 0
463463 13.8564i 0.643962i 0.946746 + 0.321981i 0.104349π0.104349\pi
−0.946746 + 0.321981i 0.895651π0.895651\pi
464464 −15.0000 −0.696358
465465 12.0000 0.556487
466466 10.3923i 0.481414i
467467 12.0000 0.555294 0.277647 0.960683i 0.410445π-0.410445\pi
0.277647 + 0.960683i 0.410445π0.410445\pi
468468 0 0
469469 0 0
470470 − 10.3923i − 0.479361i
471471 −26.0000 −1.19802
472472 −12.0000 −0.552345
473473 0 0
474474 13.8564i 0.636446i
475475 − 6.92820i − 0.317888i
476476 0 0
477477 −3.00000 −0.137361
478478 36.0000 1.64660
479479 − 24.2487i − 1.10795i −0.832533 0.553976i 0.813110π-0.813110\pi
0.832533 0.553976i 0.186890π-0.186890\pi
480480 −18.0000 −0.821584
481481 0 0
482482 3.00000 0.136646
483483 0 0
484484 −11.0000 −0.500000
485485 12.0000 0.544892
486486 − 17.3205i − 0.785674i
487487 − 6.92820i − 0.313947i −0.987603 0.156973i 0.949826π-0.949826\pi
0.987603 0.156973i 0.0501737π-0.0501737\pi
488488 1.73205i 0.0784063i
489489 41.5692i 1.87983i
490490 21.0000 0.948683
491491 12.0000 0.541552 0.270776 0.962642i 0.412720π-0.412720\pi
0.270776 + 0.962642i 0.412720π0.412720\pi
492492 − 10.3923i − 0.468521i
493493 −9.00000 −0.405340
494494 0 0
495495 0 0
496496 − 17.3205i − 0.777714i
497497 0 0
498498 −48.0000 −2.15093
499499 31.1769i 1.39567i 0.716258 + 0.697835i 0.245853π0.245853\pi
−0.716258 + 0.697835i 0.754147π0.754147\pi
500500 12.1244i 0.542218i
501501 27.7128i 1.23812i
502502 − 31.1769i − 1.39149i
503503 36.0000 1.60516 0.802580 0.596544i 0.203460π-0.203460\pi
0.802580 + 0.596544i 0.203460π0.203460\pi
504504 0 0
505505 5.19615i 0.231226i
506506 0 0
507507 0 0
508508 2.00000 0.0887357
509509 − 19.0526i − 0.844490i −0.906482 0.422245i 0.861242π-0.861242\pi
0.906482 0.422245i 0.138758π-0.138758\pi
510510 −18.0000 −0.797053
511511 0 0
512512 8.66025i 0.382733i
513513 13.8564i 0.611775i
514514 5.19615i 0.229192i
515515 17.3205i 0.763233i
516516 −16.0000 −0.704361
517517 0 0
518518 0 0
519519 12.0000 0.526742
520520 0 0
521521 9.00000 0.394297 0.197149 0.980374i 0.436832π-0.436832\pi
0.197149 + 0.980374i 0.436832π0.436832\pi
522522 5.19615i 0.227429i
523523 −16.0000 −0.699631 −0.349816 0.936819i 0.613756π-0.613756\pi
−0.349816 + 0.936819i 0.613756π0.613756\pi
524524 −18.0000 −0.786334
525525 0 0
526526 20.7846i 0.906252i
527527 − 10.3923i − 0.452696i
528528 0 0
529529 13.0000 0.565217
530530 −9.00000 −0.390935
531531 6.92820i 0.300658i
532532 0 0
533533 0 0
534534 −24.0000 −1.03858
535535 − 10.3923i − 0.449299i
536536 6.00000 0.259161
537537 0 0
538538 − 10.3923i − 0.448044i
539539 0 0
540540 − 6.92820i − 0.298142i
541541 29.4449i 1.26593i 0.774179 + 0.632967i 0.218163π0.218163\pi
−0.774179 + 0.632967i 0.781837π0.781837\pi
542542 36.0000 1.54633
