Properties

Label 400.3.h.b.399.2
Level $400$
Weight $3$
Character 400.399
Analytic conductor $10.899$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [400,3,Mod(399,400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("400.399");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 400.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.8992105744\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 399.2
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 400.399
Dual form 400.3.h.b.399.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205 q^{3} +3.46410 q^{7} -6.00000 q^{9} +12.1244i q^{11} -16.0000i q^{13} -3.00000i q^{17} +22.5167i q^{19} -6.00000 q^{21} -45.0333 q^{23} +25.9808 q^{27} -12.0000 q^{29} +31.1769i q^{31} -21.0000i q^{33} +50.0000i q^{37} +27.7128i q^{39} -63.0000 q^{41} -62.3538 q^{43} -13.8564 q^{47} -37.0000 q^{49} +5.19615i q^{51} -18.0000i q^{53} -39.0000i q^{57} +55.4256i q^{59} +26.0000 q^{61} -20.7846 q^{63} +32.9090 q^{67} +78.0000 q^{69} +27.7128i q^{71} +17.0000i q^{73} +42.0000i q^{77} -86.6025i q^{79} +9.00000 q^{81} +98.7269 q^{83} +20.7846 q^{87} -99.0000 q^{89} -55.4256i q^{91} -54.0000i q^{93} -134.000i q^{97} -72.7461i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 24 q^{9} - 24 q^{21} - 48 q^{29} - 252 q^{41} - 148 q^{49} + 104 q^{61} + 312 q^{69} + 36 q^{81} - 396 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.73205 −0.577350 −0.288675 0.957427i \(-0.593215\pi\)
−0.288675 + 0.957427i \(0.593215\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 3.46410 0.494872 0.247436 0.968904i \(-0.420412\pi\)
0.247436 + 0.968904i \(0.420412\pi\)
\(8\) 0 0
\(9\) −6.00000 −0.666667
\(10\) 0 0
\(11\) 12.1244i 1.10221i 0.834435 + 0.551107i \(0.185794\pi\)
−0.834435 + 0.551107i \(0.814206\pi\)
\(12\) 0 0
\(13\) − 16.0000i − 1.23077i −0.788227 0.615385i \(-0.789001\pi\)
0.788227 0.615385i \(-0.210999\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 3.00000i − 0.176471i −0.996100 0.0882353i \(-0.971877\pi\)
0.996100 0.0882353i \(-0.0281227\pi\)
\(18\) 0 0
\(19\) 22.5167i 1.18509i 0.805538 + 0.592544i \(0.201876\pi\)
−0.805538 + 0.592544i \(0.798124\pi\)
\(20\) 0 0
\(21\) −6.00000 −0.285714
\(22\) 0 0
\(23\) −45.0333 −1.95797 −0.978985 0.203931i \(-0.934628\pi\)
−0.978985 + 0.203931i \(0.934628\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 25.9808 0.962250
\(28\) 0 0
\(29\) −12.0000 −0.413793 −0.206897 0.978363i \(-0.566336\pi\)
−0.206897 + 0.978363i \(0.566336\pi\)
\(30\) 0 0
\(31\) 31.1769i 1.00571i 0.864372 + 0.502853i \(0.167716\pi\)
−0.864372 + 0.502853i \(0.832284\pi\)
\(32\) 0 0
\(33\) − 21.0000i − 0.636364i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 50.0000i 1.35135i 0.737199 + 0.675676i \(0.236148\pi\)
−0.737199 + 0.675676i \(0.763852\pi\)
\(38\) 0 0
\(39\) 27.7128i 0.710585i
\(40\) 0 0
\(41\) −63.0000 −1.53659 −0.768293 0.640099i \(-0.778893\pi\)
−0.768293 + 0.640099i \(0.778893\pi\)
\(42\) 0 0
\(43\) −62.3538 −1.45009 −0.725045 0.688702i \(-0.758181\pi\)
−0.725045 + 0.688702i \(0.758181\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −13.8564 −0.294817 −0.147409 0.989076i \(-0.547093\pi\)
−0.147409 + 0.989076i \(0.547093\pi\)
\(48\) 0 0
\(49\) −37.0000 −0.755102
\(50\) 0 0
\(51\) 5.19615i 0.101885i
\(52\) 0 0
