Properties

Label 13.2.e.a.4.1
Level $13$
Weight $2$
Character 13.4
Analytic conductor $0.104$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [13,2,Mod(4,13)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(13, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("13.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 13.e (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.103805522628\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 4.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 13.4
Dual form 13.2.e.a.10.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.50000 - 0.866025i) q^{2} +(-1.00000 + 1.73205i) q^{3} +(0.500000 + 0.866025i) q^{4} -1.73205i q^{5} +(3.00000 - 1.73205i) q^{6} +1.73205i q^{8} +(-0.500000 - 0.866025i) q^{9} +(-1.50000 + 2.59808i) q^{10} -2.00000 q^{12} +(-2.50000 - 2.59808i) q^{13} +(3.00000 + 1.73205i) q^{15} +(2.50000 - 4.33013i) q^{16} +(1.50000 + 2.59808i) q^{17} +1.73205i q^{18} +(-3.00000 + 1.73205i) q^{19} +(1.50000 - 0.866025i) q^{20} +(3.00000 - 5.19615i) q^{23} +(-3.00000 - 1.73205i) q^{24} +2.00000 q^{25} +(1.50000 + 6.06218i) q^{26} -4.00000 q^{27} +(-1.50000 + 2.59808i) q^{29} +(-3.00000 - 5.19615i) q^{30} +3.46410i q^{31} +(-4.50000 + 2.59808i) q^{32} -5.19615i q^{34} +(0.500000 - 0.866025i) q^{36} +(7.50000 + 4.33013i) q^{37} +6.00000 q^{38} +(7.00000 - 1.73205i) q^{39} +3.00000 q^{40} +(-4.50000 - 2.59808i) q^{41} +(-4.00000 - 6.92820i) q^{43} +(-1.50000 + 0.866025i) q^{45} +(-9.00000 + 5.19615i) q^{46} -3.46410i q^{47} +(5.00000 + 8.66025i) q^{48} +(-3.50000 + 6.06218i) q^{49} +(-3.00000 - 1.73205i) q^{50} -6.00000 q^{51} +(1.00000 - 3.46410i) q^{52} -3.00000 q^{53} +(6.00000 + 3.46410i) q^{54} -6.92820i q^{57} +(4.50000 - 2.59808i) q^{58} +(6.00000 - 3.46410i) q^{59} +3.46410i q^{60} +(-0.500000 - 0.866025i) q^{61} +(3.00000 - 5.19615i) q^{62} -1.00000 q^{64} +(-4.50000 + 4.33013i) q^{65} +(3.00000 + 1.73205i) q^{67} +(-1.50000 + 2.59808i) q^{68} +(6.00000 + 10.3923i) q^{69} +(3.00000 - 1.73205i) q^{71} +(1.50000 - 0.866025i) q^{72} +1.73205i q^{73} +(-7.50000 - 12.9904i) q^{74} +(-2.00000 + 3.46410i) q^{75} +(-3.00000 - 1.73205i) q^{76} +(-12.0000 - 3.46410i) q^{78} +4.00000 q^{79} +(-7.50000 - 4.33013i) q^{80} +(5.50000 - 9.52628i) q^{81} +(4.50000 + 7.79423i) q^{82} +13.8564i q^{83} +(4.50000 - 2.59808i) q^{85} +13.8564i q^{86} +(-3.00000 - 5.19615i) q^{87} +(-6.00000 - 3.46410i) q^{89} +3.00000 q^{90} +6.00000 q^{92} +(-6.00000 - 3.46410i) q^{93} +(-3.00000 + 5.19615i) q^{94} +(3.00000 + 5.19615i) q^{95} -10.3923i q^{96} +(6.00000 - 3.46410i) q^{97} +(10.5000 - 6.06218i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{2} - 2 q^{3} + q^{4} + 6 q^{6} - q^{9} - 3 q^{10} - 4 q^{12} - 5 q^{13} + 6 q^{15} + 5 q^{16} + 3 q^{17} - 6 q^{19} + 3 q^{20} + 6 q^{23} - 6 q^{24} + 4 q^{25} + 3 q^{26} - 8 q^{27} - 3 q^{29}+ \cdots + 21 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/13\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.50000 0.866025i −1.06066 0.612372i −0.135045 0.990839i \(-0.543118\pi\)
−0.925615 + 0.378467i \(0.876451\pi\)
\(3\) −1.00000 + 1.73205i −0.577350 + 1.00000i 0.418432 + 0.908248i \(0.362580\pi\)
−0.995782 + 0.0917517i \(0.970753\pi\)
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 1.73205i 0.774597i −0.921954 0.387298i \(-0.873408\pi\)
0.921954 0.387298i \(-0.126592\pi\)
\(6\) 3.00000 1.73205i 1.22474 0.707107i
\(7\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(8\) 1.73205i 0.612372i
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) −1.50000 + 2.59808i −0.474342 + 0.821584i
\(11\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(12\) −2.00000 −0.577350
\(13\) −2.50000 2.59808i −0.693375 0.720577i
\(14\) 0 0
\(15\) 3.00000 + 1.73205i 0.774597 + 0.447214i
\(16\) 2.50000 4.33013i 0.625000 1.08253i
\(17\) 1.50000 + 2.59808i 0.363803 + 0.630126i 0.988583 0.150675i \(-0.0481447\pi\)
−0.624780 + 0.780801i \(0.714811\pi\)
\(18\) 1.73205i 0.408248i
\(19\) −3.00000 + 1.73205i −0.688247 + 0.397360i −0.802955 0.596040i \(-0.796740\pi\)
0.114708 + 0.993399i \(0.463407\pi\)
\(20\) 1.50000 0.866025i 0.335410 0.193649i
\(21\) 0 0
\(22\) 0 0
\(23\) 3.00000 5.19615i 0.625543 1.08347i −0.362892 0.931831i \(-0.618211\pi\)
0.988436 0.151642i \(-0.0484560\pi\)
\(24\) −3.00000 1.73205i −0.612372 0.353553i
\(25\) 2.00000 0.400000
\(26\) 1.50000 + 6.06218i 0.294174 + 1.18889i
\(27\) −4.00000 −0.769800
\(28\) 0 0
\(29\) −1.50000 + 2.59808i −0.278543 + 0.482451i −0.971023 0.238987i \(-0.923185\pi\)
0.692480 + 0.721437i \(0.256518\pi\)
\(30\) −3.00000 5.19615i −0.547723 0.948683i
\(31\) 3.46410i 0.622171i 0.950382 + 0.311086i \(0.100693\pi\)
−0.950382 + 0.311086i \(0.899307\pi\)
\(32\) −4.50000 + 2.59808i −0.795495 + 0.459279i
\(33\) 0 0
\(34\) 5.19615i 0.891133i
\(35\) 0 0
\(36\) 0.500000 0.866025i 0.0833333 0.144338i
\(37\) 7.50000 + 4.33013i 1.23299 + 0.711868i 0.967653 0.252286i \(-0.0811825\pi\)
0.265340 + 0.964155i \(0.414516\pi\)
\(38\) 6.00000 0.973329
\(39\) 7.00000 1.73205i 1.12090 0.277350i
\(40\) 3.00000 0.474342
\(41\) −4.50000 2.59808i −0.702782 0.405751i 0.105601 0.994409i \(-0.466323\pi\)
−0.808383 + 0.588657i \(0.799657\pi\)
\(42\) 0 0
\(43\) −4.00000 6.92820i −0.609994 1.05654i −0.991241 0.132068i \(-0.957838\pi\)
0.381246 0.924473i \(-0.375495\pi\)
\(44\) 0 0
\(45\) −1.50000 + 0.866025i −0.223607 + 0.129099i
\(46\) −9.00000 + 5.19615i −1.32698 + 0.766131i
\(47\) 3.46410i 0.505291i −0.967559 0.252646i \(-0.918699\pi\)
0.967559 0.252646i \(-0.0813007\pi\)
\(48\) 5.00000 + 8.66025i 0.721688 + 1.25000i
\(49\) −3.50000 + 6.06218i −0.500000 + 0.866025i
\(50\) −3.00000 1.73205i −0.424264 0.244949i
\(51\) −6.00000 −0.840168
\(52\) 1.00000 3.46410i 0.138675 0.480384i
\(53\) −3.00000 −0.412082 −0.206041 0.978543i \(-0.566058\pi\)
−0.206041 + 0.978543i \(0.566058\pi\)
\(54\) 6.00000 + 3.46410i 0.816497 + 0.471405i
\(55\) 0 0
\(56\) 0 0
\(57\) 6.92820i 0.917663i
\(58\) 4.50000 2.59808i 0.590879 0.341144i
\(59\) 6.00000 3.46410i 0.781133 0.450988i −0.0556984 0.998448i \(-0.517739\pi\)
0.836832 + 0.547460i \(0.184405\pi\)
\(60\) 3.46410i 0.447214i
\(61\) −0.500000 0.866025i −0.0640184 0.110883i 0.832240 0.554416i \(-0.187058\pi\)
−0.896258 + 0.443533i \(0.853725\pi\)
\(62\) 3.00000 5.19615i 0.381000 0.659912i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −4.50000 + 4.33013i −0.558156 + 0.537086i
\(66\) 0 0
\(67\) 3.00000 + 1.73205i 0.366508 + 0.211604i 0.671932 0.740613i \(-0.265465\pi\)
−0.305424 + 0.952217i \(0.598798\pi\)
\(68\) −1.50000 + 2.59808i −0.181902 + 0.315063i
\(69\) 6.00000 + 10.3923i 0.722315 + 1.25109i
\(70\) 0 0