543543 22.0000 0.944110
544544 15.5885i 0.668350i
545545 −24.0000 −1.02805
546546 0 0
547547 −22.0000 −0.940652 −0.470326 0.882493i 0.655864π-0.655864\pi
−0.470326 + 0.882493i 0.655864π0.655864\pi
548548 15.5885i 0.665906i
549549 1.00000 0.0426790
550550 0 0
551551 − 10.3923i − 0.442727i
552552 − 20.7846i − 0.884652i
553553 0 0
554554 − 12.1244i − 0.515115i
555555 −30.0000 −1.27343
556556 4.00000 0.169638
557557 15.5885i 0.660504i 0.943893 + 0.330252i 0.107134π0.107134\pi
−0.943893 + 0.330252i 0.892866π0.892866\pi
558558 −6.00000 −0.254000
559559 0 0
560560 0 0
561561 0 0
562562 39.0000 1.64512
563563 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
564564 6.92820i 0.291730i
565565 25.9808i 1.09302i
566566 6.92820i 0.291214i
567567 0 0
568568 −6.00000 −0.251754
569569 −42.0000 −1.76073 −0.880366 0.474295i 0.842703π-0.842703\pi
−0.880366 + 0.474295i 0.842703π0.842703\pi
570570 − 20.7846i − 0.870572i
571571 40.0000 1.67395 0.836974 0.547243i 0.184323π-0.184323\pi
0.836974 + 0.547243i 0.184323π0.184323\pi
572572 0 0
573573 36.0000 1.50392
574574 0 0
575575 −12.0000 −0.500435
576576 −1.00000 −0.0416667
577577 − 19.0526i − 0.793168i −0.917998 0.396584i 0.870195π-0.870195\pi
0.917998 0.396584i 0.129805π-0.129805\pi
578578 − 13.8564i − 0.576351i
579579 10.3923i 0.431889i
580580 5.19615i 0.215758i
581581 0 0
582582 −24.0000 −0.994832
583583 0 0
584584 −3.00000 −0.124141
585585 0 0
586586 −9.00000 −0.371787
587587 20.7846i 0.857873i 0.903335 + 0.428936i 0.141112π0.141112\pi
−0.903335 + 0.428936i 0.858888π0.858888\pi
588588 −14.0000 −0.577350
589589 12.0000 0.494451
590590 20.7846i 0.855689i
591591 − 27.7128i − 1.13995i
592592 43.3013i 1.77967i
593593 − 25.9808i − 1.06690i −0.845831 0.533451i 0.820895π-0.820895\pi
0.845831 0.533451i 0.179105π-0.179105\pi
594594 0 0
595595 0 0
596596 19.0526i 0.780423i
597597 −4.00000 −0.163709
598598 0 0
599599 30.0000 1.22577 0.612883 0.790173i 0.290010π-0.290010\pi
0.612883 + 0.790173i 0.290010π0.290010\pi
600600 6.92820i 0.282843i
601601 25.0000 1.01977 0.509886 0.860242i 0.329688π-0.329688\pi
0.509886 + 0.860242i 0.329688π0.329688\pi
602602 0 0
603603 − 3.46410i − 0.141069i
604604 − 17.3205i − 0.704761i
605605 − 19.0526i − 0.774597i
606606 − 10.3923i − 0.422159i
607607 −34.0000 −1.38002 −0.690009 0.723801i 0.742393π-0.742393\pi
−0.690009 + 0.723801i 0.742393π0.742393\pi
608608 −18.0000 −0.729996
609609 0 0
610610 3.00000 0.121466
611611 0 0
612612 3.00000 0.121268
613613 12.1244i 0.489698i 0.969561 + 0.244849i 0.0787384π0.0787384\pi
−0.969561 + 0.244849i 0.921262π0.921262\pi
614614 30.0000 1.21070
615615 18.0000 0.725830
616616 0 0
617617 − 22.5167i − 0.906487i −0.891387 0.453243i 0.850267π-0.850267\pi
