Properties

Label 325.2.n.a.251.1
Level $325$
Weight $2$
Character 325.251
Analytic conductor $2.595$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,2,Mod(101,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.101");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 325.n (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.59513806569\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 251.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 325.251
Dual form 325.2.n.a.101.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.50000 + 0.866025i) q^{2} +(1.00000 - 1.73205i) q^{3} +(0.500000 + 0.866025i) q^{4} +(3.00000 - 1.73205i) q^{6} -1.73205i q^{8} +(-0.500000 - 0.866025i) q^{9} +2.00000 q^{12} +(2.50000 + 2.59808i) q^{13} +(2.50000 - 4.33013i) q^{16} +(-1.50000 - 2.59808i) q^{17} -1.73205i q^{18} +(-3.00000 + 1.73205i) q^{19} +(-3.00000 + 5.19615i) q^{23} +(-3.00000 - 1.73205i) q^{24} +(1.50000 + 6.06218i) q^{26} +4.00000 q^{27} +(-1.50000 + 2.59808i) q^{29} +3.46410i q^{31} +(4.50000 - 2.59808i) q^{32} -5.19615i q^{34} +(0.500000 - 0.866025i) q^{36} +(-7.50000 - 4.33013i) q^{37} -6.00000 q^{38} +(7.00000 - 1.73205i) q^{39} +(-4.50000 - 2.59808i) q^{41} +(4.00000 + 6.92820i) q^{43} +(-9.00000 + 5.19615i) q^{46} +3.46410i q^{47} +(-5.00000 - 8.66025i) q^{48} +(-3.50000 + 6.06218i) q^{49} -6.00000 q^{51} +(-1.00000 + 3.46410i) q^{52} +3.00000 q^{53} +(6.00000 + 3.46410i) q^{54} +6.92820i q^{57} +(-4.50000 + 2.59808i) q^{58} +(6.00000 - 3.46410i) q^{59} +(-0.500000 - 0.866025i) q^{61} +(-3.00000 + 5.19615i) q^{62} -1.00000 q^{64} +(-3.00000 - 1.73205i) q^{67} +(1.50000 - 2.59808i) q^{68} +(6.00000 + 10.3923i) q^{69} +(3.00000 - 1.73205i) q^{71} +(-1.50000 + 0.866025i) q^{72} -1.73205i q^{73} +(-7.50000 - 12.9904i) q^{74} +(-3.00000 - 1.73205i) q^{76} +(12.0000 + 3.46410i) q^{78} +4.00000 q^{79} +(5.50000 - 9.52628i) q^{81} +(-4.50000 - 7.79423i) q^{82} -13.8564i q^{83} +13.8564i q^{86} +(3.00000 + 5.19615i) q^{87} +(-6.00000 - 3.46410i) q^{89} -6.00000 q^{92} +(6.00000 + 3.46410i) q^{93} +(-3.00000 + 5.19615i) q^{94} -10.3923i q^{96} +(-6.00000 + 3.46410i) q^{97} +(-10.5000 + 6.06218i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{2} + 2 q^{3} + q^{4} + 6 q^{6} - q^{9} + 4 q^{12} + 5 q^{13} + 5 q^{16} - 3 q^{17} - 6 q^{19} - 6 q^{23} - 6 q^{24} + 3 q^{26} + 8 q^{27} - 3 q^{29} + 9 q^{32} + q^{36} - 15 q^{37} - 12 q^{38}+ \cdots - 21 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.50000 + 0.866025i 1.06066 + 0.612372i 0.925615 0.378467i \(-0.123549\pi\)
0.135045 + 0.990839i \(0.456882\pi\)
\(3\) 1.00000 1.73205i 0.577350 1.00000i −0.418432 0.908248i \(-0.637420\pi\)
0.995782 0.0917517i \(-0.0292466\pi\)
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 0 0
\(6\) 3.00000 1.73205i 1.22474 0.707107i
\(7\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(8\) 1.73205i 0.612372i
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0 0
\(11\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(12\) 2.00000 0.577350
\(13\) 2.50000 + 2.59808i 0.693375 + 0.720577i
\(14\) 0 0
\(15\) 0 0
\(16\) 2.50000 4.33013i 0.625000 1.08253i
\(17\) −1.50000 2.59808i −0.363803 0.630126i 0.624780 0.780801i \(-0.285189\pi\)
−0.988583 + 0.150675i \(0.951855\pi\)
\(18\) 1.73205i 0.408248i
\(19\) −3.00000 + 1.73205i −0.688247 + 0.397360i −0.802955 0.596040i \(-0.796740\pi\)
0.114708 + 0.993399i \(0.463407\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.00000 + 5.19615i −0.625543 + 1.08347i 0.362892 + 0.931831i \(0.381789\pi\)
−0.988436 + 0.151642i \(0.951544\pi\)
\(24\) −3.00000 1.73205i −0.612372 0.353553i
\(25\) 0 0
\(26\) 1.50000 + 6.06218i 0.294174 + 1.18889i
\(27\) 4.00000 0.769800
\(28\) 0 0
\(29\) −1.50000 + 2.59808i −0.278543 + 0.482451i −0.971023 0.238987i \(-0.923185\pi\)
0.692480 + 0.721437i \(0.256518\pi\)
\(30\) 0 0
\(31\) 3.46410i 0.622171i 0.950382 + 0.311086i \(0.100693\pi\)
−0.950382 + 0.311086i \(0.899307\pi\)
\(32\) 4.50000 2.59808i 0.795495 0.459279i
\(33\) 0 0
\(34\) 5.19615i 0.891133i
\(35\) 0 0
\(36\) 0.500000 0.866025i 0.0833333 0.144338i
\(37\) −7.50000 4.33013i −1.23299 0.711868i −0.265340 0.964155i \(-0.585484\pi\)
−0.967653 + 0.252286i \(0.918817\pi\)
\(38\) −6.00000 −0.973329
\(39\) 7.00000 1.73205i 1.12090 0.277350i
\(40\) 0 0
\(41\) −4.50000 2.59808i −0.702782 0.405751i 0.105601 0.994409i \(-0.466323\pi\)
−0.808383 + 0.588657i \(0.799657\pi\)
\(42\) 0 0
\(43\) 4.00000 + 6.92820i 0.609994 + 1.05654i 0.991241 + 0.132068i \(0.0421616\pi\)
−0.381246 + 0.924473i \(0.624505\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −9.00000 + 5.19615i −1.32698 + 0.766131i
\(47\) 3.46410i 0.505291i 0.967559 + 0.252646i \(0.0813007\pi\)
−0.967559 + 0.252646i \(0.918699\pi\)
\(48\) −5.00000 8.66025i −0.721688 1.25000i
\(49\) −3.50000 + 6.06218i −0.500000 + 0.866025i
\(50\) 0 0
\(51\) −6.00000 −0.840168
\(52\) −1.00000 + 3.46410i −0.138675 + 0.480384i
\(53\) 3.00000 0.412082 0.206041 0.978543i \(-0.433942\pi\)
0.206041 + 0.978543i \(0.433942\pi\)
\(54\) 6.00000 + 3.46410i 0.816497 + 0.471405i
\(55\) 0 0
\(56\) 0 0
\(57\) 6.92820i 0.917663i
\(58\) −4.50000 + 2.59808i −0.590879 + 0.341144i
\(59\) 6.00000 3.46410i 0.781133 0.450988i −0.0556984 0.998448i \(-0.517739\pi\)
0.836832 + 0.547460i \(0.184405\pi\)
\(60\) 0 0
\(61\) −0.500000 0.866025i −0.0640184 0.110883i 0.832240 0.554416i \(-0.187058\pi\)
−0.896258 + 0.443533i \(0.853725\pi\)
\(62\) −3.00000 + 5.19615i −0.381000 + 0.659912i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) −3.00000 1.73205i −0.366508 0.211604i 0.305424 0.952217i \(-0.401202\pi\)
−0.671932 + 0.740613i \(0.734535\pi\)
\(68\) 1.50000 2.59808i 0.181902 0.315063i
\(69\) 6.00000 + 10.3923i 0.722315 + 1.25109i
\(70\) 0 0
\(71\) 3.00000 1.73205i 0.356034 0.205557i −0.311305 0.950310i \(-0.600766\pi\)
0.667340 + 0.744753i \(0.267433\pi\)
\(72\) −1.50000 + 0.866025i −0.176777 + 0.102062i
\(73\) 1.73205i 0.202721i −0.994850 0.101361i \(-0.967680\pi\)
0.994850 0.101361i \(-0.0323196\pi\)
\(74\) −7.50000 12.9904i −0.871857 1.51010i
