L(s) = 1 | − 30·9-s − 48·29-s − 252·41-s − 172·49-s + 104·61-s + 513·81-s − 396·89-s + 600·101-s + 296·109-s + 190·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 164·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯ |
L(s) = 1 | − 3.33·9-s − 1.65·29-s − 6.14·41-s − 3.51·49-s + 1.70·61-s + 19/3·81-s − 4.44·89-s + 5.94·101-s + 2.71·109-s + 1.57·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + 0.970·169-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + 0.00502·199-s + ⋯ |
Λ(s)=(=((216⋅58)s/2ΓC(s)4L(s)Λ(3−s)
Λ(s)=(=((216⋅58)s/2ΓC(s+1)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
216⋅58
|
Sign: |
1
|
Analytic conductor: |
14111.7 |
Root analytic conductor: |
3.30139 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 216⋅58, ( :1,1,1,1), 1)
|
Particular Values
L(23) |
≈ |
0.3875605349 |
L(21) |
≈ |
0.3875605349 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 5 | | 1 |
good | 3 | C22 | (1+5pT2+p4T4)2 |
| 7 | C22 | (1+86T2+p4T4)2 |
| 11 | C22 | (1−95T2+p4T4)2 |
| 13 | C22 | (1−82T2+p4T4)2 |
| 17 | C22 | (1−569T2+p4T4)2 |
| 19 | C22 | (1−215T2+p4T4)2 |
| 23 | C22 | (1−970T2+p4T4)2 |
| 29 | C2 | (1+12T+p2T2)4 |
| 31 | C22 | (1−950T2+p4T4)2 |
| 37 | C22 | (1−238T2+p4T4)2 |
| 41 | C2 | (1+63T+p2T2)4 |
| 43 | C22 | (1−190T2+p4T4)2 |
| 47 | C22 | (1+4226T2+p4T4)2 |
| 53 | C22 | (1−5294T2+p4T4)2 |
| 59 | C22 | (1−3890T2+p4T4)2 |
| 61 | C2 | (1−26T+p2T2)4 |
| 67 | C22 | (1+7895T2+p4T4)2 |
| 71 | C22 | (1−9314T2+p4T4)2 |
| 73 | C22 | (1−10369T2+p4T4)2 |
| 79 | C22 | (1−4982T2+p4T4)2 |
| 83 | C22 | (1+4031T2+p4T4)2 |
| 89 | C2 | (1+99T+p2T2)4 |
| 97 | C22 | (1−862T2+p4T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.043208572205063538089282139160, −7.87713074503043243135403273829, −7.51475251189716923085089632017, −7.13525026459992030418035652186, −6.74195158675404802760331752652, −6.69358011579204881157978676911, −6.60014490214433419660108498344, −5.99319272472723371802268190812, −5.90666910886784429580700605242, −5.59584836624783009560434669158, −5.51594457101220937413974190763, −5.04806526204044684207028691682, −4.90059560415257564000565627835, −4.79801644608287067850378744332, −4.24767152600730571291701615058, −3.66850945845351285121733608042, −3.35793653552807367647961636790, −3.33280814025082144925112783914, −3.10639230286477890234560324033, −2.79572318594033016940852819581, −2.07324358948568412247001315509, −1.81442019420303235171289493423, −1.75987996401026266995800847667, −0.58040493233256980285088634444, −0.19048608395910108070772185177,
0.19048608395910108070772185177, 0.58040493233256980285088634444, 1.75987996401026266995800847667, 1.81442019420303235171289493423, 2.07324358948568412247001315509, 2.79572318594033016940852819581, 3.10639230286477890234560324033, 3.33280814025082144925112783914, 3.35793653552807367647961636790, 3.66850945845351285121733608042, 4.24767152600730571291701615058, 4.79801644608287067850378744332, 4.90059560415257564000565627835, 5.04806526204044684207028691682, 5.51594457101220937413974190763, 5.59584836624783009560434669158, 5.90666910886784429580700605242, 5.99319272472723371802268190812, 6.60014490214433419660108498344, 6.69358011579204881157978676911, 6.74195158675404802760331752652, 7.13525026459992030418035652186, 7.51475251189716923085089632017, 7.87713074503043243135403273829, 8.043208572205063538089282139160