0.891387 0.453243i 0.149733π-0.149733\pi
618618 − 34.6410i − 1.39347i
619619 − 20.7846i − 0.835404i −0.908584 0.417702i 0.862836π-0.862836\pi
0.908584 0.417702i 0.137164π-0.137164\pi
620620 −6.00000 −0.240966
621621 24.0000 0.963087
622622 − 51.9615i − 2.08347i
623623 0 0
624624 0 0
625625 −11.0000 −0.440000
626626 17.3205i 0.692267i
627627 0 0
628628 13.0000 0.518756
629629 25.9808i 1.03592i
630630 0 0
631631 − 48.4974i − 1.93065i −0.261048 0.965326i 0.584068π-0.584068\pi
0.261048 0.965326i 0.415932π-0.415932\pi
632632 6.92820i 0.275589i
633633 20.0000 0.794929
634634 9.00000 0.357436
635635 3.46410i 0.137469i
636636 6.00000 0.237915
637637 0 0
638638 0 0
639639 3.46410i 0.137038i
640640 −21.0000 −0.830098
641641 33.0000 1.30342 0.651711 0.758468i 0.274052π-0.274052\pi
0.651711 + 0.758468i 0.274052π0.274052\pi
642642 20.7846i 0.820303i
643643 13.8564i 0.546443i 0.961951 + 0.273222i 0.0880892π0.0880892\pi
−0.961951 + 0.273222i 0.911911π0.911911\pi
644644 0 0
645645 − 27.7128i − 1.09119i
646646 −18.0000 −0.708201
647647 18.0000 0.707653 0.353827 0.935311i 0.384880π-0.384880\pi
0.353827 + 0.935311i 0.384880π0.384880\pi
648648 − 19.0526i − 0.748455i
649649 0 0
650650 0 0
651651 0 0
652652 − 20.7846i − 0.813988i
653653 −30.0000 −1.17399 −0.586995 0.809590i 0.699689π-0.699689\pi
−0.586995 + 0.809590i 0.699689π0.699689\pi
654654 48.0000 1.87695
655655 − 31.1769i − 1.21818i
656656 − 25.9808i − 1.01438i
657657 1.73205i 0.0675737i
658658 0 0
659659 −12.0000 −0.467454 −0.233727 0.972302i 0.575092π-0.575092\pi
−0.233727 + 0.972302i 0.575092π0.575092\pi
660660 0 0
661661 46.7654i 1.81896i 0.415745 + 0.909481i 0.363521π0.363521\pi
−0.415745 + 0.909481i 0.636479π0.636479\pi
662662 48.0000 1.86557
663663 0 0
664664 −24.0000 −0.931381
665665 0 0
666666 15.0000 0.581238
667667 −18.0000 −0.696963
668668 − 13.8564i − 0.536120i
669669 20.7846i 0.803579i
670670 − 10.3923i − 0.401490i
671671 0 0
672672 0 0
673673 −19.0000 −0.732396 −0.366198 0.930537i 0.619341π-0.619341\pi
−0.366198 + 0.930537i 0.619341π0.619341\pi
674674 − 39.8372i − 1.53447i
675675 −8.00000 −0.307920
676676 0 0
677677 −6.00000 −0.230599 −0.115299 0.993331i 0.536783π-0.536783\pi
−0.115299 + 0.993331i 0.536783π0.536783\pi
678678 − 51.9615i − 1.99557i
679679 0 0
680680 −9.00000 −0.345134
681681 48.4974i 1.85843i
682682 0 0
683683 24.2487i 0.927851i 0.885874 + 0.463926i 0.153559π0.153559\pi
−0.885874 + 0.463926i 0.846441π0.846441\pi
684684 3.46410i 0.132453i
685685 −27.0000 −1.03162
686686 0 0
687687 0 0
688688 −40.0000 −1.52499
689689 0 0
690690 −36.0000 −1.37050
691691 − 13.8564i − 0.527123i −0.964643 0.263561i 0.915103π-0.915103\pi
0.964643 0.263561i 0.0848971π-0.0848971\pi
692692 −6.00000 −0.228086
693693 0 0