\(71\) 3.00000 1.73205i 0.356034 0.205557i −0.311305 0.950310i \(-0.600766\pi\)
0.667340 + 0.744753i \(0.267433\pi\)
\(72\) 1.50000 0.866025i 0.176777 0.102062i
\(73\) 1.73205i 0.202721i 0.994850 + 0.101361i \(0.0323196\pi\)
−0.994850 + 0.101361i \(0.967680\pi\)
\(74\) −7.50000 12.9904i −0.871857 1.51010i
\(75\) −2.00000 + 3.46410i −0.230940 + 0.400000i
\(76\) −3.00000 1.73205i −0.344124 0.198680i
\(77\) 0 0
\(78\) −12.0000 3.46410i −1.35873 0.392232i
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) −7.50000 4.33013i −0.838525 0.484123i
\(81\) 5.50000 9.52628i 0.611111 1.05848i
\(82\) 4.50000 + 7.79423i 0.496942 + 0.860729i
\(83\) 13.8564i 1.52094i 0.649374 + 0.760469i \(0.275031\pi\)
−0.649374 + 0.760469i \(0.724969\pi\)
\(84\) 0 0
\(85\) 4.50000 2.59808i 0.488094 0.281801i
\(86\) 13.8564i 1.49417i
\(87\) −3.00000 5.19615i −0.321634 0.557086i
\(88\) 0 0
\(89\) −6.00000 3.46410i −0.635999 0.367194i 0.147073 0.989126i \(-0.453015\pi\)
−0.783072 + 0.621932i \(0.786348\pi\)
\(90\) 3.00000 0.316228
\(91\) 0 0
\(92\) 6.00000 0.625543
\(93\) −6.00000 3.46410i −0.622171 0.359211i
\(94\) −3.00000 + 5.19615i −0.309426 + 0.535942i
\(95\) 3.00000 + 5.19615i 0.307794 + 0.533114i
\(96\) 10.3923i 1.06066i
\(97\) 6.00000 3.46410i 0.609208 0.351726i −0.163448 0.986552i \(-0.552261\pi\)
0.772655 + 0.634826i \(0.218928\pi\)
\(98\) 10.5000 6.06218i 1.06066 0.612372i
\(99\) 0 0
\(100\) 1.00000 + 1.73205i 0.100000 + 0.173205i
\(101\) 1.50000 2.59808i 0.149256 0.258518i −0.781697 0.623658i \(-0.785646\pi\)
0.930953 + 0.365140i \(0.118979\pi\)
\(102\) 9.00000 + 5.19615i 0.891133 + 0.514496i
\(103\) −10.0000 −0.985329 −0.492665 0.870219i \(-0.663977\pi\)
−0.492665 + 0.870219i \(0.663977\pi\)
\(104\) 4.50000 4.33013i 0.441261 0.424604i
\(105\) 0 0
\(106\) 4.50000 + 2.59808i 0.437079 + 0.252347i
\(107\) −3.00000 + 5.19615i −0.290021 + 0.502331i −0.973814 0.227345i \(-0.926996\pi\)
0.683793 + 0.729676i \(0.260329\pi\)
\(108\) −2.00000 3.46410i −0.192450 0.333333i
\(109\) 13.8564i 1.32720i −0.748086 0.663602i \(-0.769027\pi\)
0.748086 0.663602i \(-0.230973\pi\)
\(110\) 0 0
\(111\) −15.0000 + 8.66025i −1.42374 + 0.821995i
\(112\) 0 0
\(113\) 7.50000 + 12.9904i 0.705541 + 1.22203i 0.966496 + 0.256681i \(0.0826291\pi\)
−0.260955 + 0.965351i \(0.584038\pi\)
\(114\) −6.00000 + 10.3923i −0.561951 + 0.973329i
\(115\) −9.00000 5.19615i −0.839254 0.484544i
\(116\) −3.00000 −0.278543
\(117\) −1.00000 + 3.46410i −0.0924500 + 0.320256i
\(118\) −12.0000 −1.10469
\(119\) 0 0
\(120\) −3.00000 + 5.19615i −0.273861 + 0.474342i
\(121\) −5.50000 9.52628i −0.500000 0.866025i
\(122\) 1.73205i 0.156813i
\(123\) 9.00000 5.19615i 0.811503 0.468521i
\(124\) −3.00000 + 1.73205i −0.269408 + 0.155543i
\(125\) 12.1244i 1.08444i
\(126\) 0 0
\(127\) 1.00000 1.73205i 0.0887357 0.153695i −0.818241 0.574875i \(-0.805051\pi\)
0.906977 + 0.421180i \(0.138384\pi\)
\(128\) 10.5000 + 6.06218i 0.928078 + 0.535826i
\(129\) 16.0000 1.40872
\(130\) 10.5000 2.59808i 0.920911 0.227866i
\(131\) 18.0000 1.57267 0.786334 0.617802i \(-0.211977\pi\)
0.786334 + 0.617802i \(0.211977\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −3.00000 5.19615i −0.259161 0.448879i
\(135\) 6.92820i 0.596285i
\(136\) −4.50000 + 2.59808i −0.385872 + 0.222783i
\(137\) −13.5000 + 7.79423i −1.15338 + 0.665906i −0.949709 0.313133i \(-0.898621\pi\)
−0.203674 + 0.979039i \(0.565288\pi\)
\(138\) 20.7846i 1.76930i
\(139\) 2.00000 + 3.46410i 0.169638 + 0.293821i 0.938293 0.345843i \(-0.112407\pi\)
−0.768655 + 0.639664i \(0.779074\pi\)
\(140\) 0 0
\(141\) 6.00000 + 3.46410i 0.505291 + 0.291730i
\(142\) −6.00000 −0.503509
\(143\) 0 0
\(144\) −5.00000 −0.416667
\(145\) 4.50000 + 2.59808i 0.373705 + 0.215758i
\(146\) 1.50000 2.59808i 0.124141 0.215018i
\(147\) −7.00000 12.1244i −0.577350 1.00000i
\(148\) 8.66025i 0.711868i
\(149\) −16.5000 + 9.52628i −1.35173 + 0.780423i −0.988492 0.151272i \(-0.951663\pi\)
−0.363241 + 0.931695i \(0.618330\pi\)
\(150\) 6.00000 3.46410i 0.489898 0.282843i
\(151\) 17.3205i 1.40952i 0.709444 + 0.704761i \(0.248946\pi\)
−0.709444 + 0.704761i \(0.751054\pi\)
\(152\) −3.00000 5.19615i −0.243332 0.421464i
\(153\) 1.50000 2.59808i 0.121268 0.210042i
\(154\) 0 0
\(155\) 6.00000 0.481932
\(156\) 5.00000 + 5.19615i 0.400320 + 0.416025i
\(157\) −13.0000 −1.03751 −0.518756 0.854922i \(-0.673605\pi\)
−0.518756 + 0.854922i \(0.673605\pi\)
\(158\) −6.00000 3.46410i −0.477334 0.275589i
\(159\) 3.00000 5.19615i 0.237915 0.412082i
\(160\) 4.50000 + 7.79423i 0.355756 + 0.616188i
\(161\) 0 0
\(162\) −16.5000 + 9.52628i −1.29636 + 0.748455i
\(163\) 18.0000 10.3923i 1.40987 0.813988i 0.414494 0.910052i \(-0.363959\pi\)
0.995375 + 0.0960641i \(0.0306254\pi\)
\(164\) 5.19615i 0.405751i
\(165\) 0 0
\(166\) 12.0000 20.7846i 0.931381 1.61320i
\(167\) −12.0000 6.92820i −0.928588 0.536120i −0.0422232 0.999108i \(-0.513444\pi\)
−0.886365 + 0.462988i \(0.846777\pi\)
\(168\) 0 0
\(169\) −0.500000 + 12.9904i −0.0384615 + 0.999260i
\(170\) −9.00000 −0.690268
\(171\) 3.00000 + 1.73205i 0.229416 + 0.132453i
\(172\) 4.00000 6.92820i 0.304997 0.528271i
\(173\) −3.00000 5.19615i −0.228086 0.395056i 0.729155 0.684349i \(-0.239913\pi\)
−0.957241 + 0.289292i \(0.906580\pi\)
\(174\) 10.3923i 0.787839i
\(175\) 0 0
\(176\) 0 0
\(177\) 13.8564i 1.04151i
\(178\) 6.00000 + 10.3923i 0.449719 + 0.778936i
\(179\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(180\) −1.50000 0.866025i −0.111803 0.0645497i
\(181\) 11.0000 0.817624 0.408812 0.912619i \(-0.365943\pi\)
0.408812 + 0.912619i \(0.365943\pi\)
\(182\) 0 0
\(183\) 2.00000 0.147844
\(184\) 9.00000 + 5.19615i 0.663489 + 0.383065i
\(185\) 7.50000 12.9904i 0.551411 0.955072i
\(186\) 6.00000 + 10.3923i 0.439941 + 0.762001i
\(187\) 0 0
\(188\) 3.00000 1.73205i 0.218797 0.126323i
\(189\) 0 0
\(190\) 10.3923i 0.753937i
\(191\) −9.00000 15.5885i −0.651217 1.12794i −0.982828 0.184525i \(-0.940925\pi\)
0.331611 0.943416i \(-0.392408\pi\)
\(192\) 1.00000 1.73205i 0.0721688 0.125000i
\(193\) −4.50000 2.59808i −0.323917 0.187014i 0.329220 0.944253i \(-0.393214\pi\)
−0.653137 + 0.757240i \(0.726548\pi\)
\(194\) −12.0000 −0.861550
\(195\) −3.00000 12.1244i −0.214834 0.868243i
\(196\) −7.00000 −0.500000
\(197\) 12.0000 + 6.92820i 0.854965 + 0.493614i 0.862323 0.506359i \(-0.169009\pi\)
−0.00735824 + 0.999973i \(0.502342\pi\)
\(198\) 0 0
\(199\) 1.00000 + 1.73205i 0.0708881 + 0.122782i 0.899291 0.437351i \(-0.144083\pi\)
−0.828403 + 0.560133i \(0.810750\pi\)
\(200\) 3.46410i 0.244949i
\(201\) −6.00000 + 3.46410i −0.423207 + 0.244339i
\(202\) −4.50000 + 2.59808i −0.316619 + 0.182800i
\(203\) 0 0
\(204\) −3.00000 5.19615i −0.210042 0.363803i