\(75\) 0 0
\(76\) −3.00000 1.73205i −0.344124 0.198680i
\(77\) 0 0
\(78\) 12.0000 + 3.46410i 1.35873 + 0.392232i
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 0 0
\(81\) 5.50000 9.52628i 0.611111 1.05848i
\(82\) −4.50000 7.79423i −0.496942 0.860729i
\(83\) 13.8564i 1.52094i −0.649374 0.760469i \(-0.724969\pi\)
0.649374 0.760469i \(-0.275031\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 13.8564i 1.49417i
\(87\) 3.00000 + 5.19615i 0.321634 + 0.557086i
\(88\) 0 0
\(89\) −6.00000 3.46410i −0.635999 0.367194i 0.147073 0.989126i \(-0.453015\pi\)
−0.783072 + 0.621932i \(0.786348\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −6.00000 −0.625543
\(93\) 6.00000 + 3.46410i 0.622171 + 0.359211i
\(94\) −3.00000 + 5.19615i −0.309426 + 0.535942i
\(95\) 0 0
\(96\) 10.3923i 1.06066i
\(97\) −6.00000 + 3.46410i −0.609208 + 0.351726i −0.772655 0.634826i \(-0.781072\pi\)
0.163448 + 0.986552i \(0.447739\pi\)
\(98\) −10.5000 + 6.06218i −1.06066 + 0.612372i
\(99\) 0 0
\(100\) 0 0
\(101\) 1.50000 2.59808i 0.149256 0.258518i −0.781697 0.623658i \(-0.785646\pi\)
0.930953 + 0.365140i \(0.118979\pi\)
\(102\) −9.00000 5.19615i −0.891133 0.514496i
\(103\) 10.0000 0.985329 0.492665 0.870219i \(-0.336023\pi\)
0.492665 + 0.870219i \(0.336023\pi\)
\(104\) 4.50000 4.33013i 0.441261 0.424604i
\(105\) 0 0
\(106\) 4.50000 + 2.59808i 0.437079 + 0.252347i
\(107\) 3.00000 5.19615i 0.290021 0.502331i −0.683793 0.729676i \(-0.739671\pi\)
0.973814 + 0.227345i \(0.0730044\pi\)
\(108\) 2.00000 + 3.46410i 0.192450 + 0.333333i
\(109\) 13.8564i 1.32720i −0.748086 0.663602i \(-0.769027\pi\)
0.748086 0.663602i \(-0.230973\pi\)
\(110\) 0 0
\(111\) −15.0000 + 8.66025i −1.42374 + 0.821995i
\(112\) 0 0
\(113\) −7.50000 12.9904i −0.705541 1.22203i −0.966496 0.256681i \(-0.917371\pi\)
0.260955 0.965351i \(-0.415962\pi\)
\(114\) −6.00000 + 10.3923i −0.561951 + 0.973329i
\(115\) 0 0
\(116\) −3.00000 −0.278543
\(117\) 1.00000 3.46410i 0.0924500 0.320256i
\(118\) 12.0000 1.10469
\(119\) 0 0
\(120\) 0 0
\(121\) −5.50000 9.52628i −0.500000 0.866025i
\(122\) 1.73205i 0.156813i
\(123\) −9.00000 + 5.19615i −0.811503 + 0.468521i
\(124\) −3.00000 + 1.73205i −0.269408 + 0.155543i
\(125\) 0 0
\(126\) 0 0
\(127\) −1.00000 + 1.73205i −0.0887357 + 0.153695i −0.906977 0.421180i \(-0.861616\pi\)
0.818241 + 0.574875i \(0.194949\pi\)
\(128\) −10.5000 6.06218i −0.928078 0.535826i
\(129\) 16.0000 1.40872
\(130\) 0 0
\(131\) 18.0000 1.57267 0.786334 0.617802i \(-0.211977\pi\)
0.786334 + 0.617802i \(0.211977\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −3.00000 5.19615i −0.259161 0.448879i
\(135\) 0 0
\(136\) −4.50000 + 2.59808i −0.385872 + 0.222783i
\(137\) 13.5000 7.79423i 1.15338 0.665906i 0.203674 0.979039i \(-0.434712\pi\)
0.949709 + 0.313133i \(0.101379\pi\)
\(138\) 20.7846i 1.76930i
\(139\) 2.00000 + 3.46410i 0.169638 + 0.293821i 0.938293 0.345843i \(-0.112407\pi\)
−0.768655 + 0.639664i \(0.779074\pi\)
\(140\) 0 0
\(141\) 6.00000 + 3.46410i 0.505291 + 0.291730i
\(142\) 6.00000 0.503509
\(143\) 0 0
\(144\) −5.00000 −0.416667
\(145\) 0 0
\(146\) 1.50000 2.59808i 0.124141 0.215018i
\(147\) 7.00000 + 12.1244i 0.577350 + 1.00000i
\(148\) 8.66025i 0.711868i
\(149\) −16.5000 + 9.52628i −1.35173 + 0.780423i −0.988492 0.151272i \(-0.951663\pi\)
−0.363241 + 0.931695i \(0.618330\pi\)
\(150\) 0 0
\(151\) 17.3205i 1.40952i 0.709444 + 0.704761i \(0.248946\pi\)
−0.709444 + 0.704761i \(0.751054\pi\)
\(152\) 3.00000 + 5.19615i 0.243332 + 0.421464i
\(153\) −1.50000 + 2.59808i −0.121268 + 0.210042i
\(154\) 0 0
\(155\) 0 0
\(156\) 5.00000 + 5.19615i 0.400320 + 0.416025i
\(157\) 13.0000 1.03751 0.518756 0.854922i \(-0.326395\pi\)
0.518756 + 0.854922i \(0.326395\pi\)
\(158\) 6.00000 + 3.46410i 0.477334 + 0.275589i
\(159\) 3.00000 5.19615i 0.237915 0.412082i
\(160\) 0 0
\(161\) 0 0
\(162\) 16.5000 9.52628i 1.29636 0.748455i
\(163\) −18.0000 + 10.3923i −1.40987 + 0.813988i −0.995375 0.0960641i \(-0.969375\pi\)
−0.414494 + 0.910052i \(0.636041\pi\)
\(164\) 5.19615i 0.405751i
\(165\) 0 0
\(166\) 12.0000 20.7846i 0.931381 1.61320i
\(167\) 12.0000 + 6.92820i 0.928588 + 0.536120i 0.886365 0.462988i \(-0.153223\pi\)
0.0422232 + 0.999108i \(0.486556\pi\)
\(168\) 0 0
\(169\) −0.500000 + 12.9904i −0.0384615 + 0.999260i
\(170\) 0 0
\(171\) 3.00000 + 1.73205i 0.229416 + 0.132453i
\(172\) −4.00000 + 6.92820i −0.304997 + 0.528271i
\(173\) 3.00000 + 5.19615i 0.228086 + 0.395056i 0.957241 0.289292i \(-0.0934200\pi\)
−0.729155 + 0.684349i \(0.760087\pi\)
\(174\) 10.3923i 0.787839i
\(175\) 0 0
\(176\) 0 0
\(177\) 13.8564i 1.04151i
\(178\) −6.00000 10.3923i −0.449719 0.778936i
\(179\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(180\) 0 0
\(181\) 11.0000 0.817624 0.408812 0.912619i \(-0.365943\pi\)
0.408812 + 0.912619i \(0.365943\pi\)
\(182\) 0 0
\(183\) −2.00000 −0.147844
\(184\) 9.00000 + 5.19615i 0.663489 + 0.383065i
\(185\) 0 0
\(186\) 6.00000 + 10.3923i 0.439941 + 0.762001i
\(187\) 0 0
\(188\) −3.00000 + 1.73205i −0.218797 + 0.126323i
\(189\) 0 0
\(190\) 0 0
\(191\) −9.00000 15.5885i −0.651217 1.12794i −0.982828 0.184525i \(-0.940925\pi\)
0.331611 0.943416i \(-0.392408\pi\)
\(192\) −1.00000 + 1.73205i −0.0721688 + 0.125000i
\(193\) 4.50000 + 2.59808i 0.323917 + 0.187014i 0.653137 0.757240i \(-0.273452\pi\)
−0.329220 + 0.944253i \(0.606786\pi\)
\(194\) −12.0000 −0.861550
\(195\) 0 0
\(196\) −7.00000 −0.500000
\(197\) −12.0000 6.92820i −0.854965 0.493614i 0.00735824 0.999973i \(-0.497658\pi\)
−0.862323 + 0.506359i \(0.830991\pi\)
\(198\) 0 0
\(199\) 1.00000 + 1.73205i 0.0708881 + 0.122782i 0.899291 0.437351i \(-0.144083\pi\)
−0.828403 + 0.560133i \(0.810750\pi\)
\(200\) 0 0
\(201\) −6.00000 + 3.46410i −0.423207 + 0.244339i
\(202\) 4.50000 2.59808i 0.316619 0.182800i
\(203\) 0 0
\(204\) −3.00000 5.19615i −0.210042 0.363803i
\(205\) 0 0
\(206\) 15.0000 + 8.66025i 1.04510 + 0.603388i
\(207\) 6.00000 0.417029
\(208\) 17.5000 4.33013i 1.21341 0.300240i
\(209\) 0 0
\(210\) 0 0
\(211\) −5.00000 + 8.66025i −0.344214 + 0.596196i −0.985211 0.171347i \(-0.945188\pi\)