694694 − 51.9615i − 1.97243i
695695 6.92820i 0.262802i
696696 10.3923i 0.393919i
697697 − 15.5885i − 0.590455i
698698 24.0000 0.908413
699699 12.0000 0.453882
700700 0 0
701701 18.0000 0.679851 0.339925 0.940452i 0.389598π-0.389598\pi
0.339925 + 0.940452i 0.389598π0.389598\pi
702702 0 0
703703 −30.0000 −1.13147
704704 0 0
705705 −12.0000 −0.451946
706706 57.0000 2.14522
707707 0 0
708708 − 13.8564i − 0.520756i
709709 − 5.19615i − 0.195146i −0.995228 0.0975728i 0.968892π-0.968892\pi
0.995228 0.0975728i 0.0311079π-0.0311079\pi
710710 10.3923i 0.390016i
711711 4.00000 0.150012
712712 −12.0000 −0.449719
713713 − 20.7846i − 0.778390i
714714 0 0
715715 0 0
716716 0 0
717717 − 41.5692i − 1.55243i
718718 12.0000 0.447836
719719 −48.0000 −1.79010 −0.895049 0.445968i 0.852860π-0.852860\pi
−0.895049 + 0.445968i 0.852860π0.852860\pi
720720 8.66025i 0.322749i
721721 0 0
722722 12.1244i 0.451222i
723723 − 3.46410i − 0.128831i
724724 −11.0000 −0.408812
725725 6.00000 0.222834
726726 38.1051i 1.41421i
727727 −32.0000 −1.18681 −0.593407 0.804902i 0.702218π-0.702218\pi
−0.593407 + 0.804902i 0.702218π0.702218\pi
728728 0 0
729729 13.0000 0.481481
730730 5.19615i 0.192318i
731731 −24.0000 −0.887672
732732 −2.00000 −0.0739221
733733 12.1244i 0.447823i 0.974609 + 0.223912i 0.0718827π0.0718827\pi
−0.974609 + 0.223912i 0.928117π0.928117\pi
734734 − 38.1051i − 1.40649i
735735 − 24.2487i − 0.894427i
736736 31.1769i 1.14920i
737737 0 0
738738 −9.00000 −0.331295
739739 20.7846i 0.764574i 0.924044 + 0.382287i 0.124863π0.124863\pi
−0.924044 + 0.382287i 0.875137π0.875137\pi
740740 15.0000 0.551411
741741 0 0
742742 0 0
743743 34.6410i 1.27086i 0.772160 + 0.635428i 0.219176π0.219176\pi
−0.772160 + 0.635428i 0.780824π0.780824\pi
744744 −12.0000 −0.439941
745745 −33.0000 −1.20903
746746 32.9090i 1.20488i
747747 13.8564i 0.506979i
748748 0 0
749749 0 0
750750 42.0000 1.53362
751751 −16.0000 −0.583848 −0.291924 0.956441i 0.594295π-0.594295\pi
−0.291924 + 0.956441i 0.594295π0.594295\pi
752752 17.3205i 0.631614i
753753 −36.0000 −1.31191
754754 0 0
755755 30.0000 1.09181
756756 0 0
757757 −26.0000 −0.944986 −0.472493 0.881334i 0.656646π-0.656646\pi
−0.472493 + 0.881334i 0.656646π0.656646\pi
758758 −42.0000 −1.52551
759759 0 0
760760 − 10.3923i − 0.376969i
761761 34.6410i 1.25574i 0.778320 + 0.627868i 0.216072π0.216072\pi
−0.778320 + 0.627868i 0.783928π0.783928\pi
762762 − 6.92820i − 0.250982i
763763 0 0
764764 −18.0000 −0.651217
765765 5.19615i 0.187867i
766766 36.0000 1.30073
767767 0 0
768768 38.0000 1.37121
769769 − 6.92820i − 0.249837i −0.992167 0.124919i 0.960133π-0.960133\pi
0.992167 0.124919i 0.0398670π-0.0398670\pi
770770 0 0
771771 6.00000 0.216085
772772 − 5.19615i − 0.187014i