\(205\) −4.50000 + 7.79423i −0.314294 + 0.544373i
\(206\) 15.0000 + 8.66025i 1.04510 + 0.603388i
\(207\) −6.00000 −0.417029
\(208\) −17.5000 + 4.33013i −1.21341 + 0.300240i
\(209\) 0 0
\(210\) 0 0
\(211\) −5.00000 + 8.66025i −0.344214 + 0.596196i −0.985211 0.171347i \(-0.945188\pi\)
0.640996 + 0.767544i \(0.278521\pi\)
\(212\) −1.50000 2.59808i −0.103020 0.178437i
\(213\) 6.92820i 0.474713i
\(214\) 9.00000 5.19615i 0.615227 0.355202i
\(215\) −12.0000 + 6.92820i −0.818393 + 0.472500i
\(216\) 6.92820i 0.471405i
\(217\) 0 0
\(218\) −12.0000 + 20.7846i −0.812743 + 1.40771i
\(219\) −3.00000 1.73205i −0.202721 0.117041i
\(220\) 0 0
\(221\) 3.00000 10.3923i 0.201802 0.699062i
\(222\) 30.0000 2.01347
\(223\) −9.00000 5.19615i −0.602685 0.347960i 0.167412 0.985887i \(-0.446459\pi\)
−0.770097 + 0.637927i \(0.779792\pi\)
\(224\) 0 0
\(225\) −1.00000 1.73205i −0.0666667 0.115470i
\(226\) 25.9808i 1.72821i
\(227\) 21.0000 12.1244i 1.39382 0.804722i 0.400083 0.916479i \(-0.368981\pi\)
0.993736 + 0.111757i \(0.0356478\pi\)
\(228\) 6.00000 3.46410i 0.397360 0.229416i
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 9.00000 + 15.5885i 0.593442 + 1.02787i
\(231\) 0 0
\(232\) −4.50000 2.59808i −0.295439 0.170572i
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 4.50000 4.33013i 0.294174 0.283069i
\(235\) −6.00000 −0.391397
\(236\) 6.00000 + 3.46410i 0.390567 + 0.225494i
\(237\) −4.00000 + 6.92820i −0.259828 + 0.450035i
\(238\) 0 0
\(239\) 20.7846i 1.34444i −0.740349 0.672222i \(-0.765340\pi\)
0.740349 0.672222i \(-0.234660\pi\)
\(240\) 15.0000 8.66025i 0.968246 0.559017i
\(241\) −1.50000 + 0.866025i −0.0966235 + 0.0557856i −0.547533 0.836784i \(-0.684433\pi\)
0.450910 + 0.892570i \(0.351100\pi\)
\(242\) 19.0526i 1.22474i
\(243\) 5.00000 + 8.66025i 0.320750 + 0.555556i
\(244\) 0.500000 0.866025i 0.0320092 0.0554416i
\(245\) 10.5000 + 6.06218i 0.670820 + 0.387298i
\(246\) −18.0000 −1.14764
\(247\) 12.0000 + 3.46410i 0.763542 + 0.220416i
\(248\) −6.00000 −0.381000
\(249\) −24.0000 13.8564i −1.52094 0.878114i
\(250\) −10.5000 + 18.1865i −0.664078 + 1.15022i
\(251\) 9.00000 + 15.5885i 0.568075 + 0.983935i 0.996756 + 0.0804789i \(0.0256450\pi\)
−0.428681 + 0.903456i \(0.641022\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −3.00000 + 1.73205i −0.188237 + 0.108679i
\(255\) 10.3923i 0.650791i
\(256\) −9.50000 16.4545i −0.593750 1.02841i
\(257\) −1.50000 + 2.59808i −0.0935674 + 0.162064i −0.909010 0.416775i \(-0.863160\pi\)
0.815442 + 0.578838i \(0.196494\pi\)
\(258\) −24.0000 13.8564i −1.49417 0.862662i
\(259\) 0 0
\(260\) −6.00000 1.73205i −0.372104 0.107417i
\(261\) 3.00000 0.185695
\(262\) −27.0000 15.5885i −1.66807 0.963058i
\(263\) −6.00000 + 10.3923i −0.369976 + 0.640817i −0.989561 0.144112i \(-0.953967\pi\)
0.619586 + 0.784929i \(0.287301\pi\)
\(264\) 0 0
\(265\) 5.19615i 0.319197i
\(266\) 0 0
\(267\) 12.0000 6.92820i 0.734388 0.423999i
\(268\) 3.46410i 0.211604i
\(269\) 3.00000 + 5.19615i 0.182913 + 0.316815i 0.942871 0.333157i \(-0.108114\pi\)
−0.759958 + 0.649972i \(0.774781\pi\)
\(270\) 6.00000 10.3923i 0.365148 0.632456i
\(271\) 18.0000 + 10.3923i 1.09342 + 0.631288i 0.934485 0.356001i \(-0.115860\pi\)
0.158937 + 0.987289i \(0.449193\pi\)
\(272\) 15.0000 0.909509
\(273\) 0 0
\(274\) 27.0000 1.63113
\(275\) 0 0
\(276\) −6.00000 + 10.3923i −0.361158 + 0.625543i
\(277\) 3.50000 + 6.06218i 0.210295 + 0.364241i 0.951807 0.306699i \(-0.0992243\pi\)
−0.741512 + 0.670940i \(0.765891\pi\)
\(278\) 6.92820i 0.415526i
\(279\) 3.00000 1.73205i 0.179605 0.103695i
\(280\) 0 0
\(281\) 22.5167i 1.34323i −0.740900 0.671616i \(-0.765601\pi\)
0.740900 0.671616i \(-0.234399\pi\)
\(282\) −6.00000 10.3923i −0.357295 0.618853i
\(283\) −2.00000 + 3.46410i −0.118888 + 0.205919i −0.919327 0.393494i \(-0.871266\pi\)
0.800439 + 0.599414i \(0.204600\pi\)
\(284\) 3.00000 + 1.73205i 0.178017 + 0.102778i
\(285\) −12.0000 −0.710819
\(286\) 0 0
\(287\) 0 0
\(288\) 4.50000 + 2.59808i 0.265165 + 0.153093i
\(289\) 4.00000 6.92820i 0.235294 0.407541i
\(290\) −4.50000 7.79423i −0.264249 0.457693i
\(291\) 13.8564i 0.812277i
\(292\) −1.50000 + 0.866025i −0.0877809 + 0.0506803i
\(293\) 4.50000 2.59808i 0.262893 0.151781i −0.362761 0.931882i \(-0.618166\pi\)
0.625653 + 0.780101i \(0.284832\pi\)
\(294\) 24.2487i 1.41421i
\(295\) −6.00000 10.3923i −0.349334 0.605063i
\(296\) −7.50000 + 12.9904i −0.435929 + 0.755051i
\(297\) 0 0
\(298\) 33.0000 1.91164
\(299\) −21.0000 + 5.19615i −1.21446 + 0.300501i
\(300\) −4.00000 −0.230940
\(301\) 0 0
\(302\) 15.0000 25.9808i 0.863153 1.49502i
\(303\) 3.00000 + 5.19615i 0.172345 + 0.298511i
\(304\) 17.3205i 0.993399i
\(305\) −1.50000 + 0.866025i −0.0858898 + 0.0495885i
\(306\) −4.50000 + 2.59808i −0.257248 + 0.148522i
\(307\) 17.3205i 0.988534i −0.869310 0.494267i \(-0.835437\pi\)
0.869310 0.494267i \(-0.164563\pi\)
\(308\) 0 0
\(309\) 10.0000 17.3205i 0.568880 0.985329i
\(310\) −9.00000 5.19615i −0.511166 0.295122i
\(311\) −30.0000 −1.70114 −0.850572 0.525859i \(-0.823744\pi\)
−0.850572 + 0.525859i \(0.823744\pi\)
\(312\) 3.00000 + 12.1244i 0.169842 + 0.686406i
\(313\) 10.0000 0.565233 0.282617 0.959233i \(-0.408798\pi\)
0.282617 + 0.959233i \(0.408798\pi\)
\(314\) 19.5000 + 11.2583i 1.10045 + 0.635344i
\(315\) 0 0
\(316\) 2.00000 + 3.46410i 0.112509 + 0.194871i
\(317\) 5.19615i 0.291845i −0.989296 0.145922i \(-0.953385\pi\)
0.989296 0.145922i \(-0.0466150\pi\)
\(318\) −9.00000 + 5.19615i −0.504695 + 0.291386i
\(319\) 0 0
\(320\) 1.73205i 0.0968246i
\(321\) −6.00000 10.3923i −0.334887 0.580042i
\(322\) 0 0
\(323\) −9.00000 5.19615i −0.500773 0.289122i
\(324\) 11.0000 0.611111
\(325\) −5.00000 5.19615i −0.277350 0.288231i
\(326\) −36.0000 −1.99386
\(327\) 24.0000 + 13.8564i 1.32720 + 0.766261i
\(328\) 4.50000 7.79423i 0.248471 0.430364i
\(329\) 0 0
\(330\) 0 0
\(331\) −24.0000 + 13.8564i −1.31916 + 0.761617i −0.983593 0.180400i \(-0.942261\pi\)
−0.335566 + 0.942017i \(0.608928\pi\)
\(332\) −12.0000 + 6.92820i −0.658586 + 0.380235i
\(333\) 8.66025i 0.474579i
\(334\) 12.0000 + 20.7846i 0.656611 + 1.13728i
\(335\) 3.00000 5.19615i 0.163908 0.283896i
\(336\) 0 0
\(337\) −23.0000 −1.25289 −0.626445 0.779466i \(-0.715491\pi\)
−0.626445 + 0.779466i \(0.715491\pi\)
\(338\) 12.0000 19.0526i 0.652714 1.03632i
\(339\) −30.0000 −1.62938
\(340\) 4.50000 + 2.59808i 0.244047 + 0.140900i
\(341\) 0 0
\(342\) −3.00000 5.19615i −0.162221 0.280976i
\(343\) 0 0
\(344\) 12.0000 6.92820i 0.646997 0.373544i
\(345\) 18.0000 10.3923i 0.969087 0.559503i
\(346\) 10.3923i 0.558694i
\(347\) 15.0000 + 25.9808i 0.805242 + 1.39472i 0.916127 + 0.400887i \(0.131298\pi\)
−0.110885 + 0.993833i \(0.535369\pi\)