\(53\) − 18.0000i − 0.339623i −0.985477 0.169811i \(-0.945684\pi\)
0.985477 0.169811i \(-0.0543158\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 39.0000i − 0.684211i
\(58\) 0 0
\(59\) 55.4256i 0.939417i 0.882821 + 0.469709i \(0.155641\pi\)
−0.882821 + 0.469709i \(0.844359\pi\)
\(60\) 0 0
\(61\) 26.0000 0.426230 0.213115 0.977027i \(-0.431639\pi\)
0.213115 + 0.977027i \(0.431639\pi\)
\(62\) 0 0
\(63\) −20.7846 −0.329914
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 32.9090 0.491179 0.245589 0.969374i \(-0.421019\pi\)
0.245589 + 0.969374i \(0.421019\pi\)
\(68\) 0 0
\(69\) 78.0000 1.13043
\(70\) 0 0
\(71\) 27.7128i 0.390321i 0.980771 + 0.195161i \(0.0625228\pi\)
−0.980771 + 0.195161i \(0.937477\pi\)
\(72\) 0 0
\(73\) 17.0000i 0.232877i 0.993198 + 0.116438i \(0.0371477\pi\)
−0.993198 + 0.116438i \(0.962852\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 42.0000i 0.545455i
\(78\) 0 0
\(79\) − 86.6025i − 1.09623i −0.836401 0.548117i \(-0.815345\pi\)
0.836401 0.548117i \(-0.184655\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) 98.7269 1.18948 0.594740 0.803918i \(-0.297255\pi\)
0.594740 + 0.803918i \(0.297255\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 20.7846 0.238904
\(88\) 0 0
\(89\) −99.0000 −1.11236 −0.556180 0.831062i \(-0.687733\pi\)
−0.556180 + 0.831062i \(0.687733\pi\)
\(90\) 0 0
\(91\) − 55.4256i − 0.609073i
\(92\) 0 0
\(93\) − 54.0000i − 0.580645i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 134.000i − 1.38144i −0.723121 0.690722i \(-0.757293\pi\)
0.723121 0.690722i \(-0.242707\pi\)
\(98\) 0 0
\(99\) − 72.7461i − 0.734809i
\(100\) 0 0
\(101\) 150.000 1.48515 0.742574 0.669764i \(-0.233605\pi\)
0.742574 + 0.669764i \(0.233605\pi\)
\(102\) 0 0
\(103\) 110.851 1.07623 0.538113 0.842873i \(-0.319137\pi\)
0.538113 + 0.842873i \(0.319137\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −164.545 −1.53780 −0.768901 0.639368i \(-0.779196\pi\)
−0.768901 + 0.639368i \(0.779196\pi\)
\(108\) 0 0
\(109\) 74.0000 0.678899 0.339450 0.940624i \(-0.389759\pi\)
0.339450 + 0.940624i \(0.389759\pi\)
\(110\) 0 0
\(111\) − 86.6025i − 0.780203i
\(112\) 0 0
\(113\) 201.000i 1.77876i 0.457168 + 0.889381i \(0.348864\pi\)
−0.457168 + 0.889381i \(0.651136\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 96.0000i 0.820513i
\(118\) 0 0
\(119\) − 10.3923i − 0.0873303i
\(120\) 0 0
\(121\) −26.0000 −0.214876
\(122\) 0 0
\(123\) 109.119 0.887148
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 10.3923 0.0818292 0.0409146 0.999163i \(-0.486973\pi\)
0.0409146 + 0.999163i \(0.486973\pi\)
\(128\) 0 0
\(129\) 108.000 0.837209
\(130\) 0 0
\(131\) 6.92820i 0.0528870i 0.999650 + 0.0264435i \(0.00841822\pi\)
−0.999650 + 0.0264435i \(0.991582\pi\)
\(132\) 0 0
\(133\) 78.0000i 0.586466i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 207.000i − 1.51095i −0.655178 0.755474i \(-0.727406\pi\)
0.655178 0.755474i \(-0.272594\pi\)
\(138\) 0 0
\(139\) − 178.401i − 1.28346i −0.766930 0.641731i \(-0.778217\pi\)
0.766930 0.641731i \(-0.221783\pi\)
\(140\) 0 0
\(141\) 24.0000 0.170213
\(142\) 0 0
\(143\) 193.990 1.35657
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 64.0859 0.435958
\(148\) 0 0
\(149\) 108.000 0.724832 0.362416 0.932016i \(-0.381952\pi\)
