Properties

Label 1920.2.m.e.959.3
Level $1920$
Weight $2$
Character 1920.959
Analytic conductor $15.331$
Analytic rank $0$
Dimension $4$
CM discriminant -20
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1920,2,Mod(959,1920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1920, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1920.959");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1920.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.3312771881\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 959.3
Root \(-0.618034i\) of defining polynomial
Character \(\chi\) \(=\) 1920.959
Dual form 1920.2.m.e.959.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.618034 - 1.61803i) q^{3} -2.23607 q^{5} -5.23607 q^{7} +(-2.23607 - 2.00000i) q^{9} +(-1.38197 + 3.61803i) q^{15} +(-3.23607 + 8.47214i) q^{21} +5.70820i q^{23} +5.00000 q^{25} +(-4.61803 + 2.38197i) q^{27} +6.00000 q^{29} +11.7082 q^{35} -12.0000i q^{41} +11.2361i q^{43} +(5.00000 + 4.47214i) q^{45} -13.7082i q^{47} +20.4164 q^{49} +8.00000i q^{61} +(11.7082 + 10.4721i) q^{63} +8.18034i q^{67} +(9.23607 + 3.52786i) q^{69} +(3.09017 - 8.09017i) q^{75} +(1.00000 + 8.94427i) q^{81} +4.29180 q^{83} +(3.70820 - 9.70820i) q^{87} +17.8885i q^{89} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} - 12 q^{7} - 10 q^{15} - 4 q^{21} + 20 q^{25} - 14 q^{27} + 24 q^{29} + 20 q^{35} + 20 q^{45} + 28 q^{49} + 20 q^{63} + 28 q^{69} - 10 q^{75} + 4 q^{81} + 44 q^{83} - 12 q^{87}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(641\) \(901\) \(1537\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.618034 1.61803i 0.356822 0.934172i
\(4\) 0 0
\(5\) −2.23607 −1.00000
\(6\) 0 0
\(7\) −5.23607 −1.97905 −0.989524 0.144370i \(-0.953885\pi\)
−0.989524 + 0.144370i \(0.953885\pi\)
\(8\) 0 0
\(9\) −2.23607 2.00000i −0.745356 0.666667i
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) −1.38197 + 3.61803i −0.356822 + 0.934172i
\(16\) 0 0
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) −3.23607 + 8.47214i −0.706168 + 1.84877i
\(22\) 0 0
\(23\) 5.70820i 1.19024i 0.803636 + 0.595121i \(0.202896\pi\)
−0.803636 + 0.595121i \(0.797104\pi\)
\(24\) 0 0
\(25\) 5.00000 1.00000
\(26\) 0 0
\(27\) −4.61803 + 2.38197i −0.888741 + 0.458410i
\(28\) 0 0
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 11.7082 1.97905
\(36\) 0 0
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 12.0000i 1.87409i −0.349215 0.937043i \(-0.613552\pi\)
0.349215 0.937043i \(-0.386448\pi\)
\(42\) 0 0
\(43\) 11.2361i 1.71348i 0.515745 + 0.856742i \(0.327515\pi\)
−0.515745 + 0.856742i \(0.672485\pi\)
\(44\) 0 0
\(45\) 5.00000 + 4.47214i 0.745356 + 0.666667i
\(46\) 0 0
\(47\) 13.7082i 1.99955i −0.0212814 0.999774i \(-0.506775\pi\)
0.0212814 0.999774i \(-0.493225\pi\)
\(48\) 0 0
\(49\) 20.4164 2.91663
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) 8.00000i 1.02430i 0.858898 + 0.512148i \(0.171150\pi\)
−0.858898 + 0.512148i \(0.828850\pi\)
\(62\) 0 0
\(63\) 11.7082 + 10.4721i 1.47510 + 1.31937i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 8.18034i 0.999388i 0.866202 + 0.499694i \(0.166554\pi\)
−0.866202 + 0.499694i \(0.833446\pi\)
\(68\) 0 0
\(69\) 9.23607 + 3.52786i 1.11189 + 0.424705i
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 3.09017 8.09017i 0.356822 0.934172i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 1.00000 + 8.94427i 0.111111 + 0.993808i
\(82\) 0 0
\(83\) 4.29180 0.471086 0.235543 0.971864i \(-0.424313\pi\)
0.235543 + 0.971864i \(0.424313\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 3.70820 9.70820i 0.397561 1.04083i
\(88\) 0 0