\(348\) 3.00000 5.19615i 0.160817 0.278543i
\(349\) 12.0000 + 6.92820i 0.642345 + 0.370858i 0.785517 0.618840i \(-0.212397\pi\)
−0.143172 + 0.989698i \(0.545730\pi\)
\(350\) 0 0
\(351\) 10.0000 + 10.3923i 0.533761 + 0.554700i
\(352\) 0 0
\(353\) 28.5000 + 16.4545i 1.51690 + 0.875784i 0.999803 + 0.0198582i \(0.00632149\pi\)
0.517099 + 0.855926i \(0.327012\pi\)
\(354\) 12.0000 20.7846i 0.637793 1.10469i
\(355\) −3.00000 5.19615i −0.159223 0.275783i
\(356\) 6.92820i 0.367194i
\(357\) 0 0
\(358\) 0 0
\(359\) 6.92820i 0.365657i −0.983145 0.182828i \(-0.941475\pi\)
0.983145 0.182828i \(-0.0585252\pi\)
\(360\) −1.50000 2.59808i −0.0790569 0.136931i
\(361\) −3.50000 + 6.06218i −0.184211 + 0.319062i
\(362\) −16.5000 9.52628i −0.867221 0.500690i
\(363\) 22.0000 1.15470
\(364\) 0 0
\(365\) 3.00000 0.157027
\(366\) −3.00000 1.73205i −0.156813 0.0905357i
\(367\) 11.0000 19.0526i 0.574195 0.994535i −0.421933 0.906627i \(-0.638648\pi\)
0.996129 0.0879086i \(-0.0280183\pi\)
\(368\) −15.0000 25.9808i −0.781929 1.35434i
\(369\) 5.19615i 0.270501i
\(370\) −22.5000 + 12.9904i −1.16972 + 0.675338i
\(371\) 0 0
\(372\) 6.92820i 0.359211i
\(373\) −9.50000 16.4545i −0.491891 0.851981i 0.508065 0.861319i \(-0.330361\pi\)
−0.999956 + 0.00933789i \(0.997028\pi\)
\(374\) 0 0
\(375\) 21.0000 + 12.1244i 1.08444 + 0.626099i
\(376\) 6.00000 0.309426
\(377\) 10.5000 2.59808i 0.540778 0.133808i
\(378\) 0 0
\(379\) −21.0000 12.1244i −1.07870 0.622786i −0.148153 0.988964i \(-0.547333\pi\)
−0.930545 + 0.366178i \(0.880666\pi\)
\(380\) −3.00000 + 5.19615i −0.153897 + 0.266557i
\(381\) 2.00000 + 3.46410i 0.102463 + 0.177471i
\(382\) 31.1769i 1.59515i
\(383\) −18.0000 + 10.3923i −0.919757 + 0.531022i −0.883558 0.468323i \(-0.844859\pi\)
−0.0361995 + 0.999345i \(0.511525\pi\)
\(384\) −21.0000 + 12.1244i −1.07165 + 0.618718i
\(385\) 0 0
\(386\) 4.50000 + 7.79423i 0.229044 + 0.396716i
\(387\) −4.00000 + 6.92820i −0.203331 + 0.352180i
\(388\) 6.00000 + 3.46410i 0.304604 + 0.175863i
\(389\) −9.00000 −0.456318 −0.228159 0.973624i \(-0.573271\pi\)
−0.228159 + 0.973624i \(0.573271\pi\)
\(390\) −6.00000 + 20.7846i −0.303822 + 1.05247i
\(391\) 18.0000 0.910299
\(392\) −10.5000 6.06218i −0.530330 0.306186i
\(393\) −18.0000 + 31.1769i −0.907980 + 1.57267i
\(394\) −12.0000 20.7846i −0.604551 1.04711i
\(395\) 6.92820i 0.348596i
\(396\) 0 0
\(397\) −12.0000 + 6.92820i −0.602263 + 0.347717i −0.769931 0.638127i \(-0.779710\pi\)
0.167668 + 0.985843i \(0.446376\pi\)
\(398\) 3.46410i 0.173640i
\(399\) 0 0
\(400\) 5.00000 8.66025i 0.250000 0.433013i
\(401\) −1.50000 0.866025i −0.0749064 0.0432472i 0.462079 0.886839i \(-0.347104\pi\)
−0.536985 + 0.843592i \(0.680437\pi\)
\(402\) 12.0000 0.598506
\(403\) 9.00000 8.66025i 0.448322 0.431398i
\(404\) 3.00000 0.149256
\(405\) −16.5000 9.52628i −0.819892 0.473365i
\(406\) 0 0
\(407\) 0 0
\(408\) 10.3923i 0.514496i
\(409\) 13.5000 7.79423i 0.667532 0.385400i −0.127609 0.991825i \(-0.540730\pi\)
0.795141 + 0.606425i \(0.207397\pi\)
\(410\) 13.5000 7.79423i 0.666717 0.384930i
\(411\) 31.1769i 1.53784i
\(412\) −5.00000 8.66025i −0.246332 0.426660i
\(413\) 0 0
\(414\) 9.00000 + 5.19615i 0.442326 + 0.255377i
\(415\) 24.0000 1.17811
\(416\) 18.0000 + 5.19615i 0.882523 + 0.254762i
\(417\) −8.00000 −0.391762
\(418\) 0 0
\(419\) −9.00000 + 15.5885i −0.439679 + 0.761546i −0.997665 0.0683046i \(-0.978241\pi\)
0.557986 + 0.829851i \(0.311574\pi\)
\(420\) 0 0
\(421\) 15.5885i 0.759735i 0.925041 + 0.379867i \(0.124030\pi\)
−0.925041 + 0.379867i \(0.875970\pi\)
\(422\) 15.0000 8.66025i 0.730189 0.421575i
\(423\) −3.00000 + 1.73205i −0.145865 + 0.0842152i
\(424\) 5.19615i 0.252347i
\(425\) 3.00000 + 5.19615i 0.145521 + 0.252050i
\(426\) 6.00000 10.3923i 0.290701 0.503509i
\(427\) 0 0
\(428\) −6.00000 −0.290021
\(429\) 0 0
\(430\) 24.0000 1.15738
\(431\) −6.00000 3.46410i −0.289010 0.166860i 0.348485 0.937314i \(-0.386696\pi\)
−0.637495 + 0.770454i \(0.720029\pi\)
\(432\) −10.0000 + 17.3205i −0.481125 + 0.833333i
\(433\) 8.50000 + 14.7224i 0.408484 + 0.707515i 0.994720 0.102625i \(-0.0327243\pi\)
−0.586236 + 0.810140i \(0.699391\pi\)
\(434\) 0 0
\(435\) −9.00000 + 5.19615i −0.431517 + 0.249136i
\(436\) 12.0000 6.92820i 0.574696 0.331801i
\(437\) 20.7846i 0.994263i
\(438\) 3.00000 + 5.19615i 0.143346 + 0.248282i
\(439\) 14.0000 24.2487i 0.668184 1.15733i −0.310228 0.950662i \(-0.600405\pi\)
0.978412 0.206666i \(-0.0662612\pi\)
\(440\) 0 0
\(441\) 7.00000 0.333333
\(442\) −13.5000 + 12.9904i −0.642130 + 0.617889i
\(443\) −12.0000 −0.570137 −0.285069 0.958507i \(-0.592016\pi\)
−0.285069 + 0.958507i \(0.592016\pi\)
\(444\) −15.0000 8.66025i −0.711868 0.410997i
\(445\) −6.00000 + 10.3923i −0.284427 + 0.492642i
\(446\) 9.00000 + 15.5885i 0.426162 + 0.738135i
\(447\) 38.1051i 1.80231i
\(448\) 0 0
\(449\) −6.00000 + 3.46410i −0.283158 + 0.163481i −0.634852 0.772634i \(-0.718939\pi\)
0.351694 + 0.936115i \(0.385606\pi\)
\(450\) 3.46410i 0.163299i
\(451\) 0 0
\(452\) −7.50000 + 12.9904i −0.352770 + 0.611016i
\(453\) −30.0000 17.3205i −1.40952 0.813788i
\(454\) −42.0000 −1.97116
\(455\) 0 0
\(456\) 12.0000 0.561951
\(457\) 1.50000 + 0.866025i 0.0701670 + 0.0405110i 0.534673 0.845059i \(-0.320435\pi\)
−0.464506 + 0.885570i \(0.653768\pi\)
\(458\) 0 0
\(459\) −6.00000 10.3923i −0.280056 0.485071i
\(460\) 10.3923i 0.484544i
\(461\) 19.5000 11.2583i 0.908206 0.524353i 0.0283522 0.999598i \(-0.490974\pi\)
0.879853 + 0.475245i \(0.157641\pi\)
\(462\) 0 0
\(463\) 13.8564i 0.643962i 0.946746 + 0.321981i \(0.104349\pi\)
−0.946746 + 0.321981i \(0.895651\pi\)
\(464\) 7.50000 + 12.9904i 0.348179 + 0.603063i
\(465\) −6.00000 + 10.3923i −0.278243 + 0.481932i
\(466\) −9.00000 5.19615i −0.416917 0.240707i
\(467\) 12.0000 0.555294 0.277647 0.960683i \(-0.410445\pi\)
0.277647 + 0.960683i \(0.410445\pi\)
\(468\) −3.50000 + 0.866025i −0.161788 + 0.0400320i
\(469\) 0 0
\(470\) 9.00000 + 5.19615i 0.415139 + 0.239681i
\(471\) 13.0000 22.5167i 0.599008 1.03751i
\(472\) 6.00000 + 10.3923i 0.276172 + 0.478345i
\(473\) 0 0
\(474\) 12.0000 6.92820i 0.551178 0.318223i
\(475\) −6.00000 + 3.46410i −0.275299 + 0.158944i
\(476\) 0 0
\(477\) 1.50000 + 2.59808i 0.0686803 + 0.118958i
\(478\) −18.0000 + 31.1769i −0.823301 + 1.42600i
\(479\) 21.0000 + 12.1244i 0.959514 + 0.553976i 0.896024 0.444006i \(-0.146443\pi\)
0.0634909 + 0.997982i \(0.479777\pi\)
\(480\) −18.0000 −0.821584
\(481\) −7.50000 30.3109i −0.341971 1.38206i
\(482\) 3.00000 0.136646
\(483\) 0 0
\(484\) 5.50000 9.52628i 0.250000 0.433013i
\(485\) −6.00000 10.3923i −0.272446 0.471890i
\(486\) 17.3205i 0.785674i
\(487\) −6.00000 + 3.46410i −0.271886 + 0.156973i −0.629744 0.776802i \(-0.716840\pi\)
