Properties

Label 1521.2.a.k.1.1
Level $1521$
Weight $2$
Character 1521.1
Self dual yes
Analytic conductor $12.145$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1521,2,Mod(1,1521)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1521, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1521.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1521 = 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1521.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.1452461474\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 13)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 1521.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205 q^{2} +1.00000 q^{4} +1.73205 q^{5} +1.73205 q^{8} -3.00000 q^{10} -5.00000 q^{16} -3.00000 q^{17} -3.46410 q^{19} +1.73205 q^{20} -6.00000 q^{23} -2.00000 q^{25} -3.00000 q^{29} +3.46410 q^{31} +5.19615 q^{32} +5.19615 q^{34} +8.66025 q^{37} +6.00000 q^{38} +3.00000 q^{40} -5.19615 q^{41} -8.00000 q^{43} +10.3923 q^{46} -3.46410 q^{47} -7.00000 q^{49} +3.46410 q^{50} +3.00000 q^{53} +5.19615 q^{58} +6.92820 q^{59} +1.00000 q^{61} -6.00000 q^{62} +1.00000 q^{64} -3.46410 q^{67} -3.00000 q^{68} -3.46410 q^{71} -1.73205 q^{73} -15.0000 q^{74} -3.46410 q^{76} +4.00000 q^{79} -8.66025 q^{80} +9.00000 q^{82} -13.8564 q^{83} -5.19615 q^{85} +13.8564 q^{86} +6.92820 q^{89} -6.00000 q^{92} +6.00000 q^{94} -6.00000 q^{95} +6.92820 q^{97} +12.1244 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{4} - 6 q^{10} - 10 q^{16} - 6 q^{17} - 12 q^{23} - 4 q^{25} - 6 q^{29} + 12 q^{38} + 6 q^{40} - 16 q^{43} - 14 q^{49} + 6 q^{53} + 2 q^{61} - 12 q^{62} + 2 q^{64} - 6 q^{68} - 30 q^{74} + 8 q^{79}+ \cdots - 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.73205 −1.22474 −0.612372 0.790569i \(-0.709785\pi\)
−0.612372 + 0.790569i \(0.709785\pi\)
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 1.73205 0.774597 0.387298 0.921954i \(-0.373408\pi\)
0.387298 + 0.921954i \(0.373408\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 1.73205 0.612372
\(9\) 0 0
\(10\) −3.00000 −0.948683
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 0 0
\(16\) −5.00000 −1.25000
\(17\) −3.00000 −0.727607 −0.363803 0.931476i \(-0.618522\pi\)
−0.363803 + 0.931476i \(0.618522\pi\)
\(18\) 0 0
\(19\) −3.46410 −0.794719 −0.397360 0.917663i \(-0.630073\pi\)
−0.397360 + 0.917663i \(0.630073\pi\)
\(20\) 1.73205 0.387298
\(21\) 0 0
\(22\) 0 0
\(23\) −6.00000 −1.25109 −0.625543 0.780189i \(-0.715123\pi\)
−0.625543 + 0.780189i \(0.715123\pi\)
\(24\) 0 0
\(25\) −2.00000 −0.400000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.00000 −0.557086 −0.278543 0.960424i \(-0.589851\pi\)
−0.278543 + 0.960424i \(0.589851\pi\)
\(30\) 0 0
\(31\) 3.46410 0.622171 0.311086 0.950382i \(-0.399307\pi\)
0.311086 + 0.950382i \(0.399307\pi\)
\(32\) 5.19615 0.918559
\(33\) 0 0
\(34\) 5.19615 0.891133
\(35\) 0 0
\(36\) 0 0
\(37\) 8.66025 1.42374 0.711868 0.702313i \(-0.247849\pi\)
0.711868 + 0.702313i \(0.247849\pi\)
\(38\) 6.00000 0.973329
\(39\) 0 0
\(40\) 3.00000 0.474342
\(41\) −5.19615 −0.811503 −0.405751 0.913984i \(-0.632990\pi\)
−0.405751 + 0.913984i \(0.632990\pi\)
\(42\) 0 0
\(43\) −8.00000 −1.21999 −0.609994 0.792406i \(-0.708828\pi\)
−0.609994 + 0.792406i \(0.708828\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 10.3923 1.53226
\(47\) −3.46410 −0.505291 −0.252646 0.967559i \(-0.581301\pi\)
−0.252646 + 0.967559i \(0.581301\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) 3.46410 0.489898
\(51\) 0 0
\(52\) 0 0
\(53\) 3.00000 0.412082 0.206041 0.978543i \(-0.433942\pi\)
0.206041 + 0.978543i \(0.433942\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 5.19615 0.682288
\(59\) 6.92820 0.901975 0.450988 0.892530i \(-0.351072\pi\)
0.450988 + 0.892530i \(0.351072\pi\)
\(60\) 0 0
\(61\) 1.00000 0.128037 0.0640184 0.997949i \(-0.479608\pi\)
0.0640184 + 0.997949i \(0.479608\pi\)
\(62\) −6.00000 −0.762001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) −3.46410 −0.423207 −0.211604 0.977356i \(-0.567869\pi\)
−0.211604 + 0.977356i \(0.567869\pi\)
\(68\) −3.00000 −0.363803
\(69\) 0 0
\(70\) 0 0
\(71\) −3.46410 −0.411113 −0.205557 0.978645i \(-0.565900\pi\)
−0.205557 + 0.978645i \(0.565900\pi\)
\(72\) 0 0
\(73\) −1.73205 −0.202721 −0.101361 0.994850i \(-0.532320\pi\)
−0.101361 + 0.994850i \(0.532320\pi\)
\(74\) −15.0000 −1.74371
\(75\) 0 0
\(76\) −3.46410 −0.397360
\(77\) 0 0
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) −8.66025 −0.968246
\(81\) 0 0
\(82\) 9.00000 0.993884