773773 − 34.6410i − 1.24595i −0.782241 0.622975i 0.785924π-0.785924\pi
0.782241 0.622975i 0.214076π-0.214076\pi
774774 13.8564i 0.498058i
775775 6.92820i 0.248868i
776776 −12.0000 −0.430775
777777 0 0
778778 − 15.5885i − 0.558873i
779779 18.0000 0.644917
780780 0 0
781781 0 0
782782 31.1769i 1.11488i
783783 −12.0000 −0.428845
784784 −35.0000 −1.25000
785785 22.5167i 0.803654i
786786 62.3538i 2.22409i
787787 38.1051i 1.35830i 0.733999 + 0.679150i 0.237652π0.237652\pi
−0.733999 + 0.679150i 0.762348π0.762348\pi
788788 13.8564i 0.493614i
789789 24.0000 0.854423
790790 12.0000 0.426941
791791 0 0
792792 0 0
793793 0 0
794794 24.0000 0.851728
795795 10.3923i 0.368577i
796796 2.00000 0.0708881
797797 42.0000 1.48772 0.743858 0.668338i 0.232994π-0.232994\pi
0.743858 + 0.668338i 0.232994π0.232994\pi
798798 0 0
799799 10.3923i 0.367653i
800800 − 10.3923i − 0.367423i
801801 6.92820i 0.244796i
802802 −3.00000 −0.105934
803803 0 0
804804 6.92820i 0.244339i
805805 0 0
806806 0 0
807807 −12.0000 −0.422420
808808 − 5.19615i − 0.182800i
809809 33.0000 1.16022 0.580109 0.814539i 0.303010π-0.303010\pi
0.580109 + 0.814539i 0.303010π0.303010\pi
810810 −33.0000 −1.15950
811811 − 38.1051i − 1.33805i −0.743239 0.669026i 0.766712π-0.766712\pi
0.743239 0.669026i 0.233288π-0.233288\pi
812812 0 0
813813 − 41.5692i − 1.45790i
814814 0 0
815815 36.0000 1.26102
816816 30.0000 1.05021
817817 − 27.7128i − 0.969549i
818818 −27.0000 −0.944033
819819 0 0
820820 −9.00000 −0.314294
821821 41.5692i 1.45078i 0.688340 + 0.725388i 0.258340π0.258340\pi
−0.688340 + 0.725388i 0.741660π0.741660\pi
822822 54.0000 1.88347
823823 −4.00000 −0.139431 −0.0697156 0.997567i 0.522209π-0.522209\pi
−0.0697156 + 0.997567i 0.522209π0.522209\pi
824824 − 17.3205i − 0.603388i
825825 0 0
826826 0 0
827827 20.7846i 0.722752i 0.932420 + 0.361376i 0.117693π0.117693\pi
−0.932420 + 0.361376i 0.882307π0.882307\pi
828828 6.00000 0.208514
829829 25.0000 0.868286 0.434143 0.900844i 0.357051π-0.357051\pi
0.434143 + 0.900844i 0.357051π0.357051\pi
830830 41.5692i 1.44289i
831831 −14.0000 −0.485655
832832 0 0
833833 −21.0000 −0.727607
834834 − 13.8564i − 0.479808i
835835 24.0000 0.830554
836836 0 0
837837 − 13.8564i − 0.478947i
838838 31.1769i 1.07699i
839839 45.0333i 1.55472i 0.629054 + 0.777361i 0.283442π0.283442\pi
−0.629054 + 0.777361i 0.716558π0.716558\pi
840840 0 0
841841 −20.0000 −0.689655
842842 −27.0000 −0.930481
843843 − 45.0333i − 1.55103i
844844 −10.0000 −0.344214
845845 0 0
846846 6.00000 0.206284
847847 0 0
848848 15.0000 0.515102
849849 8.00000 0.274559
850850 − 10.3923i − 0.356453i
851851 51.9615i 1.78122i
852852 − 6.92820i − 0.237356i
853853 25.9808i 0.889564i 0.895639 + 0.444782i 0.146719π0.146719\pi