\(89\) 17.8885i 1.89618i 0.317999 + 0.948091i \(0.396989\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 18.0000 1.79107 0.895533 0.444994i \(-0.146794\pi\)
0.895533 + 0.444994i \(0.146794\pi\)
\(102\) 0 0
\(103\) −2.18034 −0.214835 −0.107418 0.994214i \(-0.534258\pi\)
−0.107418 + 0.994214i \(0.534258\pi\)
\(104\) 0 0
\(105\) 7.23607 18.9443i 0.706168 1.84877i
\(106\) 0 0
\(107\) −19.7082 −1.90526 −0.952632 0.304125i \(-0.901636\pi\)
−0.952632 + 0.304125i \(0.901636\pi\)
\(108\) 0 0
\(109\) 16.0000i 1.53252i 0.642529 + 0.766261i \(0.277885\pi\)
−0.642529 + 0.766261i \(0.722115\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 12.7639i 1.19024i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 11.0000 1.00000
\(122\) 0 0
\(123\) −19.4164 7.41641i −1.75072 0.668715i
\(124\) 0 0
\(125\) −11.1803 −1.00000
\(126\) 0 0
\(127\) −12.6525 −1.12273 −0.561363 0.827570i \(-0.689723\pi\)
−0.561363 + 0.827570i \(0.689723\pi\)
\(128\) 0 0
\(129\) 18.1803 + 6.94427i 1.60069 + 0.611409i
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 10.3262 5.32624i 0.888741 0.458410i
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) −22.1803 8.47214i −1.86792 0.713483i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −13.4164 −1.11417
\(146\) 0 0
\(147\) 12.6180 33.0344i 1.04072 2.72463i
\(148\) 0 0
\(149\) 4.47214 0.366372 0.183186 0.983078i \(-0.441359\pi\)
0.183186 + 0.983078i \(0.441359\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 29.8885i 2.35555i
\(162\) 0 0
\(163\) 6.65248i 0.521062i 0.965465 + 0.260531i \(0.0838976\pi\)
−0.965465 + 0.260531i \(0.916102\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 10.2918i 0.796403i 0.917298 + 0.398202i \(0.130366\pi\)
−0.917298 + 0.398202i \(0.869634\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) −26.1803 −1.97905
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) 26.8328i 1.99447i 0.0743294 + 0.997234i \(0.476318\pi\)
−0.0743294 + 0.997234i \(0.523682\pi\)
\(182\) 0 0
\(183\) 12.9443 + 4.94427i 0.956868 + 0.365491i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 24.1803 12.4721i 1.75886 0.907214i
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 0 0
\(201\) 13.2361 + 5.05573i 0.933600 + 0.356604i
\(202\) 0 0
\(203\) −31.4164 −2.20500
\(204\) 0 0
\(205\) 26.8328i 1.87409i
\(206\) 0 0
\(207\) 11.4164 12.7639i 0.793495 0.887155i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 25.1246i 1.71348i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 18.7639 1.25653 0.628263 0.778001i \(-0.283766\pi\)
0.628263 + 0.778001i \(0.283766\pi\)
\(224\) 0 0
\(225\) −11.1803 10.0000i −0.745356 0.666667i
\(226\) 0 0
\(227\) 27.1246 1.80032 0.900162 0.435556i \(-0.143448\pi\)
0.900162 + 0.435556i \(0.143448\pi\)
\(228\) 0 0
\(229\) 26.8328i 1.77316i −0.462573 0.886581i \(-0.653074\pi\)
0.462573 0.886581i \(-0.346926\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 30.6525i 1.99955i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −13.4164 −0.864227 −0.432113 0.901819i \(-0.642232\pi\)
−0.432113 + 0.901819i \(0.642232\pi\)
\(242\) 0 0
\(243\) 15.0902 + 3.90983i 0.968035 + 0.250816i
\(244\) 0 0
\(245\) −45.6525 −2.91663
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 2.65248 6.94427i 0.168094 0.440075i
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −13.4164 12.0000i −0.830455 0.742781i
\(262\) 0 0
\(263\) 9.12461i 0.562648i 0.959613 + 0.281324i \(0.0907735\pi\)
−0.959613 + 0.281324i \(0.909226\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 28.9443 + 11.0557i 1.77136 + 0.676600i
\(268\) 0 0
\(269\) 22.3607 1.36335 0.681677 0.731653i \(-0.261251\pi\)