0.362416 + 0.932016i \(0.381952\pi\)
\(150\) 0 0
\(151\) − 266.736i − 1.76646i −0.468938 0.883231i \(-0.655363\pi\)
0.468938 0.883231i \(-0.344637\pi\)
\(152\) 0 0
\(153\) 18.0000i 0.117647i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 278.000i 1.77070i 0.464925 + 0.885350i \(0.346081\pi\)
−0.464925 + 0.885350i \(0.653919\pi\)
\(158\) 0 0
\(159\) 31.1769i 0.196081i
\(160\) 0 0
\(161\) −156.000 −0.968944
\(162\) 0 0
\(163\) −19.0526 −0.116887 −0.0584434 0.998291i \(-0.518614\pi\)
−0.0584434 + 0.998291i \(0.518614\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −263.272 −1.57648 −0.788239 0.615370i \(-0.789007\pi\)
−0.788239 + 0.615370i \(0.789007\pi\)
\(168\) 0 0
\(169\) −87.0000 −0.514793
\(170\) 0 0
\(171\) − 135.100i − 0.790058i
\(172\) 0 0
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 96.0000i − 0.542373i
\(178\) 0 0
\(179\) − 12.1244i − 0.0677338i −0.999426 0.0338669i \(-0.989218\pi\)
0.999426 0.0338669i \(-0.0107822\pi\)
\(180\) 0 0
\(181\) 166.000 0.917127 0.458564 0.888662i \(-0.348364\pi\)
0.458564 + 0.888662i \(0.348364\pi\)
\(182\) 0 0
\(183\) −45.0333 −0.246084
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 36.3731 0.194508
\(188\) 0 0
\(189\) 90.0000 0.476190
\(190\) 0 0
\(191\) 301.377i 1.57789i 0.614464 + 0.788945i \(0.289372\pi\)
−0.614464 + 0.788945i \(0.710628\pi\)
\(192\) 0 0
\(193\) 139.000i 0.720207i 0.932912 + 0.360104i \(0.117259\pi\)
−0.932912 + 0.360104i \(0.882741\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 126.000i − 0.639594i −0.947486 0.319797i \(-0.896385\pi\)
0.947486 0.319797i \(-0.103615\pi\)
\(198\) 0 0
\(199\) 76.2102i 0.382966i 0.981496 + 0.191483i \(0.0613297\pi\)
−0.981496 + 0.191483i \(0.938670\pi\)
\(200\) 0 0
\(201\) −57.0000 −0.283582
\(202\) 0 0
\(203\) −41.5692 −0.204774
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 270.200 1.30531
\(208\) 0 0
\(209\) −273.000 −1.30622
\(210\) 0 0
\(211\) 188.794i 0.894756i 0.894345 + 0.447378i \(0.147642\pi\)
−0.894345 + 0.447378i \(0.852358\pi\)
\(212\) 0 0
\(213\) − 48.0000i − 0.225352i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 108.000i 0.497696i
\(218\) 0 0
\(219\) − 29.4449i − 0.134451i
\(220\) 0 0
\(221\) −48.0000 −0.217195
\(222\) 0 0
\(223\) −145.492 −0.652432 −0.326216 0.945295i \(-0.605774\pi\)
−0.326216 + 0.945295i \(0.605774\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −173.205 −0.763018 −0.381509 0.924365i \(-0.624595\pi\)
−0.381509 + 0.924365i \(0.624595\pi\)
\(228\) 0 0
\(229\) 140.000 0.611354 0.305677 0.952135i \(-0.401117\pi\)
0.305677 + 0.952135i \(0.401117\pi\)
\(230\) 0 0
\(231\) − 72.7461i − 0.314918i
\(232\) 0 0
\(233\) − 366.000i − 1.57082i −0.618979 0.785408i \(-0.712453\pi\)
0.618979 0.785408i \(-0.287547\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 150.000i 0.632911i
\(238\) 0 0
\(239\) 256.344i 1.07257i 0.844038 + 0.536284i \(0.180172\pi\)
−0.844038 + 0.536284i \(0.819828\pi\)
\(240\) 0 0
\(241\) 73.0000 0.302905 0.151452 0.988465i \(-0.451605\pi\)
0.151452 + 0.988465i \(0.451605\pi\)
\(242\) 0 0
\(243\) −249.415 −1.02640
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 360.267 1.45857
\(248\) 0 0
\(249\) −171.000 −0.686747
\(250\) 0 0
\(251\) 168.009i 0.669358i 0.942332 + 0.334679i \(0.108628\pi\)
−0.942332 + 0.334679i \(0.891372\pi\)
