Properties

Label 8-1920e4-1.1-c1e4-0-28
Degree $8$
Conductor $135895.450\times 10^{8}$
Sign $1$
Analytic cond. $55247.5$
Root an. cond. $3.91551$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 12·7-s + 2·9-s + 24·21-s + 10·25-s − 6·27-s + 24·29-s + 72·49-s − 24·63-s − 20·75-s + 11·81-s + 44·83-s − 48·87-s + 72·101-s + 36·103-s − 52·107-s + 44·121-s + 127-s + 131-s + 137-s + 139-s − 144·147-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  − 1.15·3-s − 4.53·7-s + 2/3·9-s + 5.23·21-s + 2·25-s − 1.15·27-s + 4.45·29-s + 72/7·49-s − 3.02·63-s − 2.30·75-s + 11/9·81-s + 4.82·83-s − 5.14·87-s + 7.16·101-s + 3.54·103-s − 5.02·107-s + 4·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 11.8·147-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 3^{4} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 3^{4} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{28} \cdot 3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(55247.5\)
Root analytic conductor: \(3.91551\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{28} \cdot 3^{4} \cdot 5^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.9718538066\)
\(L(\frac12)\) \(\approx\) \(0.9718538066\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
5$C_2$ \( ( 1 - p T^{2} )^{2} \)
good7$C_2^2$ \( ( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
11$C_2$ \( ( 1 - p T^{2} )^{4} \)
13$C_2$ \( ( 1 + p T^{2} )^{4} \)
17$C_2$ \( ( 1 + p T^{2} )^{4} \)
19$C_2$ \( ( 1 + p T^{2} )^{4} \)
23$C_2^2$$\times$$C_2^2$ \( ( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} )( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} ) \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
31$C_2$ \( ( 1 - p T^{2} )^{4} \)
37$C_2$ \( ( 1 + p T^{2} )^{4} \)
41$C_2^2$ \( ( 1 + 62 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$$\times$$C_2^2$ \( ( 1 - 18 T + 162 T^{2} - 18 p T^{3} + p^{2} T^{4} )( 1 + 18 T + 162 T^{2} + 18 p T^{3} + p^{2} T^{4} ) \)
47$C_2^2$$\times$$C_2^2$ \( ( 1 - 14 T + 98 T^{2} - 14 p T^{3} + p^{2} T^{4} )( 1 + 14 T + 98 T^{2} + 14 p T^{3} + p^{2} T^{4} ) \)
53$C_2$ \( ( 1 - p T^{2} )^{4} \)
59$C_2$ \( ( 1 - p T^{2} )^{4} \)
61$C_2^2$ \( ( 1 - 58 T^{2} + p^{2} T^{4} )^{2} \)
67$C_2^2$$\times$$C_2^2$ \( ( 1 - 6 T + 18 T^{2} - 6 p T^{3} + p^{2} T^{4} )( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} ) \)
71$C_2$ \( ( 1 + p T^{2} )^{4} \)
73$C_2$ \( ( 1 - p T^{2} )^{4} \)
79$C_2$ \( ( 1 - p T^{2} )^{4} \)
83$C_2^2$ \( ( 1 - 22 T + 242 T^{2} - 22 p T^{3} + p^{2} T^{4} )^{2} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )^{2}( 1 + 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.41107655812277498565487239646, −6.36251399546116178535706637469, −6.14661796493126773161628836506, −6.10873500084234415115075507025, −6.09605387708813105993272224185, −5.43591226437249346217464617614, −5.35084272240477023762877683464, −5.08594753628017057861796356629, −4.82499018857933670360990128283, −4.64221672376206259379062627607, −4.50169762663541716834269026783, −4.09567646597640512895996247776, −3.91808875249130013207707724221, −3.34431769883903162803898894090, −3.30025837259237129324122759116, −3.25812768095409162703779132147, −3.23747753694142801973158741297, −2.74350528394313331854383477052, −2.52506338656078348156080828548, −2.08059419352610335641479018500, −2.07863211689048382151470132373, −1.07180392675020249819394692854, −0.830386226316714201500292802031, −0.70435770903023683861291531643, −0.33406559510895863014558709123, 0.33406559510895863014558709123, 0.70435770903023683861291531643, 0.830386226316714201500292802031, 1.07180392675020249819394692854, 2.07863211689048382151470132373, 2.08059419352610335641479018500, 2.52506338656078348156080828548, 2.74350528394313331854383477052, 3.23747753694142801973158741297, 3.25812768095409162703779132147, 3.30025837259237129324122759116, 3.34431769883903162803898894090, 3.91808875249130013207707724221, 4.09567646597640512895996247776, 4.50169762663541716834269026783, 4.64221672376206259379062627607, 4.82499018857933670360990128283, 5.08594753628017057861796356629, 5.35084272240477023762877683464, 5.43591226437249346217464617614, 6.09605387708813105993272224185, 6.10873500084234415115075507025, 6.14661796493126773161628836506, 6.36251399546116178535706637469, 6.41107655812277498565487239646

Graph of the $Z$-function along the critical line