0.681677 + 0.731653i \(0.261251\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 12.0000i 0.715860i 0.933748 + 0.357930i \(0.116517\pi\)
−0.933748 + 0.357930i \(0.883483\pi\)
\(282\) 0 0
\(283\) 32.1803i 1.91292i 0.291859 + 0.956461i \(0.405726\pi\)
−0.291859 + 0.956461i \(0.594274\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 62.8328i 3.70890i
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 58.8328i 3.39107i
\(302\) 0 0
\(303\) 11.1246 29.1246i 0.639092 1.67317i
\(304\) 0 0
\(305\) 17.8885i 1.02430i
\(306\) 0 0
\(307\) 27.5967i 1.57503i 0.616296 + 0.787515i \(0.288633\pi\)
−0.616296 + 0.787515i \(0.711367\pi\)
\(308\) 0 0
\(309\) −1.34752 + 3.52786i −0.0766580 + 0.200693i
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) −26.1803 23.4164i −1.47510 1.31937i
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −12.1803 + 31.8885i −0.679840 + 1.77984i
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 25.8885 + 9.88854i 1.43164 + 0.546838i
\(328\) 0 0
\(329\) 71.7771i 3.95720i
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 18.2918i 0.999388i
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −70.2492 −3.79310
\(344\) 0 0
\(345\) −20.6525 7.88854i −1.11189 0.424705i
\(346\) 0 0
\(347\) 3.12461 0.167738 0.0838690 0.996477i \(-0.473272\pi\)
0.0838690 + 0.996477i \(0.473272\pi\)
\(348\) 0 0
\(349\) 26.8328i 1.43633i −0.695874 0.718164i \(-0.744983\pi\)
0.695874 0.718164i \(-0.255017\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 6.79837 17.7984i 0.356822 0.934172i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −29.2361 −1.52611 −0.763055 0.646333i \(-0.776302\pi\)
−0.763055 + 0.646333i \(0.776302\pi\)
\(368\) 0 0
\(369\) −24.0000 + 26.8328i −1.24939 + 1.39686i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) −6.90983 + 18.0902i −0.356822 + 0.934172i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) −7.81966 + 20.4721i −0.400613 + 1.04882i
\(382\) 0 0
\(383\) 1.12461i 0.0574650i −0.999587 0.0287325i \(-0.990853\pi\)
0.999587 0.0287325i \(-0.00914709\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 22.4721 25.1246i 1.14232 1.27716i
\(388\) 0 0
\(389\) 31.3050 1.58722 0.793612 0.608424i \(-0.208198\pi\)
0.793612 + 0.608424i \(0.208198\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 35.7771i 1.78662i −0.449439 0.893311i \(-0.648376\pi\)
0.449439 0.893311i \(-0.351624\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −2.23607 20.0000i −0.111111 0.993808i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 40.2492 1.99020 0.995098 0.0988936i \(-0.0315304\pi\)
0.995098 + 0.0988936i \(0.0315304\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −9.59675 −0.471086
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 8.00000i 0.389896i −0.980814 0.194948i \(-0.937546\pi\)
0.980814 0.194948i \(-0.0624538\pi\)
\(422\) 0 0
\(423\) −27.4164 + 30.6525i −1.33303 + 1.49037i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 41.8885i 2.02713i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) −8.29180 + 21.7082i −0.397561 + 1.04083i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) −45.6525 40.8328i −2.17393 1.94442i
\(442\) 0 0
\(443\) 35.7082 1.69655 0.848274 0.529558i \(-0.177642\pi\)
0.848274 + 0.529558i \(0.177642\pi\)
\(444\) 0 0
\(445\) 40.0000i 1.89618i
\(446\) 0 0
\(447\) 2.76393 7.23607i 0.130729 0.342254i
\(448\) 0 0
\(449\) 36.0000i 1.69895i 0.527633 + 0.849473i \(0.323080\pi\)
−0.527633 + 0.849473i \(0.676920\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −42.0000 −1.95614 −0.978068 0.208288i \(-0.933211\pi\)
−0.978068 + 0.208288i \(0.933211\pi\)
\(462\) 0 0
\(463\) 20.0689 0.932680 0.466340 0.884606i \(-0.345572\pi\)