\(252\) 0 0
\(253\) − 546.000i − 2.15810i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 282.000i − 1.09728i −0.836060 0.548638i \(-0.815146\pi\)
0.836060 0.548638i \(-0.184854\pi\)
\(258\) 0 0
\(259\) 173.205i 0.668745i
\(260\) 0 0
\(261\) 72.0000 0.275862
\(262\) 0 0
\(263\) −169.741 −0.645403 −0.322701 0.946501i \(-0.604591\pi\)
−0.322701 + 0.946501i \(0.604591\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 171.473 0.642221
\(268\) 0 0
\(269\) −288.000 −1.07063 −0.535316 0.844652i \(-0.679807\pi\)
−0.535316 + 0.844652i \(0.679807\pi\)
\(270\) 0 0
\(271\) 169.741i 0.626350i 0.949695 + 0.313175i \(0.101393\pi\)
−0.949695 + 0.313175i \(0.898607\pi\)
\(272\) 0 0
\(273\) 96.0000i 0.351648i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 76.0000i 0.274368i 0.990546 + 0.137184i \(0.0438052\pi\)
−0.990546 + 0.137184i \(0.956195\pi\)
\(278\) 0 0
\(279\) − 187.061i − 0.670471i
\(280\) 0 0
\(281\) −354.000 −1.25979 −0.629893 0.776682i \(-0.716901\pi\)
−0.629893 + 0.776682i \(0.716901\pi\)
\(282\) 0 0
\(283\) −316.965 −1.12002 −0.560009 0.828486i \(-0.689202\pi\)
−0.560009 + 0.828486i \(0.689202\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −218.238 −0.760413
\(288\) 0 0
\(289\) 280.000 0.968858
\(290\) 0 0
\(291\) 232.095i 0.797577i
\(292\) 0 0
\(293\) 426.000i 1.45392i 0.686677 + 0.726962i \(0.259069\pi\)
−0.686677 + 0.726962i \(0.740931\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 315.000i 1.06061i
\(298\) 0 0
\(299\) 720.533i 2.40981i
\(300\) 0 0
\(301\) −216.000 −0.717608
\(302\) 0 0
\(303\) −259.808 −0.857451
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 223.435 0.727800 0.363900 0.931438i \(-0.381445\pi\)
0.363900 + 0.931438i \(0.381445\pi\)
\(308\) 0 0
\(309\) −192.000 −0.621359
\(310\) 0 0
\(311\) 433.013i 1.39232i 0.717885 + 0.696162i \(0.245110\pi\)
−0.717885 + 0.696162i \(0.754890\pi\)
\(312\) 0 0
\(313\) − 218.000i − 0.696486i −0.937404 0.348243i \(-0.886778\pi\)
0.937404 0.348243i \(-0.113222\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 12.0000i 0.0378549i 0.999821 + 0.0189274i \(0.00602515\pi\)
−0.999821 + 0.0189274i \(0.993975\pi\)
\(318\) 0 0
\(319\) − 145.492i − 0.456089i
\(320\) 0 0
\(321\) 285.000 0.887850
\(322\) 0 0
\(323\) 67.5500 0.209133
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −128.172 −0.391963
\(328\) 0 0
\(329\) −48.0000 −0.145897
\(330\) 0 0
\(331\) − 465.922i − 1.40762i −0.710389 0.703809i \(-0.751481\pi\)
0.710389 0.703809i \(-0.248519\pi\)
\(332\) 0 0
\(333\) − 300.000i − 0.900901i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 67.0000i 0.198813i 0.995047 + 0.0994065i \(0.0316944\pi\)
−0.995047 + 0.0994065i \(0.968306\pi\)
\(338\) 0 0
\(339\) − 348.142i − 1.02697i
\(340\) 0 0
\(341\) −378.000 −1.10850
\(342\) 0 0
\(343\) −297.913 −0.868550
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −192.258 −0.554057 −0.277028 0.960862i \(-0.589350\pi\)
−0.277028 + 0.960862i \(0.589350\pi\)
\(348\) 0 0
\(349\) −254.000 −0.727794 −0.363897 0.931439i \(-0.618554\pi\)
−0.363897 + 0.931439i \(0.618554\pi\)
\(350\) 0 0
\(351\) − 415.692i − 1.18431i
\(352\) 0 0
\(353\) 114.000i 0.322946i 0.986877 + 0.161473i \(0.0516245\pi\)
−0.986877 + 0.161473i \(0.948376\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 18.0000i 0.0504202i