0.640996 + 0.767544i \(0.278521\pi\)
\(212\) 1.50000 + 2.59808i 0.103020 + 0.178437i
\(213\) 6.92820i 0.474713i
\(214\) 9.00000 5.19615i 0.615227 0.355202i
\(215\) 0 0
\(216\) 6.92820i 0.471405i
\(217\) 0 0
\(218\) 12.0000 20.7846i 0.812743 1.40771i
\(219\) −3.00000 1.73205i −0.202721 0.117041i
\(220\) 0 0
\(221\) 3.00000 10.3923i 0.201802 0.699062i
\(222\) −30.0000 −2.01347
\(223\) 9.00000 + 5.19615i 0.602685 + 0.347960i 0.770097 0.637927i \(-0.220208\pi\)
−0.167412 + 0.985887i \(0.553541\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 25.9808i 1.72821i
\(227\) −21.0000 + 12.1244i −1.39382 + 0.804722i −0.993736 0.111757i \(-0.964352\pi\)
−0.400083 + 0.916479i \(0.631019\pi\)
\(228\) −6.00000 + 3.46410i −0.397360 + 0.229416i
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 4.50000 + 2.59808i 0.295439 + 0.170572i
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 4.50000 4.33013i 0.294174 0.283069i
\(235\) 0 0
\(236\) 6.00000 + 3.46410i 0.390567 + 0.225494i
\(237\) 4.00000 6.92820i 0.259828 0.450035i
\(238\) 0 0
\(239\) 20.7846i 1.34444i −0.740349 0.672222i \(-0.765340\pi\)
0.740349 0.672222i \(-0.234660\pi\)
\(240\) 0 0
\(241\) −1.50000 + 0.866025i −0.0966235 + 0.0557856i −0.547533 0.836784i \(-0.684433\pi\)
0.450910 + 0.892570i \(0.351100\pi\)
\(242\) 19.0526i 1.22474i
\(243\) −5.00000 8.66025i −0.320750 0.555556i
\(244\) 0.500000 0.866025i 0.0320092 0.0554416i
\(245\) 0 0
\(246\) −18.0000 −1.14764
\(247\) −12.0000 3.46410i −0.763542 0.220416i
\(248\) 6.00000 0.381000
\(249\) −24.0000 13.8564i −1.52094 0.878114i
\(250\) 0 0
\(251\) 9.00000 + 15.5885i 0.568075 + 0.983935i 0.996756 + 0.0804789i \(0.0256450\pi\)
−0.428681 + 0.903456i \(0.641022\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −3.00000 + 1.73205i −0.188237 + 0.108679i
\(255\) 0 0
\(256\) −9.50000 16.4545i −0.593750 1.02841i
\(257\) 1.50000 2.59808i 0.0935674 0.162064i −0.815442 0.578838i \(-0.803506\pi\)
0.909010 + 0.416775i \(0.136840\pi\)
\(258\) 24.0000 + 13.8564i 1.49417 + 0.862662i
\(259\) 0 0
\(260\) 0 0
\(261\) 3.00000 0.185695
\(262\) 27.0000 + 15.5885i 1.66807 + 0.963058i
\(263\) 6.00000 10.3923i 0.369976 0.640817i −0.619586 0.784929i \(-0.712699\pi\)
0.989561 + 0.144112i \(0.0460326\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −12.0000 + 6.92820i −0.734388 + 0.423999i
\(268\) 3.46410i 0.211604i
\(269\) 3.00000 + 5.19615i 0.182913 + 0.316815i 0.942871 0.333157i \(-0.108114\pi\)
−0.759958 + 0.649972i \(0.774781\pi\)
\(270\) 0 0
\(271\) 18.0000 + 10.3923i 1.09342 + 0.631288i 0.934485 0.356001i \(-0.115860\pi\)
0.158937 + 0.987289i \(0.449193\pi\)
\(272\) −15.0000 −0.909509
\(273\) 0 0
\(274\) 27.0000 1.63113
\(275\) 0 0
\(276\) −6.00000 + 10.3923i −0.361158 + 0.625543i
\(277\) −3.50000 6.06218i −0.210295 0.364241i 0.741512 0.670940i \(-0.234109\pi\)
−0.951807 + 0.306699i \(0.900776\pi\)
\(278\) 6.92820i 0.415526i
\(279\) 3.00000 1.73205i 0.179605 0.103695i
\(280\) 0 0
\(281\) 22.5167i 1.34323i −0.740900 0.671616i \(-0.765601\pi\)
0.740900 0.671616i \(-0.234399\pi\)
\(282\) 6.00000 + 10.3923i 0.357295 + 0.618853i
\(283\) 2.00000 3.46410i 0.118888 0.205919i −0.800439 0.599414i \(-0.795400\pi\)
0.919327 + 0.393494i \(0.128734\pi\)
\(284\) 3.00000 + 1.73205i 0.178017 + 0.102778i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −4.50000 2.59808i −0.265165 0.153093i
\(289\) 4.00000 6.92820i 0.235294 0.407541i
\(290\) 0 0
\(291\) 13.8564i 0.812277i
\(292\) 1.50000 0.866025i 0.0877809 0.0506803i
\(293\) −4.50000 + 2.59808i −0.262893 + 0.151781i −0.625653 0.780101i \(-0.715168\pi\)
0.362761 + 0.931882i \(0.381834\pi\)
\(294\) 24.2487i 1.41421i
\(295\) 0 0
\(296\) −7.50000 + 12.9904i −0.435929 + 0.755051i
\(297\) 0 0
\(298\) −33.0000 −1.91164
\(299\) −21.0000 + 5.19615i −1.21446 + 0.300501i
\(300\) 0 0
\(301\) 0 0
\(302\) −15.0000 + 25.9808i −0.863153 + 1.49502i
\(303\) −3.00000 5.19615i −0.172345 0.298511i
\(304\) 17.3205i 0.993399i
\(305\) 0 0
\(306\) −4.50000 + 2.59808i −0.257248 + 0.148522i
\(307\) 17.3205i 0.988534i 0.869310 + 0.494267i \(0.164563\pi\)
−0.869310 + 0.494267i \(0.835437\pi\)
\(308\) 0 0
\(309\) 10.0000 17.3205i 0.568880 0.985329i
\(310\) 0 0
\(311\) −30.0000 −1.70114 −0.850572 0.525859i \(-0.823744\pi\)
−0.850572 + 0.525859i \(0.823744\pi\)
\(312\) −3.00000 12.1244i −0.169842 0.686406i
\(313\) −10.0000 −0.565233 −0.282617 0.959233i \(-0.591202\pi\)
−0.282617 + 0.959233i \(0.591202\pi\)
\(314\) 19.5000 + 11.2583i 1.10045 + 0.635344i
\(315\) 0 0
\(316\) 2.00000 + 3.46410i 0.112509 + 0.194871i
\(317\) 5.19615i 0.291845i 0.989296 + 0.145922i \(0.0466150\pi\)
−0.989296 + 0.145922i \(0.953385\pi\)
\(318\) 9.00000 5.19615i 0.504695 0.291386i
\(319\) 0 0
\(320\) 0 0
\(321\) −6.00000 10.3923i −0.334887 0.580042i
\(322\) 0 0
\(323\) 9.00000 + 5.19615i 0.500773 + 0.289122i
\(324\) 11.0000 0.611111
\(325\) 0 0
\(326\) −36.0000 −1.99386
\(327\) −24.0000 13.8564i −1.32720 0.766261i
\(328\) −4.50000 + 7.79423i −0.248471 + 0.430364i
\(329\) 0 0
\(330\) 0 0
\(331\) −24.0000 + 13.8564i −1.31916 + 0.761617i −0.983593 0.180400i \(-0.942261\pi\)
−0.335566 + 0.942017i \(0.608928\pi\)
\(332\) 12.0000 6.92820i 0.658586 0.380235i
\(333\) 8.66025i 0.474579i
\(334\) 12.0000 + 20.7846i 0.656611 + 1.13728i
\(335\) 0 0
\(336\) 0 0
\(337\) 23.0000 1.25289 0.626445 0.779466i \(-0.284509\pi\)
0.626445 + 0.779466i \(0.284509\pi\)
\(338\) −12.0000 + 19.0526i −0.652714 + 1.03632i
\(339\) −30.0000 −1.62938
\(340\) 0 0
\(341\) 0 0
\(342\) 3.00000 + 5.19615i 0.162221 + 0.280976i
\(343\) 0 0
\(344\) 12.0000 6.92820i 0.646997 0.373544i
\(345\) 0 0
\(346\) 10.3923i 0.558694i
\(347\) −15.0000 25.9808i −0.805242 1.39472i −0.916127 0.400887i \(-0.868702\pi\)
0.110885 0.993833i \(-0.464631\pi\)
\(348\) −3.00000 + 5.19615i −0.160817 + 0.278543i
\(349\) 12.0000 + 6.92820i 0.642345 + 0.370858i 0.785517 0.618840i \(-0.212397\pi\)
−0.143172 + 0.989698i \(0.545730\pi\)
\(350\) 0 0
\(351\) 10.0000 + 10.3923i 0.533761 + 0.554700i
\(352\) 0 0
\(353\) −28.5000 16.4545i −1.51690 0.875784i −0.999803 0.0198582i \(-0.993679\pi\)