\(83\) −13.8564 −1.52094 −0.760469 0.649374i \(-0.775031\pi\)
−0.760469 + 0.649374i \(0.775031\pi\)
\(84\) 0 0
\(85\) −5.19615 −0.563602
\(86\) 13.8564 1.49417
\(87\) 0 0
\(88\) 0 0
\(89\) 6.92820 0.734388 0.367194 0.930144i \(-0.380318\pi\)
0.367194 + 0.930144i \(0.380318\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −6.00000 −0.625543
\(93\) 0 0
\(94\) 6.00000 0.618853
\(95\) −6.00000 −0.615587
\(96\) 0 0
\(97\) 6.92820 0.703452 0.351726 0.936103i \(-0.385595\pi\)
0.351726 + 0.936103i \(0.385595\pi\)
\(98\) 12.1244 1.22474
\(99\) 0 0
\(100\) −2.00000 −0.200000
\(101\) −3.00000 −0.298511 −0.149256 0.988799i \(-0.547688\pi\)
−0.149256 + 0.988799i \(0.547688\pi\)
\(102\) 0 0
\(103\) 10.0000 0.985329 0.492665 0.870219i \(-0.336023\pi\)
0.492665 + 0.870219i \(0.336023\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −5.19615 −0.504695
\(107\) −6.00000 −0.580042 −0.290021 0.957020i \(-0.593662\pi\)
−0.290021 + 0.957020i \(0.593662\pi\)
\(108\) 0 0
\(109\) −13.8564 −1.32720 −0.663602 0.748086i \(-0.730973\pi\)
−0.663602 + 0.748086i \(0.730973\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 15.0000 1.41108 0.705541 0.708669i \(-0.250704\pi\)
0.705541 + 0.708669i \(0.250704\pi\)
\(114\) 0 0
\(115\) −10.3923 −0.969087
\(116\) −3.00000 −0.278543
\(117\) 0 0
\(118\) −12.0000 −1.10469
\(119\) 0 0
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) −1.73205 −0.156813
\(123\) 0 0
\(124\) 3.46410 0.311086
\(125\) −12.1244 −1.08444
\(126\) 0 0
\(127\) 2.00000 0.177471 0.0887357 0.996055i \(-0.471717\pi\)
0.0887357 + 0.996055i \(0.471717\pi\)
\(128\) −12.1244 −1.07165
\(129\) 0 0
\(130\) 0 0
\(131\) −18.0000 −1.57267 −0.786334 0.617802i \(-0.788023\pi\)
−0.786334 + 0.617802i \(0.788023\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 6.00000 0.518321
\(135\) 0 0
\(136\) −5.19615 −0.445566
\(137\) −15.5885 −1.33181 −0.665906 0.746036i \(-0.731955\pi\)
−0.665906 + 0.746036i \(0.731955\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 6.00000 0.503509
\(143\) 0 0
\(144\) 0 0
\(145\) −5.19615 −0.431517
\(146\) 3.00000 0.248282
\(147\) 0 0
\(148\) 8.66025 0.711868
\(149\) 19.0526 1.56085 0.780423 0.625252i \(-0.215004\pi\)
0.780423 + 0.625252i \(0.215004\pi\)
\(150\) 0 0
\(151\) −17.3205 −1.40952 −0.704761 0.709444i \(-0.748946\pi\)
−0.704761 + 0.709444i \(0.748946\pi\)
\(152\) −6.00000 −0.486664
\(153\) 0 0
\(154\) 0 0
\(155\) 6.00000 0.481932
\(156\) 0 0
\(157\) −13.0000 −1.03751 −0.518756 0.854922i \(-0.673605\pi\)
−0.518756 + 0.854922i \(0.673605\pi\)
\(158\) −6.92820 −0.551178
\(159\) 0 0
\(160\) 9.00000 0.711512
\(161\) 0 0
\(162\) 0 0
\(163\) −20.7846 −1.62798 −0.813988 0.580881i \(-0.802708\pi\)
−0.813988 + 0.580881i \(0.802708\pi\)
\(164\) −5.19615 −0.405751
\(165\) 0 0
\(166\) 24.0000 1.86276
\(167\) 13.8564 1.07224 0.536120 0.844141i \(-0.319889\pi\)
0.536120 + 0.844141i \(0.319889\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 9.00000 0.690268
\(171\) 0 0
\(172\) −8.00000 −0.609994
\(173\) 6.00000 0.456172 0.228086 0.973641i \(-0.426753\pi\)
0.228086 + 0.973641i \(0.426753\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) −12.0000 −0.899438
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) −11.0000 −0.817624 −0.408812 0.912619i \(-0.634057\pi\)
−0.408812 + 0.912619i \(0.634057\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −10.3923 −0.766131
\(185\) 15.0000 1.10282
\(186\) 0 0
\(187\) 0 0
\(188\) −3.46410 −0.252646
\(189\) 0 0
\(190\) 10.3923 0.753937
\(191\) −18.0000 −1.30243 −0.651217 0.758891i \(-0.725741\pi\)
−0.651217 + 0.758891i \(0.725741\pi\)
\(192\) 0 0
\(193\) −5.19615 −0.374027 −0.187014 0.982357i \(-0.559881\pi\)
−0.187014 + 0.982357i \(0.559881\pi\)
\(194\) −12.0000 −0.861550
\(195\) 0 0
\(196\) −7.00000 −0.500000
\(197\) 13.8564 0.987228 0.493614 0.869681i \(-0.335676\pi\)
0.493614 + 0.869681i \(0.335676\pi\)
\(198\) 0 0
\(199\) 2.00000 0.141776 0.0708881 0.997484i \(-0.477417\pi\)
0.0708881 + 0.997484i \(0.477417\pi\)
\(200\) −3.46410 −0.244949
\(201\) 0 0
\(202\) 5.19615 0.365600
\(203\) 0 0
\(204\) 0 0
\(205\) −9.00000 −0.628587
\(206\) −17.3205 −1.20678
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 10.0000 0.688428 0.344214 0.938891i \(-0.388145\pi\)
0.344214 + 0.938891i \(0.388145\pi\)
\(212\) 3.00000 0.206041
\(213\) 0 0
\(214\) 10.3923 0.710403
\(215\) −13.8564 −0.944999
\(216\) 0 0
\(217\) 0 0
\(218\) 24.0000 1.62549
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 10.3923 0.695920 0.347960 0.937509i \(-0.386874\pi\)
