L(s) = 1 | − 2·3-s − 12·7-s + 2·9-s + 24·21-s + 10·25-s − 6·27-s + 24·29-s + 72·49-s − 24·63-s − 20·75-s + 11·81-s + 44·83-s − 48·87-s + 72·101-s + 36·103-s − 52·107-s + 44·121-s + 127-s + 131-s + 137-s + 139-s − 144·147-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯ |
L(s) = 1 | − 1.15·3-s − 4.53·7-s + 2/3·9-s + 5.23·21-s + 2·25-s − 1.15·27-s + 4.45·29-s + 72/7·49-s − 3.02·63-s − 2.30·75-s + 11/9·81-s + 4.82·83-s − 5.14·87-s + 7.16·101-s + 3.54·103-s − 5.02·107-s + 4·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 11.8·147-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯ |
Λ(s)=(=((228⋅34⋅54)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((228⋅34⋅54)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
228⋅34⋅54
|
Sign: |
1
|
Analytic conductor: |
55247.5 |
Root analytic conductor: |
3.91551 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 228⋅34⋅54, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.9718538066 |
L(21) |
≈ |
0.9718538066 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C22 | 1+2T+2T2+2pT3+p2T4 |
| 5 | C2 | (1−pT2)2 |
good | 7 | C22 | (1+6T+18T2+6pT3+p2T4)2 |
| 11 | C2 | (1−pT2)4 |
| 13 | C2 | (1+pT2)4 |
| 17 | C2 | (1+pT2)4 |
| 19 | C2 | (1+pT2)4 |
| 23 | C22×C22 | (1−2T+2T2−2pT3+p2T4)(1+2T+2T2+2pT3+p2T4) |
| 29 | C2 | (1−6T+pT2)4 |
| 31 | C2 | (1−pT2)4 |
| 37 | C2 | (1+pT2)4 |
| 41 | C22 | (1+62T2+p2T4)2 |
| 43 | C22×C22 | (1−18T+162T2−18pT3+p2T4)(1+18T+162T2+18pT3+p2T4) |
| 47 | C22×C22 | (1−14T+98T2−14pT3+p2T4)(1+14T+98T2+14pT3+p2T4) |
| 53 | C2 | (1−pT2)4 |
| 59 | C2 | (1−pT2)4 |
| 61 | C22 | (1−58T2+p2T4)2 |
| 67 | C22×C22 | (1−6T+18T2−6pT3+p2T4)(1+6T+18T2+6pT3+p2T4) |
| 71 | C2 | (1+pT2)4 |
| 73 | C2 | (1−pT2)4 |
| 79 | C2 | (1−pT2)4 |
| 83 | C22 | (1−22T+242T2−22pT3+p2T4)2 |
| 89 | C2 | (1−6T+pT2)2(1+6T+pT2)2 |
| 97 | C2 | (1−pT2)4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.41107655812277498565487239646, −6.36251399546116178535706637469, −6.14661796493126773161628836506, −6.10873500084234415115075507025, −6.09605387708813105993272224185, −5.43591226437249346217464617614, −5.35084272240477023762877683464, −5.08594753628017057861796356629, −4.82499018857933670360990128283, −4.64221672376206259379062627607, −4.50169762663541716834269026783, −4.09567646597640512895996247776, −3.91808875249130013207707724221, −3.34431769883903162803898894090, −3.30025837259237129324122759116, −3.25812768095409162703779132147, −3.23747753694142801973158741297, −2.74350528394313331854383477052, −2.52506338656078348156080828548, −2.08059419352610335641479018500, −2.07863211689048382151470132373, −1.07180392675020249819394692854, −0.830386226316714201500292802031, −0.70435770903023683861291531643, −0.33406559510895863014558709123,
0.33406559510895863014558709123, 0.70435770903023683861291531643, 0.830386226316714201500292802031, 1.07180392675020249819394692854, 2.07863211689048382151470132373, 2.08059419352610335641479018500, 2.52506338656078348156080828548, 2.74350528394313331854383477052, 3.23747753694142801973158741297, 3.25812768095409162703779132147, 3.30025837259237129324122759116, 3.34431769883903162803898894090, 3.91808875249130013207707724221, 4.09567646597640512895996247776, 4.50169762663541716834269026783, 4.64221672376206259379062627607, 4.82499018857933670360990128283, 5.08594753628017057861796356629, 5.35084272240477023762877683464, 5.43591226437249346217464617614, 6.09605387708813105993272224185, 6.10873500084234415115075507025, 6.14661796493126773161628836506, 6.36251399546116178535706637469, 6.41107655812277498565487239646