L(s) = 1 | − 8·11-s − 8·13-s − 8·23-s − 2·25-s − 24·37-s − 24·47-s + 8·49-s − 24·59-s + 16·61-s + 16·71-s + 24·73-s − 9·81-s + 56·97-s + 32·107-s − 32·109-s − 4·121-s + 127-s + 131-s + 137-s + 139-s + 64·143-s + 149-s + 151-s + 157-s + 163-s + 167-s + 36·169-s + ⋯ |
L(s) = 1 | − 2.41·11-s − 2.21·13-s − 1.66·23-s − 2/5·25-s − 3.94·37-s − 3.50·47-s + 8/7·49-s − 3.12·59-s + 2.04·61-s + 1.89·71-s + 2.80·73-s − 81-s + 5.68·97-s + 3.09·107-s − 3.06·109-s − 0.363·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 5.35·143-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 2.76·169-s + ⋯ |
Λ(s)=(=((228⋅34⋅54)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((228⋅34⋅54)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
228⋅34⋅54
|
Sign: |
1
|
Analytic conductor: |
55247.5 |
Root analytic conductor: |
3.91551 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 228⋅34⋅54, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.4852849087 |
L(21) |
≈ |
0.4852849087 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C22 | 1+p2T4 |
| 5 | C2 | (1+T2)2 |
good | 7 | D4×C2 | 1−8T2+18T4−8p2T6+p4T8 |
| 11 | C2 | (1+2T+pT2)4 |
| 13 | D4 | (1+4T+6T2+4pT3+p2T4)2 |
| 17 | C2 | (1−8T+pT2)2(1+8T+pT2)2 |
| 19 | C22 | (1−34T2+p2T4)2 |
| 23 | D4 | (1+4T+44T2+4pT3+p2T4)2 |
| 29 | D4×C2 | 1−36T2+470T4−36p2T6+p4T8 |
| 31 | C22 | (1+2T2+p2T4)2 |
| 37 | C2 | (1+6T+pT2)4 |
| 41 | D4×C2 | 1+36T2+2150T4+36p2T6+p4T8 |
| 43 | D4×C2 | 1−128T2+7410T4−128p2T6+p4T8 |
| 47 | D4 | (1+12T+124T2+12pT3+p2T4)2 |
| 53 | D4×C2 | 1−156T2+11318T4−156p2T6+p4T8 |
| 59 | D4 | (1+12T+130T2+12pT3+p2T4)2 |
| 61 | D4 | (1−8T+114T2−8pT3+p2T4)2 |
| 67 | D4×C2 | 1−128T2+9618T4−128p2T6+p4T8 |
| 71 | D4 | (1−8T+134T2−8pT3+p2T4)2 |
| 73 | D4 | (1−12T+158T2−12pT3+p2T4)2 |
| 79 | C22 | (1−134T2+p2T4)2 |
| 83 | C22 | (1+16T2+p2T4)2 |
| 89 | C22 | (1−82T2+p2T4)2 |
| 97 | D4 | (1−28T+366T2−28pT3+p2T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.59655441678853838811752721281, −6.42896644558877658119702306624, −6.17984692714758987043493697691, −5.82356876307410250197817252203, −5.53378606433946292123664802819, −5.31956343266321610278853432980, −5.31363040734891891155481386316, −5.17865964691239363458411811176, −4.77819087429970326287697439145, −4.69143699562721448389029417112, −4.65868721704601283607673988320, −4.04937795802564718577397406734, −4.03149006555780361561473303728, −3.47977715582030238510887554757, −3.40191639350684731660776267582, −3.17333351820532575230046618061, −3.04149343987728708260196947300, −2.63225489228734166587794567602, −2.12836691633548059577567627758, −2.12319551884840678185293684285, −1.93503638294745180975540520550, −1.88814021776235219400720709916, −1.09943476519666678636660774401, −0.40919772170541746698573003016, −0.22801809927001565572479610646,
0.22801809927001565572479610646, 0.40919772170541746698573003016, 1.09943476519666678636660774401, 1.88814021776235219400720709916, 1.93503638294745180975540520550, 2.12319551884840678185293684285, 2.12836691633548059577567627758, 2.63225489228734166587794567602, 3.04149343987728708260196947300, 3.17333351820532575230046618061, 3.40191639350684731660776267582, 3.47977715582030238510887554757, 4.03149006555780361561473303728, 4.04937795802564718577397406734, 4.65868721704601283607673988320, 4.69143699562721448389029417112, 4.77819087429970326287697439145, 5.17865964691239363458411811176, 5.31363040734891891155481386316, 5.31956343266321610278853432980, 5.53378606433946292123664802819, 5.82356876307410250197817252203, 6.17984692714758987043493697691, 6.42896644558877658119702306624, 6.59655441678853838811752721281