0.347960 + 0.937509i \(0.386874\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −25.9808 −1.72821
\(227\) −24.2487 −1.60944 −0.804722 0.593652i \(-0.797686\pi\)
−0.804722 + 0.593652i \(0.797686\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 18.0000 1.18688
\(231\) 0 0
\(232\) −5.19615 −0.341144
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 0 0
\(235\) −6.00000 −0.391397
\(236\) 6.92820 0.450988
\(237\) 0 0
\(238\) 0 0
\(239\) 20.7846 1.34444 0.672222 0.740349i \(-0.265340\pi\)
0.672222 + 0.740349i \(0.265340\pi\)
\(240\) 0 0
\(241\) 1.73205 0.111571 0.0557856 0.998443i \(-0.482234\pi\)
0.0557856 + 0.998443i \(0.482234\pi\)
\(242\) 19.0526 1.22474
\(243\) 0 0
\(244\) 1.00000 0.0640184
\(245\) −12.1244 −0.774597
\(246\) 0 0
\(247\) 0 0
\(248\) 6.00000 0.381000
\(249\) 0 0
\(250\) 21.0000 1.32816
\(251\) −18.0000 −1.13615 −0.568075 0.822977i \(-0.692312\pi\)
−0.568075 + 0.822977i \(0.692312\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −3.46410 −0.217357
\(255\) 0 0
\(256\) 19.0000 1.18750
\(257\) 3.00000 0.187135 0.0935674 0.995613i \(-0.470173\pi\)
0.0935674 + 0.995613i \(0.470173\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 31.1769 1.92612
\(263\) −12.0000 −0.739952 −0.369976 0.929041i \(-0.620634\pi\)
−0.369976 + 0.929041i \(0.620634\pi\)
\(264\) 0 0
\(265\) 5.19615 0.319197
\(266\) 0 0
\(267\) 0 0
\(268\) −3.46410 −0.211604
\(269\) 6.00000 0.365826 0.182913 0.983129i \(-0.441447\pi\)
0.182913 + 0.983129i \(0.441447\pi\)
\(270\) 0 0
\(271\) 20.7846 1.26258 0.631288 0.775549i \(-0.282527\pi\)
0.631288 + 0.775549i \(0.282527\pi\)
\(272\) 15.0000 0.909509
\(273\) 0 0
\(274\) 27.0000 1.63113
\(275\) 0 0
\(276\) 0 0
\(277\) 7.00000 0.420589 0.210295 0.977638i \(-0.432558\pi\)
0.210295 + 0.977638i \(0.432558\pi\)
\(278\) 6.92820 0.415526
\(279\) 0 0
\(280\) 0 0
\(281\) −22.5167 −1.34323 −0.671616 0.740900i \(-0.734399\pi\)
−0.671616 + 0.740900i \(0.734399\pi\)
\(282\) 0 0
\(283\) −4.00000 −0.237775 −0.118888 0.992908i \(-0.537933\pi\)
−0.118888 + 0.992908i \(0.537933\pi\)
\(284\) −3.46410 −0.205557
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 9.00000 0.528498
\(291\) 0 0
\(292\) −1.73205 −0.101361
\(293\) 5.19615 0.303562 0.151781 0.988414i \(-0.451499\pi\)
0.151781 + 0.988414i \(0.451499\pi\)
\(294\) 0 0
\(295\) 12.0000 0.698667
\(296\) 15.0000 0.871857
\(297\) 0 0
\(298\) −33.0000 −1.91164
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 30.0000 1.72631
\(303\) 0 0
\(304\) 17.3205 0.993399
\(305\) 1.73205 0.0991769
\(306\) 0 0
\(307\) 17.3205 0.988534 0.494267 0.869310i \(-0.335437\pi\)
0.494267 + 0.869310i \(0.335437\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −10.3923 −0.590243
\(311\) −30.0000 −1.70114 −0.850572 0.525859i \(-0.823744\pi\)
−0.850572 + 0.525859i \(0.823744\pi\)
\(312\) 0 0
\(313\) 10.0000 0.565233 0.282617 0.959233i \(-0.408798\pi\)
0.282617 + 0.959233i \(0.408798\pi\)
\(314\) 22.5167 1.27069
\(315\) 0 0
\(316\) 4.00000 0.225018
\(317\) 5.19615 0.291845 0.145922 0.989296i \(-0.453385\pi\)
0.145922 + 0.989296i \(0.453385\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 1.73205 0.0968246
\(321\) 0 0
\(322\) 0 0
\(323\) 10.3923 0.578243
\(324\) 0 0
\(325\) 0 0
\(326\) 36.0000 1.99386
\(327\) 0 0
\(328\) −9.00000 −0.496942
\(329\) 0 0
\(330\) 0 0
\(331\) −27.7128 −1.52323 −0.761617 0.648027i \(-0.775594\pi\)
−0.761617 + 0.648027i \(0.775594\pi\)
\(332\) −13.8564 −0.760469
\(333\) 0 0
\(334\) −24.0000 −1.31322
\(335\) −6.00000 −0.327815
\(336\) 0 0
\(337\) 23.0000 1.25289 0.626445 0.779466i \(-0.284509\pi\)
0.626445 + 0.779466i \(0.284509\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) −5.19615 −0.281801
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) −13.8564 −0.747087
\(345\) 0 0
\(346\) −10.3923 −0.558694
\(347\) 30.0000 1.61048 0.805242 0.592946i \(-0.202035\pi\)
0.805242 + 0.592946i \(0.202035\pi\)
\(348\) 0 0
\(349\) 13.8564 0.741716 0.370858 0.928689i \(-0.379064\pi\)
0.370858 + 0.928689i \(0.379064\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 32.9090 1.75157 0.875784 0.482704i \(-0.160345\pi\)
0.875784 + 0.482704i \(0.160345\pi\)
\(354\) 0 0
\(355\) −6.00000 −0.318447
\(356\) 6.92820 0.367194
\(357\) 0 0
\(358\) 0 0
\(359\) −6.92820 −0.365657 −0.182828 0.983145i \(-0.558525\pi\)
−0.182828 + 0.983145i \(0.558525\pi\)
\(360\) 0 0
\(361\) −7.00000 −0.368421
\(362\) 19.0526 1.00138
\(363\) 0 0
\(364\) 0 0
\(365\) −3.00000 −0.157027
\(366\) 0 0
\(367\) −22.0000 −1.14839 −0.574195 0.818718i \(-0.694685\pi\)