−0.895639 + 0.444782i 0.853281π0.853281\pi
854854 0 0
855855 −6.00000 −0.205196
856856 10.3923i 0.355202i
857857 3.00000 0.102478 0.0512390 0.998686i 0.483683π-0.483683\pi
0.0512390 + 0.998686i 0.483683π0.483683\pi
858858 0 0
859859 −14.0000 −0.477674 −0.238837 0.971060i 0.576766π-0.576766\pi
−0.238837 + 0.971060i 0.576766π0.576766\pi
860860 13.8564i 0.472500i
861861 0 0
862862 −12.0000 −0.408722
863863 − 27.7128i − 0.943355i −0.881771 0.471678i 0.843649π-0.843649\pi
0.881771 0.471678i 0.156351π-0.156351\pi
864864 20.7846i 0.707107i
865865 − 10.3923i − 0.353349i
866866 − 29.4449i − 1.00058i
867867 −16.0000 −0.543388
868868 0 0
869869 0 0
870870 18.0000 0.610257
871871 0 0
872872 24.0000 0.812743
873873 6.92820i 0.234484i
874874 −36.0000 −1.21772
875875 0 0
876876 − 3.46410i − 0.117041i
877877 12.1244i 0.409410i 0.978824 + 0.204705i 0.0656236π0.0656236\pi
−0.978824 + 0.204705i 0.934376π0.934376\pi
878878 − 48.4974i − 1.63671i
879879 10.3923i 0.350524i
880880 0 0
881881 27.0000 0.909653 0.454827 0.890580i 0.349701π-0.349701\pi
0.454827 + 0.890580i 0.349701π0.349701\pi
882882 12.1244i 0.408248i
883883 10.0000 0.336527 0.168263 0.985742i 0.446184π-0.446184\pi
0.168263 + 0.985742i 0.446184π0.446184\pi
884884 0 0
885885 24.0000 0.806751
886886 − 20.7846i − 0.698273i
887887 36.0000 1.20876 0.604381 0.796696i 0.293421π-0.293421\pi
0.604381 + 0.796696i 0.293421π0.293421\pi
888888 30.0000 1.00673
889889 0 0
890890 20.7846i 0.696702i
891891 0 0
892892 − 10.3923i − 0.347960i
893893 −12.0000 −0.401565
894894 66.0000 2.20737
895895 0 0
896896 0 0
897897 0 0
898898 12.0000 0.400445
899899 10.3923i 0.346603i
900900 −2.00000 −0.0666667
901901 9.00000 0.299833
902902 0 0
903903 0 0
904904 − 25.9808i − 0.864107i
905905 − 19.0526i − 0.633328i
906906 −60.0000 −1.99337
907907 28.0000 0.929725 0.464862 0.885383i 0.346104π-0.346104\pi
0.464862 + 0.885383i 0.346104π0.346104\pi
908908 − 24.2487i − 0.804722i
909909 −3.00000 −0.0995037
910910 0 0
911911 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
912912 34.6410i 1.14708i
913913 0 0
914914 3.00000 0.0992312
915915 − 3.46410i − 0.114520i
916916 0 0
917917 0 0
918918 20.7846i 0.685994i
919919 22.0000 0.725713 0.362857 0.931845i 0.381802π-0.381802\pi
0.362857 + 0.931845i 0.381802π0.381802\pi
920920 −18.0000 −0.593442
921921 − 34.6410i − 1.14146i
922922 −39.0000 −1.28440
923923 0 0
924924 0 0
925925 − 17.3205i − 0.569495i
926926 −24.0000 −0.788689
927927 −10.0000 −0.328443
928928 − 15.5885i − 0.511716i
929929 − 46.7654i − 1.53432i −0.641455 0.767161i 0.721669π-0.721669\pi
0.641455 0.767161i 0.278331π-0.278331\pi
930930 20.7846i 0.681554i
931931 − 24.2487i − 0.794719i
932932 −6.00000 −0.196537
933933 −60.0000 −1.96431
934934 20.7846i 0.680093i