\(358\) 0 0
\(359\) 370.659i 1.03248i 0.856445 + 0.516238i \(0.172668\pi\)
−0.856445 + 0.516238i \(0.827332\pi\)
\(360\) 0 0
\(361\) −146.000 −0.404432
\(362\) 0 0
\(363\) 45.0333 0.124059
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 117.779 0.320925 0.160462 0.987042i \(-0.448701\pi\)
0.160462 + 0.987042i \(0.448701\pi\)
\(368\) 0 0
\(369\) 378.000 1.02439
\(370\) 0 0
\(371\) − 62.3538i − 0.168070i
\(372\) 0 0
\(373\) 274.000i 0.734584i 0.930106 + 0.367292i \(0.119715\pi\)
−0.930106 + 0.367292i \(0.880285\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 192.000i 0.509284i
\(378\) 0 0
\(379\) − 299.645i − 0.790619i −0.918548 0.395310i \(-0.870637\pi\)
0.918548 0.395310i \(-0.129363\pi\)
\(380\) 0 0
\(381\) −18.0000 −0.0472441
\(382\) 0 0
\(383\) 460.726 1.20294 0.601469 0.798896i \(-0.294582\pi\)
0.601469 + 0.798896i \(0.294582\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 374.123 0.966726
\(388\) 0 0
\(389\) 510.000 1.31105 0.655527 0.755172i \(-0.272447\pi\)
0.655527 + 0.755172i \(0.272447\pi\)
\(390\) 0 0
\(391\) 135.100i 0.345524i
\(392\) 0 0
\(393\) − 12.0000i − 0.0305344i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 532.000i − 1.34005i −0.742338 0.670025i \(-0.766283\pi\)
0.742338 0.670025i \(-0.233717\pi\)
\(398\) 0 0
\(399\) − 135.100i − 0.338596i
\(400\) 0 0
\(401\) 477.000 1.18953 0.594763 0.803901i \(-0.297246\pi\)
0.594763 + 0.803901i \(0.297246\pi\)
\(402\) 0 0
\(403\) 498.831 1.23779
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −606.218 −1.48948
\(408\) 0 0
\(409\) −25.0000 −0.0611247 −0.0305623 0.999533i \(-0.509730\pi\)
−0.0305623 + 0.999533i \(0.509730\pi\)
\(410\) 0 0
\(411\) 358.535i 0.872347i
\(412\) 0 0
\(413\) 192.000i 0.464891i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 309.000i 0.741007i
\(418\) 0 0
\(419\) 57.1577i 0.136415i 0.997671 + 0.0682073i \(0.0217279\pi\)
−0.997671 + 0.0682073i \(0.978272\pi\)
\(420\) 0 0
\(421\) 388.000 0.921615 0.460808 0.887500i \(-0.347560\pi\)
0.460808 + 0.887500i \(0.347560\pi\)
\(422\) 0 0
\(423\) 83.1384 0.196545
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 90.0666 0.210929
\(428\) 0 0
\(429\) −336.000 −0.783217
\(430\) 0 0
\(431\) − 245.951i − 0.570652i −0.958430 0.285326i \(-0.907898\pi\)
0.958430 0.285326i \(-0.0921019\pi\)
\(432\) 0 0
\(433\) 307.000i 0.709007i 0.935055 + 0.354503i \(0.115350\pi\)
−0.935055 + 0.354503i \(0.884650\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 1014.00i − 2.32037i
\(438\) 0 0
\(439\) − 561.184i − 1.27832i −0.769072 0.639162i \(-0.779281\pi\)
0.769072 0.639162i \(-0.220719\pi\)
\(440\) 0 0
\(441\) 222.000 0.503401
\(442\) 0 0
\(443\) 479.778 1.08302 0.541510 0.840694i \(-0.317853\pi\)
0.541510 + 0.840694i \(0.317853\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −187.061 −0.418482
\(448\) 0 0
\(449\) 39.0000 0.0868597 0.0434298 0.999056i \(-0.486172\pi\)
0.0434298 + 0.999056i \(0.486172\pi\)
\(450\) 0 0
\(451\) − 763.834i − 1.69365i
\(452\) 0 0
\(453\) 462.000i 1.01987i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 349.000i 0.763676i 0.924229 + 0.381838i \(0.124709\pi\)
−0.924229 + 0.381838i \(0.875291\pi\)
\(458\) 0 0
\(459\) − 77.9423i − 0.169809i
\(460\) 0 0
\(461\) −372.000 −0.806941 −0.403471 0.914993i \(-0.632196\pi\)