0.357858 + 0.933776i \(0.383507\pi\)
\(488\) 1.50000 0.866025i 0.0679018 0.0392031i
\(489\) 41.5692i 1.87983i
\(490\) −10.5000 18.1865i −0.474342 0.821584i
\(491\) −6.00000 + 10.3923i −0.270776 + 0.468998i −0.969061 0.246822i \(-0.920614\pi\)
0.698285 + 0.715820i \(0.253947\pi\)
\(492\) 9.00000 + 5.19615i 0.405751 + 0.234261i
\(493\) −9.00000 −0.405340
\(494\) −15.0000 15.5885i −0.674882 0.701358i
\(495\) 0 0
\(496\) 15.0000 + 8.66025i 0.673520 + 0.388857i
\(497\) 0 0
\(498\) 24.0000 + 41.5692i 1.07547 + 1.86276i
\(499\) 31.1769i 1.39567i 0.716258 + 0.697835i \(0.245853\pi\)
−0.716258 + 0.697835i \(0.754147\pi\)
\(500\) 10.5000 6.06218i 0.469574 0.271109i
\(501\) 24.0000 13.8564i 1.07224 0.619059i
\(502\) 31.1769i 1.39149i
\(503\) −18.0000 31.1769i −0.802580 1.39011i −0.917912 0.396783i \(-0.870127\pi\)
0.115332 0.993327i \(-0.463207\pi\)
\(504\) 0 0
\(505\) −4.50000 2.59808i −0.200247 0.115613i
\(506\) 0 0
\(507\) −22.0000 13.8564i −0.977054 0.615385i
\(508\) 2.00000 0.0887357
\(509\) 16.5000 + 9.52628i 0.731350 + 0.422245i 0.818916 0.573914i \(-0.194576\pi\)
−0.0875661 + 0.996159i \(0.527909\pi\)
\(510\) 9.00000 15.5885i 0.398527 0.690268i
\(511\) 0 0
\(512\) 8.66025i 0.382733i
\(513\) 12.0000 6.92820i 0.529813 0.305888i
\(514\) 4.50000 2.59808i 0.198486 0.114596i
\(515\) 17.3205i 0.763233i
\(516\) 8.00000 + 13.8564i 0.352180 + 0.609994i
\(517\) 0 0
\(518\) 0 0
\(519\) 12.0000 0.526742
\(520\) −7.50000 7.79423i −0.328897 0.341800i
\(521\) 9.00000 0.394297 0.197149 0.980374i \(-0.436832\pi\)
0.197149 + 0.980374i \(0.436832\pi\)
\(522\) −4.50000 2.59808i −0.196960 0.113715i
\(523\) 8.00000 13.8564i 0.349816 0.605898i −0.636401 0.771358i \(-0.719578\pi\)
0.986216 + 0.165460i \(0.0529109\pi\)
\(524\) 9.00000 + 15.5885i 0.393167 + 0.680985i
\(525\) 0 0
\(526\) 18.0000 10.3923i 0.784837 0.453126i
\(527\) −9.00000 + 5.19615i −0.392046 + 0.226348i
\(528\) 0 0
\(529\) −6.50000 11.2583i −0.282609 0.489493i
\(530\) 4.50000 7.79423i 0.195468 0.338560i
\(531\) −6.00000 3.46410i −0.260378 0.150329i
\(532\) 0 0
\(533\) 4.50000 + 18.1865i 0.194917 + 0.787746i
\(534\) −24.0000 −1.03858
\(535\) 9.00000 + 5.19615i 0.389104 + 0.224649i
\(536\) −3.00000 + 5.19615i −0.129580 + 0.224440i
\(537\) 0 0
\(538\) 10.3923i 0.448044i
\(539\) 0 0
\(540\) −6.00000 + 3.46410i −0.258199 + 0.149071i
\(541\) 29.4449i 1.26593i 0.774179 + 0.632967i \(0.218163\pi\)
−0.774179 + 0.632967i \(0.781837\pi\)
\(542\) −18.0000 31.1769i −0.773166 1.33916i
\(543\) −11.0000 + 19.0526i −0.472055 + 0.817624i
\(544\) −13.5000 7.79423i −0.578808 0.334175i
\(545\) −24.0000 −1.02805
\(546\) 0 0
\(547\) −22.0000 −0.940652 −0.470326 0.882493i \(-0.655864\pi\)
−0.470326 + 0.882493i \(0.655864\pi\)
\(548\) −13.5000 7.79423i −0.576691 0.332953i
\(549\) −0.500000 + 0.866025i −0.0213395 + 0.0369611i
\(550\) 0 0
\(551\) 10.3923i 0.442727i
\(552\) −18.0000 + 10.3923i −0.766131 + 0.442326i
\(553\) 0 0
\(554\) 12.1244i 0.515115i
\(555\) 15.0000 + 25.9808i 0.636715 + 1.10282i
\(556\) −2.00000 + 3.46410i −0.0848189 + 0.146911i
\(557\) −13.5000 7.79423i −0.572013 0.330252i 0.185940 0.982561i \(-0.440467\pi\)
−0.757953 + 0.652309i \(0.773800\pi\)
\(558\) −6.00000 −0.254000
\(559\) −8.00000 + 27.7128i −0.338364 + 1.17213i
\(560\) 0 0
\(561\) 0 0
\(562\) −19.5000 + 33.7750i −0.822558 + 1.42471i
\(563\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(564\) 6.92820i 0.291730i
\(565\) 22.5000 12.9904i 0.946582 0.546509i
\(566\) 6.00000 3.46410i 0.252199 0.145607i
\(567\) 0 0
\(568\) 3.00000 + 5.19615i 0.125877 + 0.218026i
\(569\) 21.0000 36.3731i 0.880366 1.52484i 0.0294311 0.999567i \(-0.490630\pi\)
0.850935 0.525271i \(-0.176036\pi\)
\(570\) 18.0000 + 10.3923i 0.753937 + 0.435286i
\(571\) 40.0000 1.67395 0.836974 0.547243i \(-0.184323\pi\)
0.836974 + 0.547243i \(0.184323\pi\)
\(572\) 0 0
\(573\) 36.0000 1.50392
\(574\) 0 0
\(575\) 6.00000 10.3923i 0.250217 0.433389i
\(576\) 0.500000 + 0.866025i 0.0208333 + 0.0360844i
\(577\) 19.0526i 0.793168i −0.917998 0.396584i \(-0.870195\pi\)
0.917998 0.396584i \(-0.129805\pi\)
\(578\) −12.0000 + 6.92820i −0.499134 + 0.288175i
\(579\) 9.00000 5.19615i 0.374027 0.215945i
\(580\) 5.19615i 0.215758i
\(581\) 0 0
\(582\) 12.0000 20.7846i 0.497416 0.861550i
\(583\) 0 0
\(584\) −3.00000 −0.124141
\(585\) 6.00000 + 1.73205i 0.248069 + 0.0716115i
\(586\) −9.00000 −0.371787
\(587\) −18.0000 10.3923i −0.742940 0.428936i 0.0801976 0.996779i \(-0.474445\pi\)
−0.823137 + 0.567843i \(0.807778\pi\)
\(588\) 7.00000 12.1244i 0.288675 0.500000i
\(589\) −6.00000 10.3923i −0.247226 0.428207i
\(590\) 20.7846i 0.855689i
\(591\) −24.0000 + 13.8564i −0.987228 + 0.569976i
\(592\) 37.5000 21.6506i 1.54124 0.889836i
\(593\) 25.9808i 1.06690i −0.845831 0.533451i \(-0.820895\pi\)
0.845831 0.533451i \(-0.179105\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −16.5000 9.52628i −0.675866 0.390212i
\(597\) −4.00000 −0.163709
\(598\) 36.0000 + 10.3923i 1.47215 + 0.424973i
\(599\) 30.0000 1.22577 0.612883 0.790173i \(-0.290010\pi\)
0.612883 + 0.790173i \(0.290010\pi\)
\(600\) −6.00000 3.46410i −0.244949 0.141421i
\(601\) −12.5000 + 21.6506i −0.509886 + 0.883148i 0.490049 + 0.871695i \(0.336979\pi\)
−0.999934 + 0.0114528i \(0.996354\pi\)
\(602\) 0 0
\(603\) 3.46410i 0.141069i
\(604\) −15.0000 + 8.66025i −0.610341 + 0.352381i
\(605\) −16.5000 + 9.52628i −0.670820 + 0.387298i
\(606\) 10.3923i 0.422159i
\(607\) 17.0000 + 29.4449i 0.690009 + 1.19513i 0.971834 + 0.235665i \(0.0757267\pi\)
−0.281826 + 0.959466i \(0.590940\pi\)
\(608\) 9.00000 15.5885i 0.364998 0.632195i
\(609\) 0 0
\(610\) 3.00000 0.121466
\(611\) −9.00000 + 8.66025i −0.364101 + 0.350356i
\(612\) 3.00000 0.121268
\(613\) −10.5000 6.06218i −0.424091 0.244849i 0.272735 0.962089i \(-0.412072\pi\)
−0.696826 + 0.717240i \(0.745405\pi\)
\(614\) −15.0000 + 25.9808i −0.605351 + 1.04850i
\(615\) −9.00000 15.5885i −0.362915 0.628587i
\(616\) 0 0
\(617\) −19.5000 + 11.2583i −0.785040 + 0.453243i −0.838214 0.545342i \(-0.816400\pi\)
0.0531732 + 0.998585i \(0.483066\pi\)
\(618\) −30.0000 + 17.3205i −1.20678 + 0.696733i
\(619\) 20.7846i 0.835404i −0.908584 0.417702i \(-0.862836\pi\)
0.908584 0.417702i \(-0.137164\pi\)
\(620\) 3.00000 + 5.19615i 0.120483 + 0.208683i
\(621\) −12.0000 + 20.7846i −0.481543 + 0.834058i
\(622\) 45.0000 + 25.9808i 1.80434 + 1.04173i
\(623\) 0 0
\(624\) 10.0000 34.6410i 0.400320 1.38675i
\(625\) −11.0000 −0.440000
\(626\) −15.0000 8.66025i −0.599521 0.346133i
\(627\) 0 0
\(628\) −6.50000 11.2583i −0.259378 0.449256i
\(629\) 25.9808i 1.03592i
\(630\) 0 0
\(631\) −42.0000 + 24.2487i −1.67199 + 0.965326i −0.705473 + 0.708737i \(0.749265\pi\)