935935 0 0
936936 0 0
937937 7.00000 0.228680 0.114340 0.993442i 0.463525π-0.463525\pi
0.114340 + 0.993442i 0.463525π0.463525\pi
938938 0 0
939939 20.0000 0.652675
940940 6.00000 0.195698
941941 20.7846i 0.677559i 0.940866 + 0.338779i 0.110014π0.110014\pi
−0.940866 + 0.338779i 0.889986π0.889986\pi
942942 − 45.0333i − 1.46726i
943943 − 31.1769i − 1.01526i
944944 − 34.6410i − 1.12747i
945945 0 0
946946 0 0
947947 17.3205i 0.562841i 0.959585 + 0.281420i 0.0908056π0.0908056\pi
−0.959585 + 0.281420i 0.909194π0.909194\pi
948948 −8.00000 −0.259828
949949 0 0
950950 12.0000 0.389331
951951 − 10.3923i − 0.336994i
952952 0 0
953953 −6.00000 −0.194359 −0.0971795 0.995267i 0.530982π-0.530982\pi
−0.0971795 + 0.995267i 0.530982π0.530982\pi
954954 − 5.19615i − 0.168232i
955955 − 31.1769i − 1.00886i
956956 20.7846i 0.672222i
957957 0 0
958958 42.0000 1.35696
959959 0 0
960960 3.46410i 0.111803i
961961 19.0000 0.612903
962962 0 0
963963 6.00000 0.193347
964964 1.73205i 0.0557856i
965965 9.00000 0.289720
966966 0 0
967967 58.8897i 1.89377i 0.321578 + 0.946883i 0.395787π0.395787\pi
−0.321578 + 0.946883i 0.604213π0.604213\pi
968968 19.0526i 0.612372i
969969 20.7846i 0.667698i
970970 20.7846i 0.667354i
971971 6.00000 0.192549 0.0962746 0.995355i 0.469307π-0.469307\pi
0.0962746 + 0.995355i 0.469307π0.469307\pi
972972 10.0000 0.320750
973973 0 0
974974 12.0000 0.384505
975975 0 0
976976 −5.00000 −0.160046
977977 − 43.3013i − 1.38533i −0.721259 0.692665i 0.756436π-0.756436\pi
0.721259 0.692665i 0.243564π-0.243564\pi
978978 −72.0000 −2.30231
979979 0 0
980980 12.1244i 0.387298i
981981 − 13.8564i − 0.442401i
982982 20.7846i 0.663264i
983983 51.9615i 1.65732i 0.559756 + 0.828658i 0.310895π0.310895\pi
−0.559756 + 0.828658i 0.689105π0.689105\pi
984984 −18.0000 −0.573819
985985 −24.0000 −0.764704
986986 − 15.5885i − 0.496438i
987987 0 0
988988 0 0
989989 −48.0000 −1.52631
990990 0 0
991991 2.00000 0.0635321 0.0317660 0.999495i 0.489887π-0.489887\pi
0.0317660 + 0.999495i 0.489887π0.489887\pi
992992 18.0000 0.571501
993993 − 55.4256i − 1.75888i
994994 0 0
995995 3.46410i 0.109819i
996996 − 27.7128i − 0.878114i
997997 17.0000 0.538395 0.269198 0.963085i 0.413241π-0.413241\pi
0.269198 + 0.963085i 0.413241π0.413241\pi
998998 −54.0000 −1.70934
999999 34.6410i 1.09599i
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.2.b.a.168.2 2
3.2 odd 2 1521.2.b.a.1351.1 2
4.3 odd 2 2704.2.f.b.337.1 2
13.2 odd 12 169.2.c.a.22.1 4
13.3 even 3 13.2.e.a.4.1 2
13.4 even 6 13.2.e.a.10.1 yes 2
13.5 odd 4 169.2.a.a.1.2 2
13.6 odd 12 169.2.c.a.146.1 4
13.7 odd 12 169.2.c.a.146.2 4
13.8 odd 4 169.2.a.a.1.1 2
13.9 even 3 169.2.e.a.23.1 2
13.10 even 6 169.2.e.a.147.1 2
13.11 odd 12 169.2.c.a.22.2 4