0.466340 + 0.884606i \(0.345572\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −43.1246 −1.99557 −0.997785 0.0665285i \(-0.978808\pi\)
−0.997785 + 0.0665285i \(0.978808\pi\)
\(468\) 0 0
\(469\) 42.8328i 1.97784i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) −48.3607 18.4721i −2.20049 0.840511i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 11.3475 0.514205 0.257103 0.966384i \(-0.417232\pi\)
0.257103 + 0.966384i \(0.417232\pi\)
\(488\) 0 0
\(489\) 10.7639 + 4.11146i 0.486762 + 0.185926i
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 0 0
\(501\) 16.6525 + 6.36068i 0.743978 + 0.284174i
\(502\) 0 0
\(503\) 37.7082i 1.68133i −0.541559 0.840663i \(-0.682166\pi\)
0.541559 0.840663i \(-0.317834\pi\)
\(504\) 0 0
\(505\) −40.2492 −1.79107
\(506\) 0 0
\(507\) −8.03444 + 21.0344i −0.356822 + 0.934172i
\(508\) 0 0
\(509\) −6.00000 −0.265945 −0.132973 0.991120i \(-0.542452\pi\)
−0.132973 + 0.991120i \(0.542452\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 4.87539 0.214835
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 17.8885i 0.783711i 0.920027 + 0.391856i \(0.128167\pi\)
−0.920027 + 0.391856i \(0.871833\pi\)
\(522\) 0 0
\(523\) 3.59675i 0.157275i 0.996903 + 0.0786374i \(0.0250569\pi\)
−0.996903 + 0.0786374i \(0.974943\pi\)
\(524\) 0 0
\(525\) −16.1803 + 42.3607i −0.706168 + 1.84877i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −9.58359 −0.416678
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 44.0689 1.90526
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 26.8328i 1.15363i 0.816874 + 0.576816i \(0.195705\pi\)
−0.816874 + 0.576816i \(0.804295\pi\)
\(542\) 0 0
\(543\) 43.4164 + 16.5836i 1.86318 + 0.711670i
\(544\) 0 0
\(545\) 35.7771i 1.53252i
\(546\) 0 0
\(547\) 35.2361i 1.50659i 0.657685 + 0.753293i \(0.271536\pi\)
−0.657685 + 0.753293i \(0.728464\pi\)
\(548\) 0 0
\(549\) 16.0000 17.8885i 0.682863 0.763464i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 34.5410 1.45573 0.727865 0.685720i \(-0.240513\pi\)
0.727865 + 0.685720i \(0.240513\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −5.23607 46.8328i −0.219894 1.96679i
\(568\) 0 0
\(569\) 36.0000i 1.50920i −0.656186 0.754599i \(-0.727831\pi\)
0.656186 0.754599i \(-0.272169\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 28.5410i 1.19024i
\(576\) 0 0
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −22.4721 −0.932301
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −26.5410 −1.09547 −0.547733 0.836653i \(-0.684509\pi\)
−0.547733 + 0.836653i \(0.684509\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −40.2492 −1.64180 −0.820900 0.571072i \(-0.806528\pi\)
−0.820900 + 0.571072i \(0.806528\pi\)
\(602\) 0 0
\(603\) 16.3607 18.2918i 0.666258 0.744900i
\(604\) 0 0
\(605\) −24.5967 −1.00000
\(606\) 0 0
\(607\) 21.8197 0.885633 0.442816 0.896612i \(-0.353979\pi\)
0.442816 + 0.896612i \(0.353979\pi\)
\(608\) 0 0
\(609\) −19.4164 + 50.8328i −0.786793 + 2.05985i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) 0 0
\(615\) 43.4164 + 16.5836i 1.75072 + 0.668715i
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) −13.5967 26.3607i −0.545619 1.05782i
\(622\) 0 0
\(623\) 93.6656i 3.75263i
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 28.2918 1.12273
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 12.0000i 0.473972i 0.971513 + 0.236986i \(0.0761595\pi\)
−0.971513 + 0.236986i \(0.923841\pi\)
\(642\) 0 0
\(643\) 50.0689i 1.97452i −0.159103 0.987262i \(-0.550860\pi\)
0.159103 0.987262i \(-0.449140\pi\)
\(644\) 0 0
\(645\) −40.6525 15.5279i −1.60069 0.611409i
\(646\) 0 0
\(647\) 20.5410i 0.807551i −0.914858 0.403775i \(-0.867698\pi\)