−0.966521 + 0.256589i \(0.917401\pi\)
\(632\) 6.92820i 0.275589i
\(633\) −10.0000 17.3205i −0.397464 0.688428i
\(634\) −4.50000 + 7.79423i −0.178718 + 0.309548i
\(635\) −3.00000 1.73205i −0.119051 0.0687343i
\(636\) 6.00000 0.237915
\(637\) 24.5000 6.06218i 0.970725 0.240192i
\(638\) 0 0
\(639\) −3.00000 1.73205i −0.118678 0.0685189i
\(640\) 10.5000 18.1865i 0.415049 0.718886i
\(641\) −16.5000 28.5788i −0.651711 1.12880i −0.982708 0.185164i \(-0.940718\pi\)
0.330997 0.943632i \(-0.392615\pi\)
\(642\) 20.7846i 0.820303i
\(643\) 12.0000 6.92820i 0.473234 0.273222i −0.244359 0.969685i \(-0.578577\pi\)
0.717592 + 0.696463i \(0.245244\pi\)
\(644\) 0 0
\(645\) 27.7128i 1.09119i
\(646\) 9.00000 + 15.5885i 0.354100 + 0.613320i
\(647\) −9.00000 + 15.5885i −0.353827 + 0.612845i −0.986916 0.161233i \(-0.948453\pi\)
0.633090 + 0.774078i \(0.281786\pi\)
\(648\) 16.5000 + 9.52628i 0.648181 + 0.374228i
\(649\) 0 0
\(650\) 3.00000 + 12.1244i 0.117670 + 0.475556i
\(651\) 0 0
\(652\) 18.0000 + 10.3923i 0.704934 + 0.406994i
\(653\) 15.0000 25.9808i 0.586995 1.01671i −0.407628 0.913148i \(-0.633644\pi\)
0.994623 0.103558i \(-0.0330227\pi\)
\(654\) −24.0000 41.5692i −0.938474 1.62549i
\(655\) 31.1769i 1.21818i
\(656\) −22.5000 + 12.9904i −0.878477 + 0.507189i
\(657\) 1.50000 0.866025i 0.0585206 0.0337869i
\(658\) 0 0
\(659\) 6.00000 + 10.3923i 0.233727 + 0.404827i 0.958902 0.283738i \(-0.0915745\pi\)
−0.725175 + 0.688565i \(0.758241\pi\)
\(660\) 0 0
\(661\) −40.5000 23.3827i −1.57527 0.909481i −0.995506 0.0946945i \(-0.969813\pi\)
−0.579761 0.814787i \(-0.696854\pi\)
\(662\) 48.0000 1.86557
\(663\) 15.0000 + 15.5885i 0.582552 + 0.605406i
\(664\) −24.0000 −0.931381
\(665\) 0 0
\(666\) −7.50000 + 12.9904i −0.290619 + 0.503367i
\(667\) 9.00000 + 15.5885i 0.348481 + 0.603587i
\(668\) 13.8564i 0.536120i
\(669\) 18.0000 10.3923i 0.695920 0.401790i
\(670\) −9.00000 + 5.19615i −0.347700 + 0.200745i
\(671\) 0 0
\(672\) 0 0
\(673\) 9.50000 16.4545i 0.366198 0.634274i −0.622770 0.782405i \(-0.713993\pi\)
0.988968 + 0.148132i \(0.0473259\pi\)
\(674\) 34.5000 + 19.9186i 1.32889 + 0.767235i
\(675\) −8.00000 −0.307920
\(676\) −11.5000 + 6.06218i −0.442308 + 0.233161i
\(677\) −6.00000 −0.230599 −0.115299 0.993331i \(-0.536783\pi\)
−0.115299 + 0.993331i \(0.536783\pi\)
\(678\) 45.0000 + 25.9808i 1.72821 + 0.997785i
\(679\) 0 0
\(680\) 4.50000 + 7.79423i 0.172567 + 0.298895i
\(681\) 48.4974i 1.85843i
\(682\) 0 0
\(683\) 21.0000 12.1244i 0.803543 0.463926i −0.0411658 0.999152i \(-0.513107\pi\)
0.844708 + 0.535227i \(0.179774\pi\)
\(684\) 3.46410i 0.132453i
\(685\) 13.5000 + 23.3827i 0.515808 + 0.893407i
\(686\) 0 0
\(687\) 0 0
\(688\) −40.0000 −1.52499
\(689\) 7.50000 + 7.79423i 0.285727 + 0.296936i
\(690\) −36.0000 −1.37050
\(691\) 12.0000 + 6.92820i 0.456502 + 0.263561i 0.710572 0.703624i \(-0.248436\pi\)
−0.254071 + 0.967186i \(0.581770\pi\)
\(692\) 3.00000 5.19615i 0.114043 0.197528i
\(693\) 0 0
\(694\) 51.9615i 1.97243i
\(695\) 6.00000 3.46410i 0.227593 0.131401i
\(696\) 9.00000 5.19615i 0.341144 0.196960i
\(697\) 15.5885i 0.590455i
\(698\) −12.0000 20.7846i −0.454207 0.786709i
\(699\) −6.00000 + 10.3923i −0.226941 + 0.393073i
\(700\) 0 0
\(701\) 18.0000 0.679851 0.339925 0.940452i \(-0.389598\pi\)
0.339925 + 0.940452i \(0.389598\pi\)
\(702\) −6.00000 24.2487i −0.226455 0.915209i
\(703\) −30.0000 −1.13147
\(704\) 0 0
\(705\) 6.00000 10.3923i 0.225973 0.391397i
\(706\) −28.5000 49.3634i −1.07261 1.85782i
\(707\) 0 0
\(708\) −12.0000 + 6.92820i −0.450988 + 0.260378i
\(709\) −4.50000 + 2.59808i −0.169001 + 0.0975728i −0.582115 0.813107i \(-0.697775\pi\)
0.413114 + 0.910679i \(0.364441\pi\)
\(710\) 10.3923i 0.390016i
\(711\) −2.00000 3.46410i −0.0750059 0.129914i
\(712\) 6.00000 10.3923i 0.224860 0.389468i
\(713\) 18.0000 + 10.3923i 0.674105 + 0.389195i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 36.0000 + 20.7846i 1.34444 + 0.776215i
\(718\) −6.00000 + 10.3923i −0.223918 + 0.387837i
\(719\) 24.0000 + 41.5692i 0.895049 + 1.55027i 0.833744 + 0.552151i \(0.186193\pi\)
0.0613050 + 0.998119i \(0.480474\pi\)
\(720\) 8.66025i 0.322749i
\(721\) 0 0
\(722\) 10.5000 6.06218i 0.390770 0.225611i
\(723\) 3.46410i 0.128831i
\(724\) 5.50000 + 9.52628i 0.204406 + 0.354041i
\(725\) −3.00000 + 5.19615i −0.111417 + 0.192980i
\(726\) −33.0000 19.0526i −1.22474 0.707107i
\(727\) −32.0000 −1.18681 −0.593407 0.804902i \(-0.702218\pi\)
−0.593407 + 0.804902i \(0.702218\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) −4.50000 2.59808i −0.166552 0.0961591i
\(731\) 12.0000 20.7846i 0.443836 0.768747i
\(732\) 1.00000 + 1.73205i 0.0369611 + 0.0640184i
\(733\) 12.1244i 0.447823i 0.974609 + 0.223912i \(0.0718827\pi\)
−0.974609 + 0.223912i \(0.928117\pi\)
\(734\) −33.0000 + 19.0526i −1.21805 + 0.703243i
\(735\) −21.0000 + 12.1244i −0.774597 + 0.447214i
\(736\) 31.1769i 1.14920i
\(737\) 0 0
\(738\) 4.50000 7.79423i 0.165647 0.286910i
\(739\) −18.0000 10.3923i −0.662141 0.382287i 0.130951 0.991389i \(-0.458197\pi\)
−0.793092 + 0.609102i \(0.791530\pi\)
\(740\) 15.0000 0.551411
\(741\) −18.0000 + 17.3205i −0.661247 + 0.636285i
\(742\) 0 0
\(743\) −30.0000 17.3205i −1.10059 0.635428i −0.164216 0.986424i \(-0.552510\pi\)
−0.936377 + 0.350997i \(0.885843\pi\)
\(744\) 6.00000 10.3923i 0.219971 0.381000i
\(745\) 16.5000 + 28.5788i 0.604513 + 1.04705i
\(746\) 32.9090i 1.20488i
\(747\) 12.0000 6.92820i 0.439057 0.253490i
\(748\) 0 0
\(749\) 0 0
\(750\) −21.0000 36.3731i −0.766812 1.32816i
\(751\) 8.00000 13.8564i 0.291924 0.505627i −0.682341 0.731034i \(-0.739038\pi\)
0.974265 + 0.225407i \(0.0723712\pi\)
\(752\) −15.0000 8.66025i −0.546994 0.315807i
\(753\) −36.0000 −1.31191
\(754\) −18.0000 5.19615i −0.655521 0.189233i
\(755\) 30.0000 1.09181
\(756\) 0 0
\(757\) 13.0000 22.5167i 0.472493 0.818382i −0.527011 0.849858i \(-0.676688\pi\)
0.999505 + 0.0314762i \(0.0100208\pi\)
\(758\) 21.0000 + 36.3731i 0.762754 + 1.32113i
\(759\) 0 0
\(760\) −9.00000 + 5.19615i −0.326464 + 0.188484i
\(761\) 30.0000 17.3205i 1.08750 0.627868i 0.154590 0.987979i \(-0.450594\pi\)
0.932910 + 0.360111i \(0.117261\pi\)
\(762\) 6.92820i 0.250982i
\(763\) 0 0
\(764\) 9.00000 15.5885i 0.325609 0.563971i
\(765\) −4.50000 2.59808i −0.162698 0.0939336i
\(766\) 36.0000 1.30073
\(767\) −24.0000 6.92820i −0.866590 0.250163i
\(768\) 38.0000 1.37121
\(769\) 6.00000 + 3.46410i 0.216366 + 0.124919i 0.604266 0.796782i \(-0.293466\pi\)
−0.387901 + 0.921701i \(0.626800\pi\)
\(770\) 0 0
\(771\) −3.00000 5.19615i −0.108042 0.187135i
\(772\) 5.19615i 0.187014i
\(773\) −30.0000 + 17.3205i −1.07903 + 0.622975i −0.930633 0.365953i \(-0.880743\pi\)
−0.148392 + 0.988929i \(0.547410\pi\)