−0.403471 + 0.914993i \(0.632196\pi\)
\(462\) 0 0
\(463\) 422.620 0.912787 0.456394 0.889778i \(-0.349141\pi\)
0.456394 + 0.889778i \(0.349141\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −713.605 −1.52806 −0.764031 0.645180i \(-0.776783\pi\)
−0.764031 + 0.645180i \(0.776783\pi\)
\(468\) 0 0
\(469\) 114.000 0.243070
\(470\) 0 0
\(471\) − 481.510i − 1.02231i
\(472\) 0 0
\(473\) − 756.000i − 1.59831i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 108.000i 0.226415i
\(478\) 0 0
\(479\) − 758.638i − 1.58380i −0.610653 0.791898i \(-0.709093\pi\)
0.610653 0.791898i \(-0.290907\pi\)
\(480\) 0 0
\(481\) 800.000 1.66320
\(482\) 0 0
\(483\) 270.200 0.559420
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 523.079 1.07408 0.537042 0.843555i \(-0.319541\pi\)
0.537042 + 0.843555i \(0.319541\pi\)
\(488\) 0 0
\(489\) 33.0000 0.0674847
\(490\) 0 0
\(491\) 478.046i 0.973617i 0.873509 + 0.486809i \(0.161839\pi\)
−0.873509 + 0.486809i \(0.838161\pi\)
\(492\) 0 0
\(493\) 36.0000i 0.0730223i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 96.0000i 0.193159i
\(498\) 0 0
\(499\) 62.3538i 0.124958i 0.998046 + 0.0624788i \(0.0199006\pi\)
−0.998046 + 0.0624788i \(0.980099\pi\)
\(500\) 0 0
\(501\) 456.000 0.910180
\(502\) 0 0
\(503\) 561.184 1.11567 0.557837 0.829950i \(-0.311631\pi\)
0.557837 + 0.829950i \(0.311631\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 150.688 0.297216
\(508\) 0 0
\(509\) −390.000 −0.766208 −0.383104 0.923705i \(-0.625145\pi\)
−0.383104 + 0.923705i \(0.625145\pi\)
\(510\) 0 0
\(511\) 58.8897i 0.115244i
\(512\) 0 0
\(513\) 585.000i 1.14035i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 168.000i − 0.324952i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −183.000 −0.351248 −0.175624 0.984457i \(-0.556194\pi\)
−0.175624 + 0.984457i \(0.556194\pi\)
\(522\) 0 0
\(523\) 185.329 0.354358 0.177179 0.984179i \(-0.443303\pi\)
0.177179 + 0.984179i \(0.443303\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 93.5307 0.177478
\(528\) 0 0
\(529\) 1499.00 2.83365
\(530\) 0 0
\(531\) − 332.554i − 0.626278i
\(532\) 0 0
\(533\) 1008.00i 1.89118i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 21.0000i 0.0391061i
\(538\) 0 0
\(539\) − 448.601i − 0.832284i
\(540\) 0 0
\(541\) −968.000 −1.78928 −0.894640 0.446789i \(-0.852568\pi\)
−0.894640 + 0.446789i \(0.852568\pi\)
\(542\) 0 0
\(543\) −287.520 −0.529504
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −510.955 −0.934104 −0.467052 0.884230i \(-0.654684\pi\)
−0.467052 + 0.884230i \(0.654684\pi\)
\(548\) 0 0
\(549\) −156.000 −0.284153
\(550\) 0 0
\(551\) − 270.200i − 0.490381i
\(552\) 0 0
\(553\) − 300.000i − 0.542495i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 552.000i − 0.991023i −0.868601 0.495512i \(-0.834981\pi\)
0.868601 0.495512i \(-0.165019\pi\)
\(558\) 0 0
\(559\) 997.661i 1.78472i
\(560\) 0 0
\(561\) −63.0000 −0.112299
\(562\) 0 0
\(563\) −401.836 −0.713740 −0.356870 0.934154i \(-0.616156\pi\)
−0.356870 + 0.934154i \(0.616156\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 31.1769 0.0549857
\(568\) 0 0
\(569\) −117.000 −0.205624 −0.102812 0.994701i \(-0.532784\pi\)
−0.102812 + 0.994701i \(0.532784\pi\)
\(570\) 0 0
\(571\) − 297.913i − 0.521739i −0.965374 0.260869i \(-0.915991\pi\)