−0.574195 + 0.818718i \(0.694685\pi\)
\(368\) 30.0000 1.56386
\(369\) 0 0
\(370\) −25.9808 −1.35068
\(371\) 0 0
\(372\) 0 0
\(373\) 19.0000 0.983783 0.491891 0.870657i \(-0.336306\pi\)
0.491891 + 0.870657i \(0.336306\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −6.00000 −0.309426
\(377\) 0 0
\(378\) 0 0
\(379\) 24.2487 1.24557 0.622786 0.782392i \(-0.286001\pi\)
0.622786 + 0.782392i \(0.286001\pi\)
\(380\) −6.00000 −0.307794
\(381\) 0 0
\(382\) 31.1769 1.59515
\(383\) 20.7846 1.06204 0.531022 0.847358i \(-0.321808\pi\)
0.531022 + 0.847358i \(0.321808\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 9.00000 0.458088
\(387\) 0 0
\(388\) 6.92820 0.351726
\(389\) −9.00000 −0.456318 −0.228159 0.973624i \(-0.573271\pi\)
−0.228159 + 0.973624i \(0.573271\pi\)
\(390\) 0 0
\(391\) 18.0000 0.910299
\(392\) −12.1244 −0.612372
\(393\) 0 0
\(394\) −24.0000 −1.20910
\(395\) 6.92820 0.348596
\(396\) 0 0
\(397\) 13.8564 0.695433 0.347717 0.937600i \(-0.386957\pi\)
0.347717 + 0.937600i \(0.386957\pi\)
\(398\) −3.46410 −0.173640
\(399\) 0 0
\(400\) 10.0000 0.500000
\(401\) 1.73205 0.0864945 0.0432472 0.999064i \(-0.486230\pi\)
0.0432472 + 0.999064i \(0.486230\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −3.00000 −0.149256
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 15.5885 0.770800 0.385400 0.922750i \(-0.374064\pi\)
0.385400 + 0.922750i \(0.374064\pi\)
\(410\) 15.5885 0.769859
\(411\) 0 0
\(412\) 10.0000 0.492665
\(413\) 0 0
\(414\) 0 0
\(415\) −24.0000 −1.17811
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −18.0000 −0.879358 −0.439679 0.898155i \(-0.644908\pi\)
−0.439679 + 0.898155i \(0.644908\pi\)
\(420\) 0 0
\(421\) 15.5885 0.759735 0.379867 0.925041i \(-0.375970\pi\)
0.379867 + 0.925041i \(0.375970\pi\)
\(422\) −17.3205 −0.843149
\(423\) 0 0
\(424\) 5.19615 0.252347
\(425\) 6.00000 0.291043
\(426\) 0 0
\(427\) 0 0
\(428\) −6.00000 −0.290021
\(429\) 0 0
\(430\) 24.0000 1.15738
\(431\) −6.92820 −0.333720 −0.166860 0.985981i \(-0.553363\pi\)
−0.166860 + 0.985981i \(0.553363\pi\)
\(432\) 0 0
\(433\) 17.0000 0.816968 0.408484 0.912766i \(-0.366058\pi\)
0.408484 + 0.912766i \(0.366058\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −13.8564 −0.663602
\(437\) 20.7846 0.994263
\(438\) 0 0
\(439\) 28.0000 1.33637 0.668184 0.743996i \(-0.267072\pi\)
0.668184 + 0.743996i \(0.267072\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 12.0000 0.570137 0.285069 0.958507i \(-0.407984\pi\)
0.285069 + 0.958507i \(0.407984\pi\)
\(444\) 0 0
\(445\) 12.0000 0.568855
\(446\) −18.0000 −0.852325
\(447\) 0 0
\(448\) 0 0
\(449\) −6.92820 −0.326962 −0.163481 0.986546i \(-0.552272\pi\)
−0.163481 + 0.986546i \(0.552272\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 15.0000 0.705541
\(453\) 0 0
\(454\) 42.0000 1.97116
\(455\) 0 0
\(456\) 0 0
\(457\) −1.73205 −0.0810219 −0.0405110 0.999179i \(-0.512899\pi\)
−0.0405110 + 0.999179i \(0.512899\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) −10.3923 −0.484544
\(461\) −22.5167 −1.04871 −0.524353 0.851501i \(-0.675693\pi\)
−0.524353 + 0.851501i \(0.675693\pi\)
\(462\) 0 0
\(463\) −13.8564 −0.643962 −0.321981 0.946746i \(-0.604349\pi\)
−0.321981 + 0.946746i \(0.604349\pi\)
\(464\) 15.0000 0.696358
\(465\) 0 0
\(466\) −10.3923 −0.481414
\(467\) 12.0000 0.555294 0.277647 0.960683i \(-0.410445\pi\)
0.277647 + 0.960683i \(0.410445\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 10.3923 0.479361
\(471\) 0 0
\(472\) 12.0000 0.552345
\(473\) 0 0
\(474\) 0 0
\(475\) 6.92820 0.317888
\(476\) 0 0
\(477\) 0 0
\(478\) −36.0000 −1.64660
\(479\) −24.2487 −1.10795 −0.553976 0.832533i \(-0.686890\pi\)
−0.553976 + 0.832533i \(0.686890\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −3.00000 −0.136646
\(483\) 0 0
\(484\) −11.0000 −0.500000
\(485\) 12.0000 0.544892
\(486\) 0 0
\(487\) −6.92820 −0.313947 −0.156973 0.987603i \(-0.550174\pi\)
−0.156973 + 0.987603i \(0.550174\pi\)
\(488\) 1.73205 0.0784063
\(489\) 0 0
\(490\) 21.0000 0.948683
\(491\) 12.0000 0.541552 0.270776 0.962642i \(-0.412720\pi\)
0.270776 + 0.962642i \(0.412720\pi\)
\(492\) 0 0
\(493\) 9.00000 0.405340
\(494\) 0 0
\(495\) 0 0
\(496\) −17.3205 −0.777714
\(497\) 0 0
\(498\) 0 0
\(499\) 31.1769 1.39567 0.697835 0.716258i \(-0.254147\pi\)
0.697835 + 0.716258i \(0.254147\pi\)
\(500\) −12.1244 −0.542218
\(501\) 0 0
\(502\) 31.1769 1.39149
\(503\) −36.0000 −1.60516 −0.802580 0.596544i \(-0.796540\pi\)
−0.802580 + 0.596544i \(0.796540\pi\)
\(504\) 0 0