13.12 even 2 inner 169.2.b.a.168.1 2
39.5 even 4 1521.2.a.k.1.1 2
39.8 even 4 1521.2.a.k.1.2 2
39.17 odd 6 117.2.q.c.10.1 2
39.29 odd 6 117.2.q.c.82.1 2
39.38 odd 2 1521.2.b.a.1351.2 2
52.3 odd 6 208.2.w.b.17.1 2
52.31 even 4 2704.2.a.o.1.1 2
52.43 odd 6 208.2.w.b.49.1 2
52.47 even 4 2704.2.a.o.1.2 2
52.51 odd 2 2704.2.f.b.337.2 2
65.3 odd 12 325.2.m.a.199.1 4
65.4 even 6 325.2.n.a.101.1 2
65.17 odd 12 325.2.m.a.49.1 4
65.29 even 6 325.2.n.a.251.1 2
65.34 odd 4 4225.2.a.v.1.2 2
65.42 odd 12 325.2.m.a.199.2 4
65.43 odd 12 325.2.m.a.49.2 4
65.44 odd 4 4225.2.a.v.1.1 2
91.3 odd 6 637.2.u.b.30.1 2
91.4 even 6 637.2.k.a.569.1 2
91.16 even 3 637.2.k.a.459.1 2
91.17 odd 6 637.2.k.c.569.1 2
91.30 even 6 637.2.u.c.361.1 2
91.34 even 4 8281.2.a.q.1.1 2
91.55 odd 6 637.2.q.a.589.1 2
91.68 odd 6 637.2.k.c.459.1 2
91.69 odd 6 637.2.q.a.491.1 2
91.81 even 3 637.2.u.c.30.1 2
91.82 odd 6 637.2.u.b.361.1 2
91.83 even 4 8281.2.a.q.1.2 2
104.3 odd 6 832.2.w.a.641.1 2
104.29 even 6 832.2.w.d.641.1 2
104.43 odd 6 832.2.w.a.257.1 2
104.69 even 6 832.2.w.d.257.1 2
156.95 even 6 1872.2.by.d.1297.1 2
156.107 even 6 1872.2.by.d.433.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.2.e.a.4.1 2 13.3 even 3
13.2.e.a.10.1 yes 2 13.4 even 6
117.2.q.c.10.1 2 39.17 odd 6
117.2.q.c.82.1 2 39.29 odd 6
169.2.a.a.1.1 2 13.8 odd 4
169.2.a.a.1.2 2 13.5 odd 4
169.2.b.a.168.1 2 13.12 even 2 inner
169.2.b.a.168.2 2 1.1 even 1 trivial
169.2.c.a.22.1 4 13.2 odd 12
169.2.c.a.22.2 4 13.11 odd 12
169.2.c.a.146.1 4 13.6 odd 12
169.2.c.a.146.2 4 13.7 odd 12
169.2.e.a.23.1 2 13.9 even 3
169.2.e.a.147.1 2 13.10 even 6
208.2.w.b.17.1 2 52.3 odd 6
208.2.w.b.49.1 2 52.43 odd 6
325.2.m.a.49.1 4 65.17 odd 12
325.2.m.a.49.2 4 65.43 odd 12
325.2.m.a.199.1 4 65.3 odd 12
325.2.m.a.199.2 4 65.42 odd 12
325.2.n.a.101.1 2 65.4 even 6
325.2.n.a.251.1 2 65.29 even 6
637.2.k.a.459.1 2 91.16 even 3
637.2.k.a.569.1 2 91.4 even 6
637.2.k.c.459.1 2 91.68 odd 6
637.2.k.c.569.1 2 91.17 odd 6
637.2.q.a.491.1 2 91.69 odd 6
637.2.q.a.589.1 2 91.55 odd 6
637.2.u.b.30.1 2 91.3 odd 6
637.2.u.b.361.1 2 91.82 odd 6
637.2.u.c.30.1 2 91.81 even 3
637.2.u.c.361.1 2 91.30 even 6
832.2.w.a.257.1 2 104.43 odd 6
832.2.w.a.641.1 2 104.3 odd 6
832.2.w.d.257.1 2 104.69 even 6
832.2.w.d.641.1 2 104.29 even 6
1521.2.a.k.1.1 2 39.5 even 4
1521.2.a.k.1.2 2 39.8 even 4
1521.2.b.a.1351.1 2 3.2 odd 2
1521.2.b.a.1351.2 2 39.38 odd 2
1872.2.by.d.433.1 2 156.107 even 6
1872.2.by.d.1297.1 2 156.95 even 6
2704.2.a.o.1.1 2 52.31 even 4
2704.2.a.o.1.2 2 52.47 even 4
2704.2.f.b.337.1 2 4.3 odd 2
2704.2.f.b.337.2 2 52.51 odd 2
4225.2.a.v.1.1 2 65.44 odd 4
4225.2.a.v.1.2 2 65.34 odd 4
8281.2.a.q.1.1 2 91.34 even 4
8281.2.a.q.1.2 2 91.83 even 4