−0.517099 0.855926i \(-0.672988\pi\)
\(354\) 12.0000 20.7846i 0.637793 1.10469i
\(355\) 0 0
\(356\) 6.92820i 0.367194i
\(357\) 0 0
\(358\) 0 0
\(359\) 6.92820i 0.365657i −0.983145 0.182828i \(-0.941475\pi\)
0.983145 0.182828i \(-0.0585252\pi\)
\(360\) 0 0
\(361\) −3.50000 + 6.06218i −0.184211 + 0.319062i
\(362\) 16.5000 + 9.52628i 0.867221 + 0.500690i
\(363\) −22.0000 −1.15470
\(364\) 0 0
\(365\) 0 0
\(366\) −3.00000 1.73205i −0.156813 0.0905357i
\(367\) −11.0000 + 19.0526i −0.574195 + 0.994535i 0.421933 + 0.906627i \(0.361352\pi\)
−0.996129 + 0.0879086i \(0.971982\pi\)
\(368\) 15.0000 + 25.9808i 0.781929 + 1.35434i
\(369\) 5.19615i 0.270501i
\(370\) 0 0
\(371\) 0 0
\(372\) 6.92820i 0.359211i
\(373\) 9.50000 + 16.4545i 0.491891 + 0.851981i 0.999956 0.00933789i \(-0.00297238\pi\)
−0.508065 + 0.861319i \(0.669639\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 6.00000 0.309426
\(377\) −10.5000 + 2.59808i −0.540778 + 0.133808i
\(378\) 0 0
\(379\) −21.0000 12.1244i −1.07870 0.622786i −0.148153 0.988964i \(-0.547333\pi\)
−0.930545 + 0.366178i \(0.880666\pi\)
\(380\) 0 0
\(381\) 2.00000 + 3.46410i 0.102463 + 0.177471i
\(382\) 31.1769i 1.59515i
\(383\) 18.0000 10.3923i 0.919757 0.531022i 0.0361995 0.999345i \(-0.488475\pi\)
0.883558 + 0.468323i \(0.155141\pi\)
\(384\) −21.0000 + 12.1244i −1.07165 + 0.618718i
\(385\) 0 0
\(386\) 4.50000 + 7.79423i 0.229044 + 0.396716i
\(387\) 4.00000 6.92820i 0.203331 0.352180i
\(388\) −6.00000 3.46410i −0.304604 0.175863i
\(389\) −9.00000 −0.456318 −0.228159 0.973624i \(-0.573271\pi\)
−0.228159 + 0.973624i \(0.573271\pi\)
\(390\) 0 0
\(391\) 18.0000 0.910299
\(392\) 10.5000 + 6.06218i 0.530330 + 0.306186i
\(393\) 18.0000 31.1769i 0.907980 1.57267i
\(394\) −12.0000 20.7846i −0.604551 1.04711i
\(395\) 0 0
\(396\) 0 0
\(397\) 12.0000 6.92820i 0.602263 0.347717i −0.167668 0.985843i \(-0.553624\pi\)
0.769931 + 0.638127i \(0.220290\pi\)
\(398\) 3.46410i 0.173640i
\(399\) 0 0
\(400\) 0 0
\(401\) −1.50000 0.866025i −0.0749064 0.0432472i 0.462079 0.886839i \(-0.347104\pi\)
−0.536985 + 0.843592i \(0.680437\pi\)
\(402\) −12.0000 −0.598506
\(403\) −9.00000 + 8.66025i −0.448322 + 0.431398i
\(404\) 3.00000 0.149256
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 10.3923i 0.514496i
\(409\) 13.5000 7.79423i 0.667532 0.385400i −0.127609 0.991825i \(-0.540730\pi\)
0.795141 + 0.606425i \(0.207397\pi\)
\(410\) 0 0
\(411\) 31.1769i 1.53784i
\(412\) 5.00000 + 8.66025i 0.246332 + 0.426660i
\(413\) 0 0
\(414\) 9.00000 + 5.19615i 0.442326 + 0.255377i
\(415\) 0 0
\(416\) 18.0000 + 5.19615i 0.882523 + 0.254762i
\(417\) 8.00000 0.391762
\(418\) 0 0
\(419\) −9.00000 + 15.5885i −0.439679 + 0.761546i −0.997665 0.0683046i \(-0.978241\pi\)
0.557986 + 0.829851i \(0.311574\pi\)
\(420\) 0 0
\(421\) 15.5885i 0.759735i 0.925041 + 0.379867i \(0.124030\pi\)
−0.925041 + 0.379867i \(0.875970\pi\)
\(422\) −15.0000 + 8.66025i −0.730189 + 0.421575i
\(423\) 3.00000 1.73205i 0.145865 0.0842152i
\(424\) 5.19615i 0.252347i
\(425\) 0 0
\(426\) 6.00000 10.3923i 0.290701 0.503509i
\(427\) 0 0
\(428\) 6.00000 0.290021
\(429\) 0 0
\(430\) 0 0
\(431\) −6.00000 3.46410i −0.289010 0.166860i 0.348485 0.937314i \(-0.386696\pi\)
−0.637495 + 0.770454i \(0.720029\pi\)
\(432\) 10.0000 17.3205i 0.481125 0.833333i
\(433\) −8.50000 14.7224i −0.408484 0.707515i 0.586236 0.810140i \(-0.300609\pi\)
−0.994720 + 0.102625i \(0.967276\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 12.0000 6.92820i 0.574696 0.331801i
\(437\) 20.7846i 0.994263i
\(438\) −3.00000 5.19615i −0.143346 0.248282i
\(439\) 14.0000 24.2487i 0.668184 1.15733i −0.310228 0.950662i \(-0.600405\pi\)
0.978412 0.206666i \(-0.0662612\pi\)
\(440\) 0 0
\(441\) 7.00000 0.333333
\(442\) 13.5000 12.9904i 0.642130 0.617889i
\(443\) 12.0000 0.570137 0.285069 0.958507i \(-0.407984\pi\)
0.285069 + 0.958507i \(0.407984\pi\)
\(444\) −15.0000 8.66025i −0.711868 0.410997i
\(445\) 0 0
\(446\) 9.00000 + 15.5885i 0.426162 + 0.738135i
\(447\) 38.1051i 1.80231i
\(448\) 0 0
\(449\) −6.00000 + 3.46410i −0.283158 + 0.163481i −0.634852 0.772634i \(-0.718939\pi\)
0.351694 + 0.936115i \(0.385606\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 7.50000 12.9904i 0.352770 0.611016i
\(453\) 30.0000 + 17.3205i 1.40952 + 0.813788i
\(454\) −42.0000 −1.97116
\(455\) 0 0
\(456\) 12.0000 0.561951
\(457\) −1.50000 0.866025i −0.0701670 0.0405110i 0.464506 0.885570i \(-0.346232\pi\)
−0.534673 + 0.845059i \(0.679565\pi\)
\(458\) 0 0
\(459\) −6.00000 10.3923i −0.280056 0.485071i
\(460\) 0 0
\(461\) 19.5000 11.2583i 0.908206 0.524353i 0.0283522 0.999598i \(-0.490974\pi\)
0.879853 + 0.475245i \(0.157641\pi\)
\(462\) 0 0
\(463\) 13.8564i 0.643962i −0.946746 0.321981i \(-0.895651\pi\)
0.946746 0.321981i \(-0.104349\pi\)
\(464\) 7.50000 + 12.9904i 0.348179 + 0.603063i
\(465\) 0 0
\(466\) −9.00000 5.19615i −0.416917 0.240707i
\(467\) −12.0000 −0.555294 −0.277647 0.960683i \(-0.589555\pi\)
−0.277647 + 0.960683i \(0.589555\pi\)
\(468\) 3.50000 0.866025i 0.161788 0.0400320i
\(469\) 0 0
\(470\) 0 0
\(471\) 13.0000 22.5167i 0.599008 1.03751i
\(472\) −6.00000 10.3923i −0.276172 0.478345i
\(473\) 0 0
\(474\) 12.0000 6.92820i 0.551178 0.318223i
\(475\) 0 0
\(476\) 0 0
\(477\) −1.50000 2.59808i −0.0686803 0.118958i
\(478\) 18.0000 31.1769i 0.823301 1.42600i
\(479\) 21.0000 + 12.1244i 0.959514 + 0.553976i 0.896024 0.444006i \(-0.146443\pi\)
0.0634909 + 0.997982i \(0.479777\pi\)
\(480\) 0 0
\(481\) −7.50000 30.3109i −0.341971 1.38206i
\(482\) −3.00000 −0.136646
\(483\) 0 0
\(484\) 5.50000 9.52628i 0.250000 0.433013i
\(485\) 0 0
\(486\) 17.3205i 0.785674i
\(487\) 6.00000 3.46410i 0.271886 0.156973i −0.357858 0.933776i \(-0.616493\pi\)
0.629744 + 0.776802i \(0.283160\pi\)
\(488\) −1.50000 + 0.866025i −0.0679018 + 0.0392031i
\(489\) 41.5692i 1.87983i
\(490\) 0 0
\(491\) −6.00000 + 10.3923i −0.270776 + 0.468998i −0.969061 0.246822i \(-0.920614\pi\)
0.698285 + 0.715820i \(0.253947\pi\)
\(492\) −9.00000 5.19615i −0.405751 0.234261i
\(493\) 9.00000 0.405340
\(494\) −15.0000 15.5885i −0.674882 0.701358i