\(505\) −5.19615 −0.231226
\(506\) 0 0
\(507\) 0 0
\(508\) 2.00000 0.0887357
\(509\) 19.0526 0.844490 0.422245 0.906482i \(-0.361242\pi\)
0.422245 + 0.906482i \(0.361242\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −8.66025 −0.382733
\(513\) 0 0
\(514\) −5.19615 −0.229192
\(515\) 17.3205 0.763233
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −9.00000 −0.394297 −0.197149 0.980374i \(-0.563168\pi\)
−0.197149 + 0.980374i \(0.563168\pi\)
\(522\) 0 0
\(523\) −16.0000 −0.699631 −0.349816 0.936819i \(-0.613756\pi\)
−0.349816 + 0.936819i \(0.613756\pi\)
\(524\) −18.0000 −0.786334
\(525\) 0 0
\(526\) 20.7846 0.906252
\(527\) −10.3923 −0.452696
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) −9.00000 −0.390935
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −10.3923 −0.449299
\(536\) −6.00000 −0.259161
\(537\) 0 0
\(538\) −10.3923 −0.448044
\(539\) 0 0
\(540\) 0 0
\(541\) −29.4449 −1.26593 −0.632967 0.774179i \(-0.718163\pi\)
−0.632967 + 0.774179i \(0.718163\pi\)
\(542\) −36.0000 −1.54633
\(543\) 0 0
\(544\) −15.5885 −0.668350
\(545\) −24.0000 −1.02805
\(546\) 0 0
\(547\) −22.0000 −0.940652 −0.470326 0.882493i \(-0.655864\pi\)
−0.470326 + 0.882493i \(0.655864\pi\)
\(548\) −15.5885 −0.665906
\(549\) 0 0
\(550\) 0 0
\(551\) 10.3923 0.442727
\(552\) 0 0
\(553\) 0 0
\(554\) −12.1244 −0.515115
\(555\) 0 0
\(556\) −4.00000 −0.169638
\(557\) 15.5885 0.660504 0.330252 0.943893i \(-0.392866\pi\)
0.330252 + 0.943893i \(0.392866\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 39.0000 1.64512
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 25.9808 1.09302
\(566\) 6.92820 0.291214
\(567\) 0 0
\(568\) −6.00000 −0.251754
\(569\) −42.0000 −1.76073 −0.880366 0.474295i \(-0.842703\pi\)
−0.880366 + 0.474295i \(0.842703\pi\)
\(570\) 0 0
\(571\) −40.0000 −1.67395 −0.836974 0.547243i \(-0.815677\pi\)
−0.836974 + 0.547243i \(0.815677\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 12.0000 0.500435
\(576\) 0 0
\(577\) −19.0526 −0.793168 −0.396584 0.917998i \(-0.629805\pi\)
−0.396584 + 0.917998i \(0.629805\pi\)
\(578\) 13.8564 0.576351
\(579\) 0 0
\(580\) −5.19615 −0.215758
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) −3.00000 −0.124141
\(585\) 0 0
\(586\) −9.00000 −0.371787
\(587\) −20.7846 −0.857873 −0.428936 0.903335i \(-0.641112\pi\)
−0.428936 + 0.903335i \(0.641112\pi\)
\(588\) 0 0
\(589\) −12.0000 −0.494451
\(590\) −20.7846 −0.855689
\(591\) 0 0
\(592\) −43.3013 −1.77967
\(593\) −25.9808 −1.06690 −0.533451 0.845831i \(-0.679105\pi\)
−0.533451 + 0.845831i \(0.679105\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 19.0526 0.780423
\(597\) 0 0
\(598\) 0 0
\(599\) −30.0000 −1.22577 −0.612883 0.790173i \(-0.709990\pi\)
−0.612883 + 0.790173i \(0.709990\pi\)
\(600\) 0 0
\(601\) 25.0000 1.01977 0.509886 0.860242i \(-0.329688\pi\)
0.509886 + 0.860242i \(0.329688\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −17.3205 −0.704761
\(605\) −19.0526 −0.774597
\(606\) 0 0
\(607\) −34.0000 −1.38002 −0.690009 0.723801i \(-0.742393\pi\)
−0.690009 + 0.723801i \(0.742393\pi\)
\(608\) −18.0000 −0.729996
\(609\) 0 0
\(610\) −3.00000 −0.121466
\(611\) 0 0
\(612\) 0 0
\(613\) 12.1244 0.489698 0.244849 0.969561i \(-0.421262\pi\)
0.244849 + 0.969561i \(0.421262\pi\)
\(614\) −30.0000 −1.21070
\(615\) 0 0
\(616\) 0 0
\(617\) 22.5167 0.906487 0.453243 0.891387i \(-0.350267\pi\)
0.453243 + 0.891387i \(0.350267\pi\)
\(618\) 0 0
\(619\) 20.7846 0.835404 0.417702 0.908584i \(-0.362836\pi\)
0.417702 + 0.908584i \(0.362836\pi\)
\(620\) 6.00000 0.240966
\(621\) 0 0
\(622\) 51.9615 2.08347
\(623\) 0 0
\(624\) 0 0
\(625\) −11.0000 −0.440000
\(626\) −17.3205 −0.692267
\(627\) 0 0
\(628\) −13.0000 −0.518756
\(629\) −25.9808 −1.03592
\(630\) 0 0
\(631\) 48.4974 1.93065 0.965326 0.261048i \(-0.0840679\pi\)
0.965326 + 0.261048i \(0.0840679\pi\)
\(632\) 6.92820 0.275589
\(633\) 0 0
\(634\) −9.00000 −0.357436
\(635\) 3.46410 0.137469
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) −21.0000 −0.830098
\(641\) 33.0000 1.30342 0.651711 0.758468i \(-0.274052\pi\)
0.651711 + 0.758468i \(0.274052\pi\)
\(642\) 0 0
\(643\) 13.8564 0.546443 0.273222 0.961951i \(-0.411911\pi\)
0.273222 + 0.961951i \(0.411911\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −18.0000 −0.708201
\(647\) 18.0000 0.707653 0.353827 0.935311i \(-0.384880\pi\)
0.353827 + 0.935311i \(0.384880\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −20.7846 −0.813988
\(653\) 30.0000 1.17399 0.586995 0.809590i \(-0.300311\pi\)