\(774\) 12.0000 6.92820i 0.431331 0.249029i
\(775\) 6.92820i 0.248868i
\(776\) 6.00000 + 10.3923i 0.215387 + 0.373062i
\(777\) 0 0
\(778\) 13.5000 + 7.79423i 0.483998 + 0.279437i
\(779\) 18.0000 0.644917
\(780\) 9.00000 8.66025i 0.322252 0.310087i
\(781\) 0 0
\(782\) −27.0000 15.5885i −0.965518 0.557442i
\(783\) 6.00000 10.3923i 0.214423 0.371391i
\(784\) 17.5000 + 30.3109i 0.625000 + 1.08253i
\(785\) 22.5167i 0.803654i
\(786\) 54.0000 31.1769i 1.92612 1.11204i
\(787\) 33.0000 19.0526i 1.17632 0.679150i 0.221162 0.975237i \(-0.429015\pi\)
0.955161 + 0.296087i \(0.0956817\pi\)
\(788\) 13.8564i 0.493614i
\(789\) −12.0000 20.7846i −0.427211 0.739952i
\(790\) −6.00000 + 10.3923i −0.213470 + 0.369742i
\(791\) 0 0
\(792\) 0 0
\(793\) −1.00000 + 3.46410i −0.0355110 + 0.123014i
\(794\) 24.0000 0.851728
\(795\) −9.00000 5.19615i −0.319197 0.184289i
\(796\) −1.00000 + 1.73205i −0.0354441 + 0.0613909i
\(797\) −21.0000 36.3731i −0.743858 1.28840i −0.950726 0.310031i \(-0.899660\pi\)
0.206868 0.978369i \(-0.433673\pi\)
\(798\) 0 0
\(799\) 9.00000 5.19615i 0.318397 0.183827i
\(800\) −9.00000 + 5.19615i −0.318198 + 0.183712i
\(801\) 6.92820i 0.244796i
\(802\) 1.50000 + 2.59808i 0.0529668 + 0.0917413i
\(803\) 0 0
\(804\) −6.00000 3.46410i −0.211604 0.122169i
\(805\) 0 0
\(806\) −21.0000 + 5.19615i −0.739693 + 0.183027i
\(807\) −12.0000 −0.422420
\(808\) 4.50000 + 2.59808i 0.158309 + 0.0914000i
\(809\) −16.5000 + 28.5788i −0.580109 + 1.00478i 0.415357 + 0.909659i \(0.363657\pi\)
−0.995466 + 0.0951198i \(0.969677\pi\)
\(810\) 16.5000 + 28.5788i 0.579751 + 1.00416i
\(811\) 38.1051i 1.33805i −0.743239 0.669026i \(-0.766712\pi\)
0.743239 0.669026i \(-0.233288\pi\)
\(812\) 0 0
\(813\) −36.0000 + 20.7846i −1.26258 + 0.728948i
\(814\) 0 0
\(815\) −18.0000 31.1769i −0.630512 1.09208i
\(816\) −15.0000 + 25.9808i −0.525105 + 0.909509i
\(817\) 24.0000 + 13.8564i 0.839654 + 0.484774i
\(818\) −27.0000 −0.944033
\(819\) 0 0
\(820\) −9.00000 −0.314294
\(821\) −36.0000 20.7846i −1.25641 0.725388i −0.284034 0.958814i \(-0.591673\pi\)
−0.972375 + 0.233426i \(0.925006\pi\)
\(822\) −27.0000 + 46.7654i −0.941733 + 1.63113i
\(823\) 2.00000 + 3.46410i 0.0697156 + 0.120751i 0.898776 0.438408i \(-0.144457\pi\)
−0.829060 + 0.559159i \(0.811124\pi\)
\(824\) 17.3205i 0.603388i
\(825\) 0 0
\(826\) 0 0
\(827\) 20.7846i 0.722752i 0.932420 + 0.361376i \(0.117693\pi\)
−0.932420 + 0.361376i \(0.882307\pi\)
\(828\) −3.00000 5.19615i −0.104257 0.180579i
\(829\) −12.5000 + 21.6506i −0.434143 + 0.751958i −0.997225 0.0744432i \(-0.976282\pi\)
0.563082 + 0.826401i \(0.309615\pi\)
\(830\) −36.0000 20.7846i −1.24958 0.721444i
\(831\) −14.0000 −0.485655
\(832\) 2.50000 + 2.59808i 0.0866719 + 0.0900721i
\(833\) −21.0000 −0.727607
\(834\) 12.0000 + 6.92820i 0.415526 + 0.239904i
\(835\) −12.0000 + 20.7846i −0.415277 + 0.719281i
\(836\) 0 0
\(837\) 13.8564i 0.478947i
\(838\) 27.0000 15.5885i 0.932700 0.538494i
\(839\) 39.0000 22.5167i 1.34643 0.777361i 0.358688 0.933458i \(-0.383224\pi\)
0.987742 + 0.156096i \(0.0498910\pi\)
\(840\) 0 0
\(841\) 10.0000 + 17.3205i 0.344828 + 0.597259i
\(842\) 13.5000 23.3827i 0.465241 0.805821i
\(843\) 39.0000 + 22.5167i 1.34323 + 0.775515i
\(844\) −10.0000 −0.344214
\(845\) 22.5000 + 0.866025i 0.774024 + 0.0297922i
\(846\) 6.00000 0.206284
\(847\) 0 0
\(848\) −7.50000 + 12.9904i −0.257551 + 0.446092i
\(849\) −4.00000 6.92820i −0.137280 0.237775i
\(850\) 10.3923i 0.356453i
\(851\) 45.0000 25.9808i 1.54258 0.890609i
\(852\) −6.00000 + 3.46410i −0.205557 + 0.118678i
\(853\) 25.9808i 0.889564i 0.895639 + 0.444782i \(0.146719\pi\)
−0.895639 + 0.444782i \(0.853281\pi\)
\(854\) 0 0
\(855\) 3.00000 5.19615i 0.102598 0.177705i
\(856\) −9.00000 5.19615i −0.307614 0.177601i
\(857\) 3.00000 0.102478 0.0512390 0.998686i \(-0.483683\pi\)
0.0512390 + 0.998686i \(0.483683\pi\)
\(858\) 0 0
\(859\) −14.0000 −0.477674 −0.238837 0.971060i \(-0.576766\pi\)
−0.238837 + 0.971060i \(0.576766\pi\)
\(860\) −12.0000 6.92820i −0.409197 0.236250i
\(861\) 0 0
\(862\) 6.00000 + 10.3923i 0.204361 + 0.353963i
\(863\) 27.7128i 0.943355i −0.881771 0.471678i \(-0.843649\pi\)
0.881771 0.471678i \(-0.156351\pi\)
\(864\) 18.0000 10.3923i 0.612372 0.353553i
\(865\) −9.00000 + 5.19615i −0.306009 + 0.176674i
\(866\) 29.4449i 1.00058i
\(867\) 8.00000 + 13.8564i 0.271694 + 0.470588i
\(868\) 0 0
\(869\) 0 0
\(870\) 18.0000 0.610257
\(871\) −3.00000 12.1244i −0.101651 0.410818i
\(872\) 24.0000 0.812743
\(873\) −6.00000 3.46410i −0.203069 0.117242i
\(874\) 18.0000 31.1769i 0.608859 1.05457i
\(875\) 0 0
\(876\) 3.46410i 0.117041i
\(877\) 10.5000 6.06218i 0.354560 0.204705i −0.312132 0.950039i \(-0.601043\pi\)
0.666692 + 0.745334i \(0.267710\pi\)
\(878\) −42.0000 + 24.2487i −1.41743 + 0.818354i
\(879\) 10.3923i 0.350524i
\(880\) 0 0
\(881\) −13.5000 + 23.3827i −0.454827 + 0.787783i −0.998678 0.0513987i \(-0.983632\pi\)
0.543852 + 0.839181i \(0.316965\pi\)
\(882\) −10.5000 6.06218i −0.353553 0.204124i
\(883\) 10.0000 0.336527 0.168263 0.985742i \(-0.446184\pi\)
0.168263 + 0.985742i \(0.446184\pi\)
\(884\) 10.5000 2.59808i 0.353153 0.0873828i
\(885\) 24.0000 0.806751
\(886\) 18.0000 + 10.3923i 0.604722 + 0.349136i
\(887\) −18.0000 + 31.1769i −0.604381 + 1.04682i 0.387768 + 0.921757i \(0.373246\pi\)
−0.992149 + 0.125061i \(0.960087\pi\)
\(888\) −15.0000 25.9808i −0.503367 0.871857i
\(889\) 0 0
\(890\) 18.0000 10.3923i 0.603361 0.348351i
\(891\) 0 0
\(892\) 10.3923i 0.347960i
\(893\) 6.00000 + 10.3923i 0.200782 + 0.347765i
\(894\) −33.0000 + 57.1577i −1.10369 + 1.91164i
\(895\) 0 0
\(896\) 0 0
\(897\) 12.0000 41.5692i 0.400668 1.38796i
\(898\) 12.0000 0.400445
\(899\) −9.00000 5.19615i −0.300167 0.173301i
\(900\) 1.00000 1.73205i 0.0333333 0.0577350i
\(901\) −4.50000 7.79423i −0.149917 0.259663i
\(902\) 0 0
\(903\) 0 0
\(904\) −22.5000 + 12.9904i −0.748339 + 0.432054i
\(905\) 19.0526i 0.633328i
\(906\) 30.0000 + 51.9615i 0.996683 + 1.72631i
\(907\) −14.0000 + 24.2487i −0.464862 + 0.805165i −0.999195 0.0401089i \(-0.987230\pi\)
0.534333 + 0.845274i \(0.320563\pi\)
\(908\) 21.0000 + 12.1244i 0.696909 + 0.402361i
\(909\) −3.00000 −0.0995037
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) −30.0000 17.3205i −0.993399 0.573539i
\(913\) 0 0
\(914\) −1.50000 2.59808i −0.0496156 0.0859367i
\(915\) 3.46410i 0.114520i
\(916\) 0 0
\(917\) 0 0
\(918\) 20.7846i 0.685994i
\(919\) −11.0000 19.0526i −0.362857 0.628486i 0.625573 0.780165i \(-0.284865\pi\)
−0.988430 + 0.151680i \(0.951532\pi\)
\(920\) 9.00000 15.5885i 0.296721 0.513936i
\(921\) 30.0000 + 17.3205i 0.988534 + 0.570730i
\(922\) −39.0000 −1.28440
\(923\) −12.0000 3.46410i −0.394985 0.114022i