\(495\) 0 0
\(496\) 15.0000 + 8.66025i 0.673520 + 0.388857i
\(497\) 0 0
\(498\) −24.0000 41.5692i −1.07547 1.86276i
\(499\) 31.1769i 1.39567i 0.716258 + 0.697835i \(0.245853\pi\)
−0.716258 + 0.697835i \(0.754147\pi\)
\(500\) 0 0
\(501\) 24.0000 13.8564i 1.07224 0.619059i
\(502\) 31.1769i 1.39149i
\(503\) 18.0000 + 31.1769i 0.802580 + 1.39011i 0.917912 + 0.396783i \(0.129873\pi\)
−0.115332 + 0.993327i \(0.536793\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 22.0000 + 13.8564i 0.977054 + 0.615385i
\(508\) −2.00000 −0.0887357
\(509\) 16.5000 + 9.52628i 0.731350 + 0.422245i 0.818916 0.573914i \(-0.194576\pi\)
−0.0875661 + 0.996159i \(0.527909\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 8.66025i 0.382733i
\(513\) −12.0000 + 6.92820i −0.529813 + 0.305888i
\(514\) 4.50000 2.59808i 0.198486 0.114596i
\(515\) 0 0
\(516\) 8.00000 + 13.8564i 0.352180 + 0.609994i
\(517\) 0 0
\(518\) 0 0
\(519\) 12.0000 0.526742
\(520\) 0 0
\(521\) 9.00000 0.394297 0.197149 0.980374i \(-0.436832\pi\)
0.197149 + 0.980374i \(0.436832\pi\)
\(522\) 4.50000 + 2.59808i 0.196960 + 0.113715i
\(523\) −8.00000 + 13.8564i −0.349816 + 0.605898i −0.986216 0.165460i \(-0.947089\pi\)
0.636401 + 0.771358i \(0.280422\pi\)
\(524\) 9.00000 + 15.5885i 0.393167 + 0.680985i
\(525\) 0 0
\(526\) 18.0000 10.3923i 0.784837 0.453126i
\(527\) 9.00000 5.19615i 0.392046 0.226348i
\(528\) 0 0
\(529\) −6.50000 11.2583i −0.282609 0.489493i
\(530\) 0 0
\(531\) −6.00000 3.46410i −0.260378 0.150329i
\(532\) 0 0
\(533\) −4.50000 18.1865i −0.194917 0.787746i
\(534\) −24.0000 −1.03858
\(535\) 0 0
\(536\) −3.00000 + 5.19615i −0.129580 + 0.224440i
\(537\) 0 0
\(538\) 10.3923i 0.448044i
\(539\) 0 0
\(540\) 0 0
\(541\) 29.4449i 1.26593i 0.774179 + 0.632967i \(0.218163\pi\)
−0.774179 + 0.632967i \(0.781837\pi\)
\(542\) 18.0000 + 31.1769i 0.773166 + 1.33916i
\(543\) 11.0000 19.0526i 0.472055 0.817624i
\(544\) −13.5000 7.79423i −0.578808 0.334175i
\(545\) 0 0
\(546\) 0 0
\(547\) 22.0000 0.940652 0.470326 0.882493i \(-0.344136\pi\)
0.470326 + 0.882493i \(0.344136\pi\)
\(548\) 13.5000 + 7.79423i 0.576691 + 0.332953i
\(549\) −0.500000 + 0.866025i −0.0213395 + 0.0369611i
\(550\) 0 0
\(551\) 10.3923i 0.442727i
\(552\) 18.0000 10.3923i 0.766131 0.442326i
\(553\) 0 0
\(554\) 12.1244i 0.515115i
\(555\) 0 0
\(556\) −2.00000 + 3.46410i −0.0848189 + 0.146911i
\(557\) 13.5000 + 7.79423i 0.572013 + 0.330252i 0.757953 0.652309i \(-0.226200\pi\)
−0.185940 + 0.982561i \(0.559533\pi\)
\(558\) 6.00000 0.254000
\(559\) −8.00000 + 27.7128i −0.338364 + 1.17213i
\(560\) 0 0
\(561\) 0 0
\(562\) 19.5000 33.7750i 0.822558 1.42471i
\(563\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(564\) 6.92820i 0.291730i
\(565\) 0 0
\(566\) 6.00000 3.46410i 0.252199 0.145607i
\(567\) 0 0
\(568\) −3.00000 5.19615i −0.125877 0.218026i
\(569\) 21.0000 36.3731i 0.880366 1.52484i 0.0294311 0.999567i \(-0.490630\pi\)
0.850935 0.525271i \(-0.176036\pi\)
\(570\) 0 0
\(571\) 40.0000 1.67395 0.836974 0.547243i \(-0.184323\pi\)
0.836974 + 0.547243i \(0.184323\pi\)
\(572\) 0 0
\(573\) −36.0000 −1.50392
\(574\) 0 0
\(575\) 0 0
\(576\) 0.500000 + 0.866025i 0.0208333 + 0.0360844i
\(577\) 19.0526i 0.793168i 0.917998 + 0.396584i \(0.129805\pi\)
−0.917998 + 0.396584i \(0.870195\pi\)
\(578\) 12.0000 6.92820i 0.499134 0.288175i
\(579\) 9.00000 5.19615i 0.374027 0.215945i
\(580\) 0 0
\(581\) 0 0
\(582\) −12.0000 + 20.7846i −0.497416 + 0.861550i
\(583\) 0 0
\(584\) −3.00000 −0.124141
\(585\) 0 0
\(586\) −9.00000 −0.371787
\(587\) 18.0000 + 10.3923i 0.742940 + 0.428936i 0.823137 0.567843i \(-0.192222\pi\)
−0.0801976 + 0.996779i \(0.525555\pi\)
\(588\) −7.00000 + 12.1244i −0.288675 + 0.500000i
\(589\) −6.00000 10.3923i −0.247226 0.428207i
\(590\) 0 0
\(591\) −24.0000 + 13.8564i −0.987228 + 0.569976i
\(592\) −37.5000 + 21.6506i −1.54124 + 0.889836i
\(593\) 25.9808i 1.06690i 0.845831 + 0.533451i \(0.179105\pi\)
−0.845831 + 0.533451i \(0.820895\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −16.5000 9.52628i −0.675866 0.390212i
\(597\) 4.00000 0.163709
\(598\) −36.0000 10.3923i −1.47215 0.424973i
\(599\) 30.0000 1.22577 0.612883 0.790173i \(-0.290010\pi\)
0.612883 + 0.790173i \(0.290010\pi\)
\(600\) 0 0
\(601\) −12.5000 + 21.6506i −0.509886 + 0.883148i 0.490049 + 0.871695i \(0.336979\pi\)
−0.999934 + 0.0114528i \(0.996354\pi\)
\(602\) 0 0
\(603\) 3.46410i 0.141069i
\(604\) −15.0000 + 8.66025i −0.610341 + 0.352381i
\(605\) 0 0
\(606\) 10.3923i 0.422159i
\(607\) −17.0000 29.4449i −0.690009 1.19513i −0.971834 0.235665i \(-0.924273\pi\)
0.281826 0.959466i \(-0.409060\pi\)
\(608\) −9.00000 + 15.5885i −0.364998 + 0.632195i
\(609\) 0 0
\(610\) 0 0
\(611\) −9.00000 + 8.66025i −0.364101 + 0.350356i
\(612\) −3.00000 −0.121268
\(613\) 10.5000 + 6.06218i 0.424091 + 0.244849i 0.696826 0.717240i \(-0.254595\pi\)
−0.272735 + 0.962089i \(0.587928\pi\)
\(614\) −15.0000 + 25.9808i −0.605351 + 1.04850i
\(615\) 0 0
\(616\) 0 0
\(617\) 19.5000 11.2583i 0.785040 0.453243i −0.0531732 0.998585i \(-0.516934\pi\)
0.838214 + 0.545342i \(0.183600\pi\)
\(618\) 30.0000 17.3205i 1.20678 0.696733i
\(619\) 20.7846i 0.835404i −0.908584 0.417702i \(-0.862836\pi\)
0.908584 0.417702i \(-0.137164\pi\)
\(620\) 0 0
\(621\) −12.0000 + 20.7846i −0.481543 + 0.834058i
\(622\) −45.0000 25.9808i −1.80434 1.04173i
\(623\) 0 0
\(624\) 10.0000 34.6410i 0.400320 1.38675i
\(625\) 0 0
\(626\) −15.0000 8.66025i −0.599521 0.346133i
\(627\) 0 0
\(628\) 6.50000 + 11.2583i 0.259378 + 0.449256i
\(629\) 25.9808i 1.03592i
\(630\) 0 0
\(631\) −42.0000 + 24.2487i −1.67199 + 0.965326i −0.705473 + 0.708737i \(0.749265\pi\)
−0.966521 + 0.256589i \(0.917401\pi\)
\(632\) 6.92820i 0.275589i
\(633\) 10.0000 + 17.3205i 0.397464 + 0.688428i
\(634\) −4.50000 + 7.79423i −0.178718 + 0.309548i
\(635\) 0 0
\(636\) 6.00000 0.237915
\(637\) −24.5000 + 6.06218i −0.970725 + 0.240192i
\(638\) 0 0
\(639\) −3.00000 1.73205i −0.118678 0.0685189i
\(640\) 0 0
\(641\) −16.5000 28.5788i −0.651711 1.12880i −0.982708 0.185164i \(-0.940718\pi\)