0.586995 + 0.809590i \(0.300311\pi\)
\(654\) 0 0
\(655\) −31.1769 −1.21818
\(656\) 25.9808 1.01438
\(657\) 0 0
\(658\) 0 0
\(659\) 12.0000 0.467454 0.233727 0.972302i \(-0.424908\pi\)
0.233727 + 0.972302i \(0.424908\pi\)
\(660\) 0 0
\(661\) −46.7654 −1.81896 −0.909481 0.415745i \(-0.863521\pi\)
−0.909481 + 0.415745i \(0.863521\pi\)
\(662\) 48.0000 1.86557
\(663\) 0 0
\(664\) −24.0000 −0.931381
\(665\) 0 0
\(666\) 0 0
\(667\) 18.0000 0.696963
\(668\) 13.8564 0.536120
\(669\) 0 0
\(670\) 10.3923 0.401490
\(671\) 0 0
\(672\) 0 0
\(673\) 19.0000 0.732396 0.366198 0.930537i \(-0.380659\pi\)
0.366198 + 0.930537i \(0.380659\pi\)
\(674\) −39.8372 −1.53447
\(675\) 0 0
\(676\) 0 0
\(677\) 6.00000 0.230599 0.115299 0.993331i \(-0.463217\pi\)
0.115299 + 0.993331i \(0.463217\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −9.00000 −0.345134
\(681\) 0 0
\(682\) 0 0
\(683\) 24.2487 0.927851 0.463926 0.885874i \(-0.346441\pi\)
0.463926 + 0.885874i \(0.346441\pi\)
\(684\) 0 0
\(685\) −27.0000 −1.03162
\(686\) 0 0
\(687\) 0 0
\(688\) 40.0000 1.52499
\(689\) 0 0
\(690\) 0 0
\(691\) −13.8564 −0.527123 −0.263561 0.964643i \(-0.584897\pi\)
−0.263561 + 0.964643i \(0.584897\pi\)
\(692\) 6.00000 0.228086
\(693\) 0 0
\(694\) −51.9615 −1.97243
\(695\) −6.92820 −0.262802
\(696\) 0 0
\(697\) 15.5885 0.590455
\(698\) −24.0000 −0.908413
\(699\) 0 0
\(700\) 0 0
\(701\) 18.0000 0.679851 0.339925 0.940452i \(-0.389598\pi\)
0.339925 + 0.940452i \(0.389598\pi\)
\(702\) 0 0
\(703\) −30.0000 −1.13147
\(704\) 0 0
\(705\) 0 0
\(706\) −57.0000 −2.14522
\(707\) 0 0
\(708\) 0 0
\(709\) 5.19615 0.195146 0.0975728 0.995228i \(-0.468892\pi\)
0.0975728 + 0.995228i \(0.468892\pi\)
\(710\) 10.3923 0.390016
\(711\) 0 0
\(712\) 12.0000 0.449719
\(713\) −20.7846 −0.778390
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 12.0000 0.447836
\(719\) −48.0000 −1.79010 −0.895049 0.445968i \(-0.852860\pi\)
−0.895049 + 0.445968i \(0.852860\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 12.1244 0.451222
\(723\) 0 0
\(724\) −11.0000 −0.408812
\(725\) 6.00000 0.222834
\(726\) 0 0
\(727\) 32.0000 1.18681 0.593407 0.804902i \(-0.297782\pi\)
0.593407 + 0.804902i \(0.297782\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 5.19615 0.192318
\(731\) 24.0000 0.887672
\(732\) 0 0
\(733\) 12.1244 0.447823 0.223912 0.974609i \(-0.428117\pi\)
0.223912 + 0.974609i \(0.428117\pi\)
\(734\) 38.1051 1.40649
\(735\) 0 0
\(736\) −31.1769 −1.14920
\(737\) 0 0
\(738\) 0 0
\(739\) −20.7846 −0.764574 −0.382287 0.924044i \(-0.624863\pi\)
−0.382287 + 0.924044i \(0.624863\pi\)
\(740\) 15.0000 0.551411
\(741\) 0 0
\(742\) 0 0
\(743\) −34.6410 −1.27086 −0.635428 0.772160i \(-0.719176\pi\)
−0.635428 + 0.772160i \(0.719176\pi\)
\(744\) 0 0
\(745\) 33.0000 1.20903
\(746\) −32.9090 −1.20488
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 16.0000 0.583848 0.291924 0.956441i \(-0.405705\pi\)
0.291924 + 0.956441i \(0.405705\pi\)
\(752\) 17.3205 0.631614
\(753\) 0 0
\(754\) 0 0
\(755\) −30.0000 −1.09181
\(756\) 0 0
\(757\) −26.0000 −0.944986 −0.472493 0.881334i \(-0.656646\pi\)
−0.472493 + 0.881334i \(0.656646\pi\)
\(758\) −42.0000 −1.52551
\(759\) 0 0
\(760\) −10.3923 −0.376969
\(761\) 34.6410 1.25574 0.627868 0.778320i \(-0.283928\pi\)
0.627868 + 0.778320i \(0.283928\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −18.0000 −0.651217
\(765\) 0 0
\(766\) −36.0000 −1.30073
\(767\) 0 0
\(768\) 0 0
\(769\) −6.92820 −0.249837 −0.124919 0.992167i \(-0.539867\pi\)
−0.124919 + 0.992167i \(0.539867\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −5.19615 −0.187014
\(773\) 34.6410 1.24595 0.622975 0.782241i \(-0.285924\pi\)
0.622975 + 0.782241i \(0.285924\pi\)
\(774\) 0 0
\(775\) −6.92820 −0.248868
\(776\) 12.0000 0.430775
\(777\) 0 0
\(778\) 15.5885 0.558873
\(779\) 18.0000 0.644917
\(780\) 0 0
\(781\) 0 0
\(782\) −31.1769 −1.11488
\(783\) 0 0
\(784\) 35.0000 1.25000
\(785\) −22.5167 −0.803654
\(786\) 0 0
\(787\) −38.1051 −1.35830 −0.679150 0.733999i \(-0.737652\pi\)
−0.679150 + 0.733999i \(0.737652\pi\)
\(788\) 13.8564 0.493614
\(789\) 0 0
\(790\) −12.0000 −0.426941
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) −24.0000 −0.851728
\(795\) 0 0
\(796\) 2.00000 0.0708881
\(797\) 42.0000 1.48772 0.743858 0.668338i \(-0.232994\pi\)
0.743858 + 0.668338i \(0.232994\pi\)
\(798\) 0 0
\(799\) 10.3923 0.367653
\(800\) −10.3923 −0.367423
\(801\) 0 0
\(802\) −3.00000 −0.105934
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) −5.19615 −0.182800
\(809\) −33.0000 −1.16022 −0.580109 0.814539i \(-0.696990\pi\)