\(924\) 0 0
\(925\) 15.0000 + 8.66025i 0.493197 + 0.284747i
\(926\) 12.0000 20.7846i 0.394344 0.683025i
\(927\) 5.00000 + 8.66025i 0.164222 + 0.284440i
\(928\) 15.5885i 0.511716i
\(929\) −40.5000 + 23.3827i −1.32876 + 0.767161i −0.985108 0.171935i \(-0.944998\pi\)
−0.343654 + 0.939096i \(0.611665\pi\)
\(930\) 18.0000 10.3923i 0.590243 0.340777i
\(931\) 24.2487i 0.794719i
\(932\) 3.00000 + 5.19615i 0.0982683 + 0.170206i
\(933\) 30.0000 51.9615i 0.982156 1.70114i
\(934\) −18.0000 10.3923i −0.588978 0.340047i
\(935\) 0 0
\(936\) −6.00000 1.73205i −0.196116 0.0566139i
\(937\) 7.00000 0.228680 0.114340 0.993442i \(-0.463525\pi\)
0.114340 + 0.993442i \(0.463525\pi\)
\(938\) 0 0
\(939\) −10.0000 + 17.3205i −0.326338 + 0.565233i
\(940\) −3.00000 5.19615i −0.0978492 0.169480i
\(941\) 20.7846i 0.677559i 0.940866 + 0.338779i \(0.110014\pi\)
−0.940866 + 0.338779i \(0.889986\pi\)
\(942\) −39.0000 + 22.5167i −1.27069 + 0.733632i
\(943\) −27.0000 + 15.5885i −0.879241 + 0.507630i
\(944\) 34.6410i 1.12747i
\(945\) 0 0
\(946\) 0 0
\(947\) −15.0000 8.66025i −0.487435 0.281420i 0.236075 0.971735i \(-0.424139\pi\)
−0.723510 + 0.690314i \(0.757472\pi\)
\(948\) −8.00000 −0.259828
\(949\) 4.50000 4.33013i 0.146076 0.140562i
\(950\) 12.0000 0.389331
\(951\) 9.00000 + 5.19615i 0.291845 + 0.168497i
\(952\) 0 0
\(953\) 3.00000 + 5.19615i 0.0971795 + 0.168320i 0.910516 0.413473i \(-0.135685\pi\)
−0.813337 + 0.581793i \(0.802351\pi\)
\(954\) 5.19615i 0.168232i
\(955\) −27.0000 + 15.5885i −0.873699 + 0.504431i
\(956\) 18.0000 10.3923i 0.582162 0.336111i
\(957\) 0 0
\(958\) −21.0000 36.3731i −0.678479 1.17516i
\(959\) 0 0
\(960\) −3.00000 1.73205i −0.0968246 0.0559017i
\(961\) 19.0000 0.612903
\(962\) −15.0000 + 51.9615i −0.483619 + 1.67531i
\(963\) 6.00000 0.193347
\(964\) −1.50000 0.866025i −0.0483117 0.0278928i
\(965\) −4.50000 + 7.79423i −0.144860 + 0.250905i
\(966\) 0 0
\(967\) 58.8897i 1.89377i 0.321578 + 0.946883i \(0.395787\pi\)
−0.321578 + 0.946883i \(0.604213\pi\)
\(968\) 16.5000 9.52628i 0.530330 0.306186i
\(969\) 18.0000 10.3923i 0.578243 0.333849i
\(970\) 20.7846i 0.667354i
\(971\) −3.00000 5.19615i −0.0962746 0.166752i 0.813865 0.581054i \(-0.197359\pi\)
−0.910140 + 0.414301i \(0.864026\pi\)
\(972\) −5.00000 + 8.66025i −0.160375 + 0.277778i
\(973\) 0 0
\(974\) 12.0000 0.384505
\(975\) 14.0000 3.46410i 0.448359 0.110940i
\(976\) −5.00000 −0.160046
\(977\) 37.5000 + 21.6506i 1.19973 + 0.692665i 0.960495 0.278296i \(-0.0897697\pi\)
0.239236 + 0.970961i \(0.423103\pi\)
\(978\) 36.0000 62.3538i 1.15115 1.99386i
\(979\) 0 0
\(980\) 12.1244i 0.387298i
\(981\) −12.0000 + 6.92820i −0.383131 + 0.221201i
\(982\) 18.0000 10.3923i 0.574403 0.331632i
\(983\) 51.9615i 1.65732i 0.559756 + 0.828658i \(0.310895\pi\)
−0.559756 + 0.828658i \(0.689105\pi\)
\(984\) 9.00000 + 15.5885i 0.286910 + 0.496942i
\(985\) 12.0000 20.7846i 0.382352 0.662253i
\(986\) 13.5000 + 7.79423i 0.429928 + 0.248219i
\(987\) 0 0
\(988\) 3.00000 + 12.1244i 0.0954427 + 0.385727i
\(989\) −48.0000 −1.52631
\(990\) 0 0
\(991\) −1.00000 + 1.73205i −0.0317660 + 0.0550204i −0.881471 0.472237i \(-0.843446\pi\)
0.849705 + 0.527258i \(0.176780\pi\)
\(992\) −9.00000 15.5885i −0.285750 0.494934i
\(993\) 55.4256i 1.75888i
\(994\) 0 0
\(995\) 3.00000 1.73205i 0.0951064 0.0549097i
\(996\) 27.7128i 0.878114i
\(997\) −8.50000 14.7224i −0.269198 0.466264i 0.699457 0.714675i \(-0.253425\pi\)
−0.968655 + 0.248410i \(0.920092\pi\)
\(998\) 27.0000 46.7654i 0.854670 1.48033i
\(999\) −30.0000 17.3205i −0.949158 0.547997i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 13.2.e.a.4.1 2
3.2 odd 2 117.2.q.c.82.1 2
4.3 odd 2 208.2.w.b.17.1 2
5.2 odd 4 325.2.m.a.199.2 4
5.3 odd 4 325.2.m.a.199.1 4
5.4 even 2 325.2.n.a.251.1 2
7.2 even 3 637.2.k.a.459.1 2
7.3 odd 6 637.2.u.b.30.1 2
7.4 even 3 637.2.u.c.30.1 2
7.5 odd 6 637.2.k.c.459.1 2
7.6 odd 2 637.2.q.a.589.1 2
8.3 odd 2 832.2.w.a.641.1 2
8.5 even 2 832.2.w.d.641.1 2
12.11 even 2 1872.2.by.d.433.1 2
13.2 odd 12 169.2.c.a.146.1 4
13.3 even 3 169.2.e.a.23.1 2
13.4 even 6 169.2.b.a.168.1 2
13.5 odd 4 169.2.c.a.22.1 4
13.6 odd 12 169.2.a.a.1.2 2
13.7 odd 12 169.2.a.a.1.1 2
13.8 odd 4 169.2.c.a.22.2 4
13.9 even 3 169.2.b.a.168.2 2
13.10 even 6 inner 13.2.e.a.10.1 yes 2
13.11 odd 12 169.2.c.a.146.2 4
13.12 even 2 169.2.e.a.147.1 2
39.17 odd 6 1521.2.b.a.1351.2 2
39.20 even 12 1521.2.a.k.1.2 2
39.23 odd 6 117.2.q.c.10.1 2
39.32 even 12 1521.2.a.k.1.1 2
39.35 odd 6 1521.2.b.a.1351.1 2
52.7 even 12 2704.2.a.o.1.2 2
52.19 even 12 2704.2.a.o.1.1 2
52.23 odd 6 208.2.w.b.49.1 2
52.35 odd 6 2704.2.f.b.337.1 2
52.43 odd 6 2704.2.f.b.337.2 2
65.19 odd 12 4225.2.a.v.1.1 2
65.23 odd 12 325.2.m.a.49.2 4
65.49 even 6 325.2.n.a.101.1 2
65.59 odd 12 4225.2.a.v.1.2 2
65.62 odd 12 325.2.m.a.49.1 4
91.6 even 12 8281.2.a.q.1.2 2
91.10 odd 6 637.2.k.c.569.1 2
91.20 even 12 8281.2.a.q.1.1 2
91.23 even 6 637.2.u.c.361.1 2
91.62 odd 6 637.2.q.a.491.1 2
91.75 odd 6 637.2.u.b.361.1 2
91.88 even 6 637.2.k.a.569.1 2
104.75 odd 6 832.2.w.a.257.1 2
104.101 even 6 832.2.w.d.257.1 2
156.23 even 6 1872.2.by.d.1297.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.2.e.a.4.1 2 1.1 even 1 trivial
13.2.e.a.10.1 yes 2 13.10 even 6 inner
117.2.q.c.10.1 2 39.23 odd 6
117.2.q.c.82.1 2 3.2 odd 2
169.2.a.a.1.1 2 13.7 odd 12
169.2.a.a.1.2 2 13.6 odd 12
169.2.b.a.168.1 2 13.4 even 6
169.2.b.a.168.2 2 13.9 even 3
169.2.c.a.22.1 4 13.5 odd 4
169.2.c.a.22.2 4 13.8 odd 4
169.2.c.a.146.1 4 13.2 odd 12
169.2.c.a.146.2 4 13.11 odd 12
169.2.e.a.23.1 2 13.3 even 3
169.2.e.a.147.1 2 13.12 even 2
208.2.w.b.17.1 2 4.3 odd 2
208.2.w.b.49.1 2 52.23 odd 6
325.2.m.a.49.1 4 65.62 odd 12
325.2.m.a.49.2 4 65.23 odd 12
325.2.m.a.199.1 4 5.3 odd 4
325.2.m.a.199.2 4 5.2 odd 4
325.2.n.a.101.1 2 65.49 even 6
325.2.n.a.251.1 2 5.4 even 2
637.2.k.a.459.1 2 7.2 even 3
637.2.k.a.569.1 2 91.88 even 6
637.2.k.c.459.1 2 7.5 odd 6
637.2.k.c.569.1 2 91.10 odd 6
637.2.q.a.491.1 2 91.62 odd 6
637.2.q.a.589.1 2 7.6 odd 2
637.2.u.b.30.1 2 7.3 odd 6
637.2.u.b.361.1 2 91.75 odd 6
637.2.u.c.30.1 2 7.4 even 3
637.2.u.c.361.1 2 91.23 even 6
832.2.w.a.257.1 2 104.75 odd 6
832.2.w.a.641.1 2 8.3 odd 2
832.2.w.d.257.1 2 104.101 even 6
832.2.w.d.641.1 2 8.5 even 2
1521.2.a.k.1.1 2 39.32 even 12
1521.2.a.k.1.2 2 39.20 even 12
1521.2.b.a.1351.1 2 39.35 odd 6
1521.2.b.a.1351.2 2 39.17 odd 6
1872.2.by.d.433.1 2 12.11 even 2
1872.2.by.d.1297.1 2 156.23 even 6
2704.2.a.o.1.1 2 52.19 even 12
2704.2.a.o.1.2 2 52.7 even 12
2704.2.f.b.337.1 2 52.35 odd 6
2704.2.f.b.337.2 2 52.43 odd 6
4225.2.a.v.1.1 2 65.19 odd 12
4225.2.a.v.1.2 2 65.59 odd 12
8281.2.a.q.1.1 2 91.20 even 12
8281.2.a.q.1.2 2 91.6 even 12