0.330997 0.943632i \(-0.392615\pi\)
\(642\) 20.7846i 0.820303i
\(643\) −12.0000 + 6.92820i −0.473234 + 0.273222i −0.717592 0.696463i \(-0.754756\pi\)
0.244359 + 0.969685i \(0.421423\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 9.00000 + 15.5885i 0.354100 + 0.613320i
\(647\) 9.00000 15.5885i 0.353827 0.612845i −0.633090 0.774078i \(-0.718214\pi\)
0.986916 + 0.161233i \(0.0515470\pi\)
\(648\) −16.5000 9.52628i −0.648181 0.374228i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −18.0000 10.3923i −0.704934 0.406994i
\(653\) −15.0000 + 25.9808i −0.586995 + 1.01671i 0.407628 + 0.913148i \(0.366356\pi\)
−0.994623 + 0.103558i \(0.966977\pi\)
\(654\) −24.0000 41.5692i −0.938474 1.62549i
\(655\) 0 0
\(656\) −22.5000 + 12.9904i −0.878477 + 0.507189i
\(657\) −1.50000 + 0.866025i −0.0585206 + 0.0337869i
\(658\) 0 0
\(659\) 6.00000 + 10.3923i 0.233727 + 0.404827i 0.958902 0.283738i \(-0.0915745\pi\)
−0.725175 + 0.688565i \(0.758241\pi\)
\(660\) 0 0
\(661\) −40.5000 23.3827i −1.57527 0.909481i −0.995506 0.0946945i \(-0.969813\pi\)
−0.579761 0.814787i \(-0.696854\pi\)
\(662\) −48.0000 −1.86557
\(663\) −15.0000 15.5885i −0.582552 0.605406i
\(664\) −24.0000 −0.931381
\(665\) 0 0
\(666\) −7.50000 + 12.9904i −0.290619 + 0.503367i
\(667\) −9.00000 15.5885i −0.348481 0.603587i
\(668\) 13.8564i 0.536120i
\(669\) 18.0000 10.3923i 0.695920 0.401790i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −9.50000 + 16.4545i −0.366198 + 0.634274i −0.988968 0.148132i \(-0.952674\pi\)
0.622770 + 0.782405i \(0.286007\pi\)
\(674\) 34.5000 + 19.9186i 1.32889 + 0.767235i
\(675\) 0 0
\(676\) −11.5000 + 6.06218i −0.442308 + 0.233161i
\(677\) 6.00000 0.230599 0.115299 0.993331i \(-0.463217\pi\)
0.115299 + 0.993331i \(0.463217\pi\)
\(678\) −45.0000 25.9808i −1.72821 0.997785i
\(679\) 0 0
\(680\) 0 0
\(681\) 48.4974i 1.85843i
\(682\) 0 0
\(683\) −21.0000 + 12.1244i −0.803543 + 0.463926i −0.844708 0.535227i \(-0.820226\pi\)
0.0411658 + 0.999152i \(0.486893\pi\)
\(684\) 3.46410i 0.132453i
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 40.0000 1.52499
\(689\) 7.50000 + 7.79423i 0.285727 + 0.296936i
\(690\) 0 0
\(691\) 12.0000 + 6.92820i 0.456502 + 0.263561i 0.710572 0.703624i \(-0.248436\pi\)
−0.254071 + 0.967186i \(0.581770\pi\)
\(692\) −3.00000 + 5.19615i −0.114043 + 0.197528i
\(693\) 0 0
\(694\) 51.9615i 1.97243i
\(695\) 0 0
\(696\) 9.00000 5.19615i 0.341144 0.196960i
\(697\) 15.5885i 0.590455i
\(698\) 12.0000 + 20.7846i 0.454207 + 0.786709i
\(699\) −6.00000 + 10.3923i −0.226941 + 0.393073i
\(700\) 0 0
\(701\) 18.0000 0.679851 0.339925 0.940452i \(-0.389598\pi\)
0.339925 + 0.940452i \(0.389598\pi\)
\(702\) 6.00000 + 24.2487i 0.226455 + 0.915209i
\(703\) 30.0000 1.13147
\(704\) 0 0
\(705\) 0 0
\(706\) −28.5000 49.3634i −1.07261 1.85782i
\(707\) 0 0
\(708\) 12.0000 6.92820i 0.450988 0.260378i
\(709\) −4.50000 + 2.59808i −0.169001 + 0.0975728i −0.582115 0.813107i \(-0.697775\pi\)
0.413114 + 0.910679i \(0.364441\pi\)
\(710\) 0 0
\(711\) −2.00000 3.46410i −0.0750059 0.129914i
\(712\) −6.00000 + 10.3923i −0.224860 + 0.389468i
\(713\) −18.0000 10.3923i −0.674105 0.389195i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −36.0000 20.7846i −1.34444 0.776215i
\(718\) 6.00000 10.3923i 0.223918 0.387837i
\(719\) 24.0000 + 41.5692i 0.895049 + 1.55027i 0.833744 + 0.552151i \(0.186193\pi\)
0.0613050 + 0.998119i \(0.480474\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −10.5000 + 6.06218i −0.390770 + 0.225611i
\(723\) 3.46410i 0.128831i
\(724\) 5.50000 + 9.52628i 0.204406 + 0.354041i
\(725\) 0 0
\(726\) −33.0000 19.0526i −1.22474 0.707107i
\(727\) 32.0000 1.18681 0.593407 0.804902i \(-0.297782\pi\)
0.593407 + 0.804902i \(0.297782\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 12.0000 20.7846i 0.443836 0.768747i
\(732\) −1.00000 1.73205i −0.0369611 0.0640184i
\(733\) 12.1244i 0.447823i −0.974609 0.223912i \(-0.928117\pi\)
0.974609 0.223912i \(-0.0718827\pi\)
\(734\) −33.0000 + 19.0526i −1.21805 + 0.703243i
\(735\) 0 0
\(736\) 31.1769i 1.14920i
\(737\) 0 0
\(738\) −4.50000 + 7.79423i −0.165647 + 0.286910i
\(739\) −18.0000 10.3923i −0.662141 0.382287i 0.130951 0.991389i \(-0.458197\pi\)
−0.793092 + 0.609102i \(0.791530\pi\)
\(740\) 0 0
\(741\) −18.0000 + 17.3205i −0.661247 + 0.636285i
\(742\) 0 0
\(743\) 30.0000 + 17.3205i 1.10059 + 0.635428i 0.936377 0.350997i \(-0.114157\pi\)
0.164216 + 0.986424i \(0.447490\pi\)
\(744\) 6.00000 10.3923i 0.219971 0.381000i
\(745\) 0 0
\(746\) 32.9090i 1.20488i
\(747\) −12.0000 + 6.92820i −0.439057 + 0.253490i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 8.00000 13.8564i 0.291924 0.505627i −0.682341 0.731034i \(-0.739038\pi\)
0.974265 + 0.225407i \(0.0723712\pi\)
\(752\) 15.0000 + 8.66025i 0.546994 + 0.315807i
\(753\) 36.0000 1.31191
\(754\) −18.0000 5.19615i −0.655521 0.189233i
\(755\) 0 0
\(756\) 0 0
\(757\) −13.0000 + 22.5167i −0.472493 + 0.818382i −0.999505 0.0314762i \(-0.989979\pi\)
0.527011 + 0.849858i \(0.323312\pi\)
\(758\) −21.0000 36.3731i −0.762754 1.32113i
\(759\) 0 0
\(760\) 0 0
\(761\) 30.0000 17.3205i 1.08750 0.627868i 0.154590 0.987979i \(-0.450594\pi\)
0.932910 + 0.360111i \(0.117261\pi\)
\(762\) 6.92820i 0.250982i
\(763\) 0 0
\(764\) 9.00000 15.5885i 0.325609 0.563971i
\(765\) 0 0
\(766\) 36.0000 1.30073
\(767\) 24.0000 + 6.92820i 0.866590 + 0.250163i
\(768\) −38.0000 −1.37121
\(769\) 6.00000 + 3.46410i 0.216366 + 0.124919i 0.604266 0.796782i \(-0.293466\pi\)
−0.387901 + 0.921701i \(0.626800\pi\)
\(770\) 0 0
\(771\) −3.00000 5.19615i −0.108042 0.187135i
\(772\) 5.19615i 0.187014i
\(773\) 30.0000 17.3205i 1.07903 0.622975i 0.148392 0.988929i \(-0.452590\pi\)
0.930633 + 0.365953i \(0.119257\pi\)
\(774\) 12.0000 6.92820i 0.431331 0.249029i
\(775\) 0 0
\(776\) 6.00000 + 10.3923i 0.215387 + 0.373062i
\(777\) 0 0
\(778\) −13.5000 7.79423i −0.483998 0.279437i
\(779\) 18.0000 0.644917
\(780\) 0 0
\(781\) 0 0
\(782\) 27.0000 + 15.5885i 0.965518 + 0.557442i
\(783\) −6.00000 + 10.3923i −0.214423 + 0.371391i
\(784\) 17.5000 + 30.3109i 0.625000 + 1.08253i
\(785\) 0 0