0.965374 0.260869i \(-0.0840092\pi\)
\(572\) 0 0
\(573\) − 522.000i − 0.910995i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 491.000i 0.850953i 0.904969 + 0.425477i \(0.139894\pi\)
−0.904969 + 0.425477i \(0.860106\pi\)
\(578\) 0 0
\(579\) − 240.755i − 0.415812i
\(580\) 0 0
\(581\) 342.000 0.588640
\(582\) 0 0
\(583\) 218.238 0.374337
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −244.219 −0.416046 −0.208023 0.978124i \(-0.566703\pi\)
−0.208023 + 0.978124i \(0.566703\pi\)
\(588\) 0 0
\(589\) −702.000 −1.19185
\(590\) 0 0
\(591\) 218.238i 0.369270i
\(592\) 0 0
\(593\) 57.0000i 0.0961214i 0.998844 + 0.0480607i \(0.0153041\pi\)
−0.998844 + 0.0480607i \(0.984696\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 132.000i − 0.221106i
\(598\) 0 0
\(599\) 633.931i 1.05831i 0.848524 + 0.529157i \(0.177492\pi\)
−0.848524 + 0.529157i \(0.822508\pi\)
\(600\) 0 0
\(601\) 263.000 0.437604 0.218802 0.975769i \(-0.429785\pi\)
0.218802 + 0.975769i \(0.429785\pi\)
\(602\) 0 0
\(603\) −197.454 −0.327452
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −484.974 −0.798969 −0.399485 0.916740i \(-0.630811\pi\)
−0.399485 + 0.916740i \(0.630811\pi\)
\(608\) 0 0
\(609\) 72.0000 0.118227
\(610\) 0 0
\(611\) 221.703i 0.362852i
\(612\) 0 0
\(613\) − 194.000i − 0.316476i −0.987401 0.158238i \(-0.949419\pi\)
0.987401 0.158238i \(-0.0505814\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 726.000i 1.17666i 0.808620 + 0.588331i \(0.200215\pi\)
−0.808620 + 0.588331i \(0.799785\pi\)
\(618\) 0 0
\(619\) − 408.764i − 0.660362i −0.943918 0.330181i \(-0.892890\pi\)
0.943918 0.330181i \(-0.107110\pi\)
\(620\) 0 0
\(621\) −1170.00 −1.88406
\(622\) 0 0
\(623\) −342.946 −0.550475
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 472.850 0.754147
\(628\) 0 0
\(629\) 150.000 0.238474
\(630\) 0 0
\(631\) 502.295i 0.796030i 0.917379 + 0.398015i \(0.130301\pi\)
−0.917379 + 0.398015i \(0.869699\pi\)
\(632\) 0 0
\(633\) − 327.000i − 0.516588i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 592.000i 0.929356i
\(638\) 0 0
\(639\) − 166.277i − 0.260214i
\(640\) 0 0
\(641\) −174.000 −0.271451 −0.135725 0.990746i \(-0.543337\pi\)
−0.135725 + 0.990746i \(0.543337\pi\)
\(642\) 0 0
\(643\) −976.877 −1.51925 −0.759624 0.650362i \(-0.774617\pi\)
−0.759624 + 0.650362i \(0.774617\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 921.451 1.42419 0.712095 0.702083i \(-0.247746\pi\)
0.712095 + 0.702083i \(0.247746\pi\)
\(648\) 0 0
\(649\) −672.000 −1.03544
\(650\) 0 0
\(651\) − 187.061i − 0.287345i
\(652\) 0 0
\(653\) − 222.000i − 0.339969i −0.985447 0.169985i \(-0.945628\pi\)
0.985447 0.169985i \(-0.0543718\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 102.000i − 0.155251i
\(658\) 0 0
\(659\) 857.365i 1.30101i 0.759502 + 0.650505i \(0.225443\pi\)
−0.759502 + 0.650505i \(0.774557\pi\)
\(660\) 0 0
\(661\) −268.000 −0.405446 −0.202723 0.979236i \(-0.564979\pi\)
−0.202723 + 0.979236i \(0.564979\pi\)
\(662\) 0 0
\(663\) 83.1384 0.125397
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 540.400 0.810195
\(668\) 0 0
\(669\) 252.000 0.376682
\(670\) 0 0
\(671\) 315.233i 0.469796i
\(672\) 0 0
\(673\) 550.000i 0.817236i 0.912705 + 0.408618i \(0.133989\pi\)