0.914858 0.403775i \(-0.132302\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 32.0000i 1.24466i 0.782757 + 0.622328i \(0.213813\pi\)
−0.782757 + 0.622328i \(0.786187\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 34.2492i 1.32614i
\(668\) 0 0
\(669\) 11.5967 30.3607i 0.448356 1.17381i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) −23.0902 + 11.9098i −0.888741 + 0.458410i
\(676\) 0 0
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 16.7639 43.8885i 0.642395 1.68181i
\(682\) 0 0
\(683\) 51.1246 1.95623 0.978114 0.208068i \(-0.0667174\pi\)
0.978114 + 0.208068i \(0.0667174\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −43.4164 16.5836i −1.65644 0.632704i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −22.3607 −0.844551 −0.422276 0.906467i \(-0.638769\pi\)
−0.422276 + 0.906467i \(0.638769\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 49.5967 + 18.9443i 1.86792 + 0.713483i
\(706\) 0 0
\(707\) −94.2492 −3.54461
\(708\) 0 0
\(709\) 26.8328i 1.00773i 0.863783 + 0.503864i \(0.168089\pi\)
−0.863783 + 0.503864i \(0.831911\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 11.4164 0.425169
\(722\) 0 0
\(723\) −8.29180 + 21.7082i −0.308375 + 0.807337i
\(724\) 0 0
\(725\) 30.0000 1.11417
\(726\) 0 0
\(727\) 41.0132 1.52109 0.760547 0.649283i \(-0.224931\pi\)
0.760547 + 0.649283i \(0.224931\pi\)
\(728\) 0 0
\(729\) 15.6525 22.0000i 0.579721 0.814815i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) −28.2148 + 73.8673i −1.04072 + 2.72463i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 52.5410i 1.92754i 0.266729 + 0.963772i \(0.414057\pi\)
−0.266729 + 0.963772i \(0.585943\pi\)
\(744\) 0 0
\(745\) −10.0000 −0.366372
\(746\) 0 0
\(747\) −9.59675 8.58359i −0.351127 0.314057i
\(748\) 0 0
\(749\) 103.193 3.77061
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 35.7771i 1.29692i 0.761249 + 0.648459i \(0.224586\pi\)
−0.761249 + 0.648459i \(0.775414\pi\)
\(762\) 0 0
\(763\) 83.7771i 3.03293i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −14.0000 −0.504853 −0.252426 0.967616i \(-0.581229\pi\)
−0.252426 + 0.967616i \(0.581229\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −27.7082 + 14.2918i −0.990210 + 0.510747i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 2.06888i 0.0737477i −0.999320 0.0368739i \(-0.988260\pi\)
0.999320 0.0368739i \(-0.0117400\pi\)
\(788\) 0 0
\(789\) 14.7639 + 5.63932i 0.525610 + 0.200765i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 35.7771 40.0000i 1.26412 1.41333i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 66.8328i 2.35555i
\(806\) 0 0
\(807\) 13.8197 36.1803i 0.486475 1.27361i
\(808\) 0 0
\(809\) 17.8885i 0.628928i 0.949269 + 0.314464i \(0.101825\pi\)
−0.949269 + 0.314464i \(0.898175\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 14.8754i 0.521062i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −31.3050 −1.09255 −0.546275 0.837606i \(-0.683955\pi\)
−0.546275 + 0.837606i \(0.683955\pi\)
\(822\) 0 0
\(823\) −50.1803 −1.74918 −0.874588 0.484866i \(-0.838868\pi\)
−0.874588 + 0.484866i \(0.838868\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 10.5410 0.366547 0.183274 0.983062i \(-0.441331\pi\)
0.183274 + 0.983062i \(0.441331\pi\)
\(828\) 0 0
\(829\) 56.0000i 1.94496i 0.232986 + 0.972480i \(0.425151\pi\)
−0.232986 + 0.972480i \(0.574849\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 23.0132i 0.796403i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) 19.4164 + 7.41641i 0.668737 + 0.255435i
\(844\) 0 0
\(845\) 29.0689 1.00000
\(846\) 0 0
\(847\) −57.5967 −1.97905
\(848\) 0 0
\(849\) 52.0689 + 19.8885i 1.78700 + 0.682573i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 101.666 + 38.8328i 3.46476 + 1.32342i