\(786\) 54.0000 31.1769i 1.92612 1.11204i
\(787\) −33.0000 + 19.0526i −1.17632 + 0.679150i −0.955161 0.296087i \(-0.904318\pi\)
−0.221162 + 0.975237i \(0.570985\pi\)
\(788\) 13.8564i 0.493614i
\(789\) −12.0000 20.7846i −0.427211 0.739952i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 1.00000 3.46410i 0.0355110 0.123014i
\(794\) 24.0000 0.851728
\(795\) 0 0
\(796\) −1.00000 + 1.73205i −0.0354441 + 0.0613909i
\(797\) 21.0000 + 36.3731i 0.743858 + 1.28840i 0.950726 + 0.310031i \(0.100340\pi\)
−0.206868 + 0.978369i \(0.566327\pi\)
\(798\) 0 0
\(799\) 9.00000 5.19615i 0.318397 0.183827i
\(800\) 0 0
\(801\) 6.92820i 0.244796i
\(802\) −1.50000 2.59808i −0.0529668 0.0917413i
\(803\) 0 0
\(804\) −6.00000 3.46410i −0.211604 0.122169i
\(805\) 0 0
\(806\) −21.0000 + 5.19615i −0.739693 + 0.183027i
\(807\) 12.0000 0.422420
\(808\) −4.50000 2.59808i −0.158309 0.0914000i
\(809\) −16.5000 + 28.5788i −0.580109 + 1.00478i 0.415357 + 0.909659i \(0.363657\pi\)
−0.995466 + 0.0951198i \(0.969677\pi\)
\(810\) 0 0
\(811\) 38.1051i 1.33805i −0.743239 0.669026i \(-0.766712\pi\)
0.743239 0.669026i \(-0.233288\pi\)
\(812\) 0 0
\(813\) 36.0000 20.7846i 1.26258 0.728948i
\(814\) 0 0
\(815\) 0 0
\(816\) −15.0000 + 25.9808i −0.525105 + 0.909509i
\(817\) −24.0000 13.8564i −0.839654 0.484774i
\(818\) 27.0000 0.944033
\(819\) 0 0
\(820\) 0 0
\(821\) −36.0000 20.7846i −1.25641 0.725388i −0.284034 0.958814i \(-0.591673\pi\)
−0.972375 + 0.233426i \(0.925006\pi\)
\(822\) 27.0000 46.7654i 0.941733 1.63113i
\(823\) −2.00000 3.46410i −0.0697156 0.120751i 0.829060 0.559159i \(-0.188876\pi\)
−0.898776 + 0.438408i \(0.855543\pi\)
\(824\) 17.3205i 0.603388i
\(825\) 0 0
\(826\) 0 0
\(827\) 20.7846i 0.722752i −0.932420 0.361376i \(-0.882307\pi\)
0.932420 0.361376i \(-0.117693\pi\)
\(828\) 3.00000 + 5.19615i 0.104257 + 0.180579i
\(829\) −12.5000 + 21.6506i −0.434143 + 0.751958i −0.997225 0.0744432i \(-0.976282\pi\)
0.563082 + 0.826401i \(0.309615\pi\)
\(830\) 0 0
\(831\) −14.0000 −0.485655
\(832\) −2.50000 2.59808i −0.0866719 0.0900721i
\(833\) 21.0000 0.727607
\(834\) 12.0000 + 6.92820i 0.415526 + 0.239904i
\(835\) 0 0
\(836\) 0 0
\(837\) 13.8564i 0.478947i
\(838\) −27.0000 + 15.5885i −0.932700 + 0.538494i
\(839\) 39.0000 22.5167i 1.34643 0.777361i 0.358688 0.933458i \(-0.383224\pi\)
0.987742 + 0.156096i \(0.0498910\pi\)
\(840\) 0 0
\(841\) 10.0000 + 17.3205i 0.344828 + 0.597259i
\(842\) −13.5000 + 23.3827i −0.465241 + 0.805821i
\(843\) −39.0000 22.5167i −1.34323 0.775515i
\(844\) −10.0000 −0.344214
\(845\) 0 0
\(846\) 6.00000 0.206284
\(847\) 0 0
\(848\) 7.50000 12.9904i 0.257551 0.446092i
\(849\) −4.00000 6.92820i −0.137280 0.237775i
\(850\) 0 0
\(851\) 45.0000 25.9808i 1.54258 0.890609i
\(852\) 6.00000 3.46410i 0.205557 0.118678i
\(853\) 25.9808i 0.889564i −0.895639 0.444782i \(-0.853281\pi\)
0.895639 0.444782i \(-0.146719\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −9.00000 5.19615i −0.307614 0.177601i
\(857\) −3.00000 −0.102478 −0.0512390 0.998686i \(-0.516317\pi\)
−0.0512390 + 0.998686i \(0.516317\pi\)
\(858\) 0 0
\(859\) −14.0000 −0.477674 −0.238837 0.971060i \(-0.576766\pi\)
−0.238837 + 0.971060i \(0.576766\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −6.00000 10.3923i −0.204361 0.353963i
\(863\) 27.7128i 0.943355i 0.881771 + 0.471678i \(0.156351\pi\)
−0.881771 + 0.471678i \(0.843649\pi\)
\(864\) 18.0000 10.3923i 0.612372 0.353553i
\(865\) 0 0
\(866\) 29.4449i 1.00058i
\(867\) −8.00000 13.8564i −0.271694 0.470588i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −3.00000 12.1244i −0.101651 0.410818i
\(872\) −24.0000 −0.812743
\(873\) 6.00000 + 3.46410i 0.203069 + 0.117242i
\(874\) 18.0000 31.1769i 0.608859 1.05457i
\(875\) 0 0
\(876\) 3.46410i 0.117041i
\(877\) −10.5000 + 6.06218i −0.354560 + 0.204705i −0.666692 0.745334i \(-0.732290\pi\)
0.312132 + 0.950039i \(0.398957\pi\)
\(878\) 42.0000 24.2487i 1.41743 0.818354i
\(879\) 10.3923i 0.350524i
\(880\) 0 0
\(881\) −13.5000 + 23.3827i −0.454827 + 0.787783i −0.998678 0.0513987i \(-0.983632\pi\)
0.543852 + 0.839181i \(0.316965\pi\)
\(882\) 10.5000 + 6.06218i 0.353553 + 0.204124i
\(883\) −10.0000 −0.336527 −0.168263 0.985742i \(-0.553816\pi\)
−0.168263 + 0.985742i \(0.553816\pi\)
\(884\) 10.5000 2.59808i 0.353153 0.0873828i
\(885\) 0 0
\(886\) 18.0000 + 10.3923i 0.604722 + 0.349136i
\(887\) 18.0000 31.1769i 0.604381 1.04682i −0.387768 0.921757i \(-0.626754\pi\)
0.992149 0.125061i \(-0.0399128\pi\)
\(888\) 15.0000 + 25.9808i 0.503367 + 0.871857i
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 10.3923i 0.347960i
\(893\) −6.00000 10.3923i −0.200782 0.347765i
\(894\) −33.0000 + 57.1577i −1.10369 + 1.91164i
\(895\) 0 0
\(896\) 0 0
\(897\) −12.0000 + 41.5692i −0.400668 + 1.38796i
\(898\) −12.0000 −0.400445
\(899\) −9.00000 5.19615i −0.300167 0.173301i
\(900\) 0 0
\(901\) −4.50000 7.79423i −0.149917 0.259663i
\(902\) 0 0
\(903\) 0 0
\(904\) −22.5000 + 12.9904i −0.748339 + 0.432054i
\(905\) 0 0
\(906\) 30.0000 + 51.9615i 0.996683 + 1.72631i
\(907\) 14.0000 24.2487i 0.464862 0.805165i −0.534333 0.845274i \(-0.679437\pi\)
0.999195 + 0.0401089i \(0.0127705\pi\)
\(908\) −21.0000 12.1244i −0.696909 0.402361i
\(909\) −3.00000 −0.0995037
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 30.0000 + 17.3205i 0.993399 + 0.573539i
\(913\) 0 0
\(914\) −1.50000 2.59808i −0.0496156 0.0859367i
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 20.7846i 0.685994i
\(919\) −11.0000 19.0526i −0.362857 0.628486i 0.625573 0.780165i \(-0.284865\pi\)
−0.988430 + 0.151680i \(0.951532\pi\)
\(920\) 0 0
\(921\) 30.0000 + 17.3205i 0.988534 + 0.570730i
\(922\) 39.0000 1.28440
\(923\) 12.0000 + 3.46410i 0.394985 + 0.114022i
\(924\) 0 0
\(925\) 0 0
\(926\) 12.0000 20.7846i 0.394344 0.683025i
\(927\) −5.00000 8.66025i −0.164222 0.284440i
\(928\) 15.5885i 0.511716i
\(929\) −40.5000 + 23.3827i −1.32876 + 0.767161i −0.985108 0.171935i \(-0.944998\pi\)
−0.343654 + 0.939096i \(0.611665\pi\)
\(930\) 0 0
\(931\) 24.2487i 0.794719i
\(932\) −3.00000 5.19615i −0.0982683 0.170206i