−0.580109 + 0.814539i \(0.696990\pi\)
\(810\) 0 0
\(811\) −38.1051 −1.33805 −0.669026 0.743239i \(-0.733288\pi\)
−0.669026 + 0.743239i \(0.733288\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −36.0000 −1.26102
\(816\) 0 0
\(817\) 27.7128 0.969549
\(818\) −27.0000 −0.944033
\(819\) 0 0
\(820\) −9.00000 −0.314294
\(821\) −41.5692 −1.45078 −0.725388 0.688340i \(-0.758340\pi\)
−0.725388 + 0.688340i \(0.758340\pi\)
\(822\) 0 0
\(823\) 4.00000 0.139431 0.0697156 0.997567i \(-0.477791\pi\)
0.0697156 + 0.997567i \(0.477791\pi\)
\(824\) 17.3205 0.603388
\(825\) 0 0
\(826\) 0 0
\(827\) 20.7846 0.722752 0.361376 0.932420i \(-0.382307\pi\)
0.361376 + 0.932420i \(0.382307\pi\)
\(828\) 0 0
\(829\) −25.0000 −0.868286 −0.434143 0.900844i \(-0.642949\pi\)
−0.434143 + 0.900844i \(0.642949\pi\)
\(830\) 41.5692 1.44289
\(831\) 0 0
\(832\) 0 0
\(833\) 21.0000 0.727607
\(834\) 0 0
\(835\) 24.0000 0.830554
\(836\) 0 0
\(837\) 0 0
\(838\) 31.1769 1.07699
\(839\) 45.0333 1.55472 0.777361 0.629054i \(-0.216558\pi\)
0.777361 + 0.629054i \(0.216558\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) −27.0000 −0.930481
\(843\) 0 0
\(844\) 10.0000 0.344214
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) −15.0000 −0.515102
\(849\) 0 0
\(850\) −10.3923 −0.356453
\(851\) −51.9615 −1.78122
\(852\) 0 0
\(853\) −25.9808 −0.889564 −0.444782 0.895639i \(-0.646719\pi\)
−0.444782 + 0.895639i \(0.646719\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −10.3923 −0.355202
\(857\) 3.00000 0.102478 0.0512390 0.998686i \(-0.483683\pi\)
0.0512390 + 0.998686i \(0.483683\pi\)
\(858\) 0 0
\(859\) −14.0000 −0.477674 −0.238837 0.971060i \(-0.576766\pi\)
−0.238837 + 0.971060i \(0.576766\pi\)
\(860\) −13.8564 −0.472500
\(861\) 0 0
\(862\) 12.0000 0.408722
\(863\) 27.7128 0.943355 0.471678 0.881771i \(-0.343649\pi\)
0.471678 + 0.881771i \(0.343649\pi\)
\(864\) 0 0
\(865\) 10.3923 0.353349
\(866\) −29.4449 −1.00058
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −24.0000 −0.812743
\(873\) 0 0
\(874\) −36.0000 −1.21772
\(875\) 0 0
\(876\) 0 0
\(877\) 12.1244 0.409410 0.204705 0.978824i \(-0.434376\pi\)
0.204705 + 0.978824i \(0.434376\pi\)
\(878\) −48.4974 −1.63671
\(879\) 0 0
\(880\) 0 0
\(881\) 27.0000 0.909653 0.454827 0.890580i \(-0.349701\pi\)
0.454827 + 0.890580i \(0.349701\pi\)
\(882\) 0 0
\(883\) −10.0000 −0.336527 −0.168263 0.985742i \(-0.553816\pi\)
−0.168263 + 0.985742i \(0.553816\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −20.7846 −0.698273
\(887\) −36.0000 −1.20876 −0.604381 0.796696i \(-0.706579\pi\)
−0.604381 + 0.796696i \(0.706579\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −20.7846 −0.696702
\(891\) 0 0
\(892\) 10.3923 0.347960
\(893\) 12.0000 0.401565
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 12.0000 0.400445
\(899\) −10.3923 −0.346603
\(900\) 0 0
\(901\) −9.00000 −0.299833
\(902\) 0 0
\(903\) 0 0
\(904\) 25.9808 0.864107
\(905\) −19.0526 −0.633328
\(906\) 0 0
\(907\) −28.0000 −0.929725 −0.464862 0.885383i \(-0.653896\pi\)
−0.464862 + 0.885383i \(0.653896\pi\)
\(908\) −24.2487 −0.804722
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 3.00000 0.0992312
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 22.0000 0.725713 0.362857 0.931845i \(-0.381802\pi\)
0.362857 + 0.931845i \(0.381802\pi\)
\(920\) −18.0000 −0.593442
\(921\) 0 0
\(922\) 39.0000 1.28440
\(923\) 0 0
\(924\) 0 0
\(925\) −17.3205 −0.569495
\(926\) 24.0000 0.788689
\(927\) 0 0
\(928\) −15.5885 −0.511716
\(929\) 46.7654 1.53432 0.767161 0.641455i \(-0.221669\pi\)
0.767161 + 0.641455i \(0.221669\pi\)
\(930\) 0 0
\(931\) 24.2487 0.794719
\(932\) 6.00000 0.196537
\(933\) 0 0
\(934\) −20.7846 −0.680093
\(935\) 0 0
\(936\) 0 0
\(937\) 7.00000 0.228680 0.114340 0.993442i \(-0.463525\pi\)
0.114340 + 0.993442i \(0.463525\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −6.00000 −0.195698
\(941\) −20.7846 −0.677559 −0.338779 0.940866i \(-0.610014\pi\)
−0.338779 + 0.940866i \(0.610014\pi\)
\(942\) 0 0
\(943\) 31.1769 1.01526
\(944\) −34.6410 −1.12747
\(945\) 0 0
\(946\) 0 0
\(947\) 17.3205 0.562841 0.281420 0.959585i \(-0.409194\pi\)
0.281420 + 0.959585i \(0.409194\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −12.0000 −0.389331
\(951\) 0 0
\(952\) 0 0
\(953\) −6.00000 −0.194359 −0.0971795 0.995267i \(-0.530982\pi\)
−0.0971795 + 0.995267i \(0.530982\pi\)
\(954\) 0 0
\(955\) −31.1769 −1.00886
\(956\) 20.7846 0.672222
\(957\) 0 0
\(958\) 42.0000 1.35696
\(959\) 0 0
\(960\) 0 0