\(862\) 0 0
\(863\) 34.2918i 1.16731i 0.812003 + 0.583653i \(0.198377\pi\)
−0.812003 + 0.583653i \(0.801623\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −10.5066 + 27.5066i −0.356822 + 0.934172i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 58.5410 1.97905
\(876\) 0 0
\(877\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 12.0000i 0.404290i 0.979356 + 0.202145i \(0.0647913\pi\)
−0.979356 + 0.202145i \(0.935209\pi\)
\(882\) 0 0
\(883\) 54.6525i 1.83920i 0.392853 + 0.919601i \(0.371488\pi\)
−0.392853 + 0.919601i \(0.628512\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 57.1246i 1.91806i 0.283310 + 0.959028i \(0.408567\pi\)
−0.283310 + 0.959028i \(0.591433\pi\)
\(888\) 0 0
\(889\) 66.2492 2.22193
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −95.1935 36.3607i −3.16784 1.21001i
\(904\) 0 0
\(905\) 60.0000i 1.99447i
\(906\) 0 0
\(907\) 45.4853i 1.51031i −0.655544 0.755157i \(-0.727561\pi\)
0.655544 0.755157i \(-0.272439\pi\)
\(908\) 0 0
\(909\) −40.2492 36.0000i −1.33498 1.19404i
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −28.9443 11.0557i −0.956868 0.365491i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 44.6525 + 17.0557i 1.47135 + 0.562005i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 4.87539 + 4.36068i 0.160129 + 0.143224i
\(928\) 0 0
\(929\) 36.0000i 1.18112i −0.806993 0.590561i \(-0.798907\pi\)
0.806993 0.590561i \(-0.201093\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 42.0000 1.36916 0.684580 0.728937i \(-0.259985\pi\)
0.684580 + 0.728937i \(0.259985\pi\)
\(942\) 0 0
\(943\) 68.4984 2.23062
\(944\) 0 0
\(945\) −54.0689 + 27.8885i −1.75886 + 0.907214i
\(946\) 0 0
\(947\) −36.2918 −1.17932 −0.589662 0.807650i \(-0.700739\pi\)
−0.589662 + 0.807650i \(0.700739\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 31.0000 1.00000
\(962\) 0 0
\(963\) 44.0689 + 39.4164i 1.42010 + 1.27018i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −3.93112 −0.126416 −0.0632081 0.998000i \(-0.520133\pi\)
−0.0632081 + 0.998000i \(0.520133\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 32.0000 35.7771i 1.02168 1.14227i
\(982\) 0 0
\(983\) 4.54102i 0.144836i 0.997374 + 0.0724180i \(0.0230716\pi\)
−0.997374 + 0.0724180i \(0.976928\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 116.138 + 44.3607i 3.69671 + 1.41202i
\(988\) 0 0
\(989\) −64.1378 −2.03946
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1920.2.m.e.959.3 4
3.2 odd 2 1920.2.m.q.959.1 yes 4
4.3 odd 2 1920.2.m.r.959.2 yes 4
5.4 even 2 1920.2.m.r.959.2 yes 4
8.3 odd 2 1920.2.m.f.959.3 yes 4
8.5 even 2 1920.2.m.q.959.2 yes 4
12.11 even 2 1920.2.m.f.959.4 yes 4
15.14 odd 2 1920.2.m.f.959.4 yes 4
20.19 odd 2 CM 1920.2.m.e.959.3 4
24.5 odd 2 inner 1920.2.m.e.959.4 yes 4
24.11 even 2 1920.2.m.r.959.1 yes 4
40.19 odd 2 1920.2.m.q.959.2 yes 4
40.29 even 2 1920.2.m.f.959.3 yes 4
60.59 even 2 1920.2.m.q.959.1 yes 4
120.29 odd 2 1920.2.m.r.959.1 yes 4
120.59 even 2 inner 1920.2.m.e.959.4 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1920.2.m.e.959.3 4 1.1 even 1 trivial
1920.2.m.e.959.3 4 20.19 odd 2 CM
1920.2.m.e.959.4 yes 4 24.5 odd 2 inner
1920.2.m.e.959.4 yes 4 120.59 even 2 inner
1920.2.m.f.959.3 yes 4 8.3 odd 2
1920.2.m.f.959.3 yes 4 40.29 even 2
1920.2.m.f.959.4 yes 4 12.11 even 2
1920.2.m.f.959.4 yes 4 15.14 odd 2
1920.2.m.q.959.1 yes 4 3.2 odd 2
1920.2.m.q.959.1 yes 4 60.59 even 2
1920.2.m.q.959.2 yes 4 8.5 even 2
1920.2.m.q.959.2 yes 4 40.19 odd 2
1920.2.m.r.959.1 yes 4 24.11 even 2
1920.2.m.r.959.1 yes 4 120.29 odd 2
1920.2.m.r.959.2 yes 4 4.3 odd 2
1920.2.m.r.959.2 yes 4 5.4 even 2