\(933\) −30.0000 + 51.9615i −0.982156 + 1.70114i
\(934\) −18.0000 10.3923i −0.588978 0.340047i
\(935\) 0 0
\(936\) −6.00000 1.73205i −0.196116 0.0566139i
\(937\) −7.00000 −0.228680 −0.114340 0.993442i \(-0.536475\pi\)
−0.114340 + 0.993442i \(0.536475\pi\)
\(938\) 0 0
\(939\) −10.0000 + 17.3205i −0.326338 + 0.565233i
\(940\) 0 0
\(941\) 20.7846i 0.677559i 0.940866 + 0.338779i \(0.110014\pi\)
−0.940866 + 0.338779i \(0.889986\pi\)
\(942\) 39.0000 22.5167i 1.27069 0.733632i
\(943\) 27.0000 15.5885i 0.879241 0.507630i
\(944\) 34.6410i 1.12747i
\(945\) 0 0
\(946\) 0 0
\(947\) 15.0000 + 8.66025i 0.487435 + 0.281420i 0.723510 0.690314i \(-0.242528\pi\)
−0.236075 + 0.971735i \(0.575861\pi\)
\(948\) 8.00000 0.259828
\(949\) 4.50000 4.33013i 0.146076 0.140562i
\(950\) 0 0
\(951\) 9.00000 + 5.19615i 0.291845 + 0.168497i
\(952\) 0 0
\(953\) −3.00000 5.19615i −0.0971795 0.168320i 0.813337 0.581793i \(-0.197649\pi\)
−0.910516 + 0.413473i \(0.864315\pi\)
\(954\) 5.19615i 0.168232i
\(955\) 0 0
\(956\) 18.0000 10.3923i 0.582162 0.336111i
\(957\) 0 0
\(958\) 21.0000 + 36.3731i 0.678479 + 1.17516i
\(959\) 0 0
\(960\) 0 0
\(961\) 19.0000 0.612903
\(962\) 15.0000 51.9615i 0.483619 1.67531i
\(963\) −6.00000 −0.193347
\(964\) −1.50000 0.866025i −0.0483117 0.0278928i
\(965\) 0 0
\(966\) 0 0
\(967\) 58.8897i 1.89377i −0.321578 0.946883i \(-0.604213\pi\)
0.321578 0.946883i \(-0.395787\pi\)
\(968\) −16.5000 + 9.52628i −0.530330 + 0.306186i
\(969\) 18.0000 10.3923i 0.578243 0.333849i
\(970\) 0 0
\(971\) −3.00000 5.19615i −0.0962746 0.166752i 0.813865 0.581054i \(-0.197359\pi\)
−0.910140 + 0.414301i \(0.864026\pi\)
\(972\) 5.00000 8.66025i 0.160375 0.277778i
\(973\) 0 0
\(974\) 12.0000 0.384505
\(975\) 0 0
\(976\) −5.00000 −0.160046
\(977\) −37.5000 21.6506i −1.19973 0.692665i −0.239236 0.970961i \(-0.576897\pi\)
−0.960495 + 0.278296i \(0.910230\pi\)
\(978\) −36.0000 + 62.3538i −1.15115 + 1.99386i
\(979\) 0 0
\(980\) 0 0
\(981\) −12.0000 + 6.92820i −0.383131 + 0.221201i
\(982\) −18.0000 + 10.3923i −0.574403 + 0.331632i
\(983\) 51.9615i 1.65732i −0.559756 0.828658i \(-0.689105\pi\)
0.559756 0.828658i \(-0.310895\pi\)
\(984\) 9.00000 + 15.5885i 0.286910 + 0.496942i
\(985\) 0 0
\(986\) 13.5000 + 7.79423i 0.429928 + 0.248219i
\(987\) 0 0
\(988\) −3.00000 12.1244i −0.0954427 0.385727i
\(989\) −48.0000 −1.52631
\(990\) 0 0
\(991\) −1.00000 + 1.73205i −0.0317660 + 0.0550204i −0.881471 0.472237i \(-0.843446\pi\)
0.849705 + 0.527258i \(0.176780\pi\)
\(992\) 9.00000 + 15.5885i 0.285750 + 0.494934i
\(993\) 55.4256i 1.75888i
\(994\) 0 0
\(995\) 0 0
\(996\) 27.7128i 0.878114i
\(997\) 8.50000 + 14.7224i 0.269198 + 0.466264i 0.968655 0.248410i \(-0.0799082\pi\)
−0.699457 + 0.714675i \(0.746575\pi\)
\(998\) −27.0000 + 46.7654i −0.854670 + 1.48033i
\(999\) −30.0000 17.3205i −0.949158 0.547997i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.2.n.a.251.1 2
5.2 odd 4 325.2.m.a.199.1 4
5.3 odd 4 325.2.m.a.199.2 4
5.4 even 2 13.2.e.a.4.1 2
13.6 odd 12 4225.2.a.v.1.1 2
13.7 odd 12 4225.2.a.v.1.2 2
13.10 even 6 inner 325.2.n.a.101.1 2
15.14 odd 2 117.2.q.c.82.1 2
20.19 odd 2 208.2.w.b.17.1 2
35.4 even 6 637.2.u.c.30.1 2
35.9 even 6 637.2.k.a.459.1 2
35.19 odd 6 637.2.k.c.459.1 2
35.24 odd 6 637.2.u.b.30.1 2
35.34 odd 2 637.2.q.a.589.1 2
40.19 odd 2 832.2.w.a.641.1 2
40.29 even 2 832.2.w.d.641.1 2
60.59 even 2 1872.2.by.d.433.1 2
65.4 even 6 169.2.b.a.168.1 2
65.9 even 6 169.2.b.a.168.2 2
65.19 odd 12 169.2.a.a.1.2 2
65.23 odd 12 325.2.m.a.49.1 4
65.24 odd 12 169.2.c.a.146.2 4
65.29 even 6 169.2.e.a.23.1 2
65.34 odd 4 169.2.c.a.22.2 4
65.44 odd 4 169.2.c.a.22.1 4
65.49 even 6 13.2.e.a.10.1 yes 2
65.54 odd 12 169.2.c.a.146.1 4
65.59 odd 12 169.2.a.a.1.1 2
65.62 odd 12 325.2.m.a.49.2 4
65.64 even 2 169.2.e.a.147.1 2
195.59 even 12 1521.2.a.k.1.2 2
195.74 odd 6 1521.2.b.a.1351.1 2
195.134 odd 6 1521.2.b.a.1351.2 2
195.149 even 12 1521.2.a.k.1.1 2
195.179 odd 6 117.2.q.c.10.1 2
260.19 even 12 2704.2.a.o.1.1 2
260.59 even 12 2704.2.a.o.1.2 2
260.139 odd 6 2704.2.f.b.337.1 2
260.179 odd 6 208.2.w.b.49.1 2
260.199 odd 6 2704.2.f.b.337.2 2
455.114 even 6 637.2.u.c.361.1 2
455.179 even 6 637.2.k.a.569.1 2
455.244 odd 6 637.2.q.a.491.1 2
455.279 even 12 8281.2.a.q.1.2 2
455.374 odd 6 637.2.k.c.569.1 2
455.384 even 12 8281.2.a.q.1.1 2
455.439 odd 6 637.2.u.b.361.1 2
520.179 odd 6 832.2.w.a.257.1 2
520.309 even 6 832.2.w.d.257.1 2
780.179 even 6 1872.2.by.d.1297.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.2.e.a.4.1 2 5.4 even 2
13.2.e.a.10.1 yes 2 65.49 even 6
117.2.q.c.10.1 2 195.179 odd 6
117.2.q.c.82.1 2 15.14 odd 2
169.2.a.a.1.1 2 65.59 odd 12
169.2.a.a.1.2 2 65.19 odd 12
169.2.b.a.168.1 2 65.4 even 6
169.2.b.a.168.2 2 65.9 even 6
169.2.c.a.22.1 4 65.44 odd 4
169.2.c.a.22.2 4 65.34 odd 4
169.2.c.a.146.1 4 65.54 odd 12
169.2.c.a.146.2 4 65.24 odd 12
169.2.e.a.23.1 2 65.29 even 6
169.2.e.a.147.1 2 65.64 even 2
208.2.w.b.17.1 2 20.19 odd 2
208.2.w.b.49.1 2 260.179 odd 6
325.2.m.a.49.1 4 65.23 odd 12
325.2.m.a.49.2 4 65.62 odd 12
325.2.m.a.199.1 4 5.2 odd 4
325.2.m.a.199.2 4 5.3 odd 4
325.2.n.a.101.1 2 13.10 even 6 inner
325.2.n.a.251.1 2 1.1 even 1 trivial
637.2.k.a.459.1 2 35.9 even 6
637.2.k.a.569.1 2 455.179 even 6
637.2.k.c.459.1 2 35.19 odd 6
637.2.k.c.569.1 2 455.374 odd 6
637.2.q.a.491.1 2 455.244 odd 6
637.2.q.a.589.1 2 35.34 odd 2
637.2.u.b.30.1 2 35.24 odd 6
637.2.u.b.361.1 2 455.439 odd 6
637.2.u.c.30.1 2 35.4 even 6
637.2.u.c.361.1 2 455.114 even 6
832.2.w.a.257.1 2 520.179 odd 6
832.2.w.a.641.1 2 40.19 odd 2
832.2.w.d.257.1 2 520.309 even 6
832.2.w.d.641.1 2 40.29 even 2
1521.2.a.k.1.1 2 195.149 even 12
1521.2.a.k.1.2 2 195.59 even 12
1521.2.b.a.1351.1 2 195.74 odd 6
1521.2.b.a.1351.2 2 195.134 odd 6
1872.2.by.d.433.1 2 60.59 even 2
1872.2.by.d.1297.1 2 780.179 even 6
2704.2.a.o.1.1 2 260.19 even 12
2704.2.a.o.1.2 2 260.59 even 12
2704.2.f.b.337.1 2 260.139 odd 6
2704.2.f.b.337.2 2 260.199 odd 6
4225.2.a.v.1.1 2 13.6 odd 12
4225.2.a.v.1.2 2 13.7 odd 12
8281.2.a.q.1.1 2 455.384 even 12
8281.2.a.q.1.2 2 455.279 even 12