\(961\) −19.0000 −0.612903
\(962\) 0 0
\(963\) 0 0
\(964\) 1.73205 0.0557856
\(965\) −9.00000 −0.289720
\(966\) 0 0
\(967\) 58.8897 1.89377 0.946883 0.321578i \(-0.104213\pi\)
0.946883 + 0.321578i \(0.104213\pi\)
\(968\) −19.0526 −0.612372
\(969\) 0 0
\(970\) −20.7846 −0.667354
\(971\) −6.00000 −0.192549 −0.0962746 0.995355i \(-0.530693\pi\)
−0.0962746 + 0.995355i \(0.530693\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 12.0000 0.384505
\(975\) 0 0
\(976\) −5.00000 −0.160046
\(977\) 43.3013 1.38533 0.692665 0.721259i \(-0.256436\pi\)
0.692665 + 0.721259i \(0.256436\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −12.1244 −0.387298
\(981\) 0 0
\(982\) −20.7846 −0.663264
\(983\) 51.9615 1.65732 0.828658 0.559756i \(-0.189105\pi\)
0.828658 + 0.559756i \(0.189105\pi\)
\(984\) 0 0
\(985\) 24.0000 0.764704
\(986\) −15.5885 −0.496438
\(987\) 0 0
\(988\) 0 0
\(989\) 48.0000 1.52631
\(990\) 0 0
\(991\) 2.00000 0.0635321 0.0317660 0.999495i \(-0.489887\pi\)
0.0317660 + 0.999495i \(0.489887\pi\)
\(992\) 18.0000 0.571501
\(993\) 0 0
\(994\) 0 0
\(995\) 3.46410 0.109819
\(996\) 0 0
\(997\) 17.0000 0.538395 0.269198 0.963085i \(-0.413241\pi\)
0.269198 + 0.963085i \(0.413241\pi\)
\(998\) −54.0000 −1.70934
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1521.2.a.k.1.1 2
3.2 odd 2 169.2.a.a.1.2 2
12.11 even 2 2704.2.a.o.1.1 2
13.5 odd 4 1521.2.b.a.1351.2 2
13.6 odd 12 117.2.q.c.10.1 2
13.8 odd 4 1521.2.b.a.1351.1 2
13.11 odd 12 117.2.q.c.82.1 2
13.12 even 2 inner 1521.2.a.k.1.2 2
15.14 odd 2 4225.2.a.v.1.1 2
21.20 even 2 8281.2.a.q.1.2 2
39.2 even 12 169.2.e.a.147.1 2
39.5 even 4 169.2.b.a.168.1 2
39.8 even 4 169.2.b.a.168.2 2
39.11 even 12 13.2.e.a.4.1 2
39.17 odd 6 169.2.c.a.146.2 4
39.20 even 12 169.2.e.a.23.1 2
39.23 odd 6 169.2.c.a.22.2 4
39.29 odd 6 169.2.c.a.22.1 4
39.32 even 12 13.2.e.a.10.1 yes 2
39.35 odd 6 169.2.c.a.146.1 4
39.38 odd 2 169.2.a.a.1.1 2
52.11 even 12 1872.2.by.d.433.1 2
52.19 even 12 1872.2.by.d.1297.1 2
156.11 odd 12 208.2.w.b.17.1 2
156.47 odd 4 2704.2.f.b.337.1 2
156.71 odd 12 208.2.w.b.49.1 2
156.83 odd 4 2704.2.f.b.337.2 2
156.155 even 2 2704.2.a.o.1.2 2
195.32 odd 12 325.2.m.a.49.1 4
195.89 even 12 325.2.n.a.251.1 2
195.128 odd 12 325.2.m.a.199.1 4
195.149 even 12 325.2.n.a.101.1 2
195.167 odd 12 325.2.m.a.199.2 4
195.188 odd 12 325.2.m.a.49.2 4
195.194 odd 2 4225.2.a.v.1.2 2
273.11 even 12 637.2.u.c.30.1 2
273.32 even 12 637.2.k.a.569.1 2
273.89 odd 12 637.2.k.c.459.1 2
273.110 odd 12 637.2.u.b.361.1 2
273.128 even 12 637.2.k.a.459.1 2
273.149 even 12 637.2.u.c.361.1 2
273.167 odd 12 637.2.q.a.589.1 2
273.188 odd 12 637.2.q.a.491.1 2
273.206 odd 12 637.2.u.b.30.1 2
273.227 odd 12 637.2.k.c.569.1 2
273.272 even 2 8281.2.a.q.1.1 2
312.11 odd 12 832.2.w.a.641.1 2
312.149 even 12 832.2.w.d.257.1 2
312.227 odd 12 832.2.w.a.257.1 2
312.245 even 12 832.2.w.d.641.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.2.e.a.4.1 2 39.11 even 12
13.2.e.a.10.1 yes 2 39.32 even 12
117.2.q.c.10.1 2 13.6 odd 12
117.2.q.c.82.1 2 13.11 odd 12
169.2.a.a.1.1 2 39.38 odd 2
169.2.a.a.1.2 2 3.2 odd 2
169.2.b.a.168.1 2 39.5 even 4
169.2.b.a.168.2 2 39.8 even 4
169.2.c.a.22.1 4 39.29 odd 6
169.2.c.a.22.2 4 39.23 odd 6
169.2.c.a.146.1 4 39.35 odd 6
169.2.c.a.146.2 4 39.17 odd 6
169.2.e.a.23.1 2 39.20 even 12
169.2.e.a.147.1 2 39.2 even 12
208.2.w.b.17.1 2 156.11 odd 12
208.2.w.b.49.1 2 156.71 odd 12
325.2.m.a.49.1 4 195.32 odd 12
325.2.m.a.49.2 4 195.188 odd 12
325.2.m.a.199.1 4 195.128 odd 12
325.2.m.a.199.2 4 195.167 odd 12
325.2.n.a.101.1 2 195.149 even 12
325.2.n.a.251.1 2 195.89 even 12
637.2.k.a.459.1 2 273.128 even 12
637.2.k.a.569.1 2 273.32 even 12
637.2.k.c.459.1 2 273.89 odd 12
637.2.k.c.569.1 2 273.227 odd 12
637.2.q.a.491.1 2 273.188 odd 12
637.2.q.a.589.1 2 273.167 odd 12
637.2.u.b.30.1 2 273.206 odd 12
637.2.u.b.361.1 2 273.110 odd 12
637.2.u.c.30.1 2 273.11 even 12
637.2.u.c.361.1 2 273.149 even 12
832.2.w.a.257.1 2 312.227 odd 12
832.2.w.a.641.1 2 312.11 odd 12
832.2.w.d.257.1 2 312.149 even 12
832.2.w.d.641.1 2 312.245 even 12
1521.2.a.k.1.1 2 1.1 even 1 trivial
1521.2.a.k.1.2 2 13.12 even 2 inner
1521.2.b.a.1351.1 2 13.8 odd 4
1521.2.b.a.1351.2 2 13.5 odd 4
1872.2.by.d.433.1 2 52.11 even 12
1872.2.by.d.1297.1 2 52.19 even 12
2704.2.a.o.1.1 2 12.11 even 2
2704.2.a.o.1.2 2 156.155 even 2
2704.2.f.b.337.1 2 156.47 odd 4
2704.2.f.b.337.2 2 156.83 odd 4
4225.2.a.v.1.1 2 15.14 odd 2
4225.2.a.v.1.2 2 195.194 odd 2
8281.2.a.q.1.1 2 273.272 even 2
8281.2.a.q.1.2 2 21.20 even 2