−0.912705 + 0.408618i \(0.866011\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 600.000i − 0.886263i −0.896457 0.443131i \(-0.853867\pi\)
0.896457 0.443131i \(-0.146133\pi\)
\(678\) 0 0
\(679\) − 464.190i − 0.683637i
\(680\) 0 0
\(681\) 300.000 0.440529
\(682\) 0 0
\(683\) −729.193 −1.06763 −0.533817 0.845600i \(-0.679243\pi\)
−0.533817 + 0.845600i \(0.679243\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −242.487 −0.352965
\(688\) 0 0
\(689\) −288.000 −0.417997
\(690\) 0 0
\(691\) 1231.49i 1.78218i 0.453824 + 0.891091i \(0.350059\pi\)
−0.453824 + 0.891091i \(0.649941\pi\)
\(692\) 0 0
\(693\) − 252.000i − 0.363636i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 189.000i 0.271162i
\(698\) 0 0
\(699\) 633.931i 0.906911i
\(700\) 0 0
\(701\) 1008.00 1.43795 0.718973 0.695038i \(-0.244613\pi\)
0.718973 + 0.695038i \(0.244613\pi\)
\(702\) 0 0
\(703\) −1125.83 −1.60147
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 519.615 0.734958
\(708\) 0 0
\(709\) −388.000 −0.547250 −0.273625 0.961837i \(-0.588223\pi\)
−0.273625 + 0.961837i \(0.588223\pi\)
\(710\) 0 0
\(711\) 519.615i 0.730823i
\(712\) 0 0
\(713\) − 1404.00i − 1.96914i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 444.000i − 0.619247i
\(718\) 0 0
\(719\) 973.413i 1.35384i 0.736056 + 0.676921i \(0.236686\pi\)
−0.736056 + 0.676921i \(0.763314\pi\)
\(720\) 0 0
\(721\) 384.000 0.532594
\(722\) 0 0
\(723\) −126.440 −0.174882
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −187.061 −0.257306 −0.128653 0.991690i \(-0.541065\pi\)
−0.128653 + 0.991690i \(0.541065\pi\)
\(728\) 0 0
\(729\) 351.000 0.481481
\(730\) 0 0
\(731\) 187.061i 0.255898i
\(732\) 0 0
\(733\) − 976.000i − 1.33151i −0.746168 0.665757i \(-0.768109\pi\)
0.746168 0.665757i \(-0.231891\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 399.000i 0.541384i
\(738\) 0 0
\(739\) 270.200i 0.365629i 0.983147 + 0.182815i \(0.0585208\pi\)
−0.983147 + 0.182815i \(0.941479\pi\)
\(740\) 0 0
\(741\) −624.000 −0.842105
\(742\) 0 0
\(743\) 38.1051 0.0512855 0.0256427 0.999671i \(-0.491837\pi\)
0.0256427 + 0.999671i \(0.491837\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −592.361 −0.792987
\(748\) 0 0
\(749\) −570.000 −0.761015
\(750\) 0 0
\(751\) − 921.451i − 1.22697i −0.789708 0.613483i \(-0.789768\pi\)
0.789708 0.613483i \(-0.210232\pi\)
\(752\) 0 0
\(753\) − 291.000i − 0.386454i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 392.000i − 0.517834i −0.965900 0.258917i \(-0.916634\pi\)
0.965900 0.258917i \(-0.0833655\pi\)
\(758\) 0 0
\(759\) 945.700i 1.24598i
\(760\) 0 0
\(761\) −1335.00 −1.75427 −0.877135 0.480243i \(-0.840548\pi\)
−0.877135 + 0.480243i \(0.840548\pi\)
\(762\) 0 0
\(763\) 256.344 0.335968
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 886.810 1.15621
\(768\) 0 0
\(769\) −509.000 −0.661899 −0.330949 0.943649i \(-0.607369\pi\)
−0.330949 + 0.943649i \(0.607369\pi\)
\(770\) 0 0
\(771\) 488.438i 0.633513i
\(772\) 0 0
\(773\) 684.000i 0.884864i 0.896802 + 0.442432i \(0.145884\pi\)
−0.896802 + 0.442432i \(0.854116\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 300.000i − 0.386100i
\(778\) 0 0
\(779\) − 1418.55i − 1.82099i
\(780\) 0 0
\(781\) −336.000 −0.430218
\(782\) 0 0
\(783\) −311.769 −0.398173
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 6.92820 0.00880331 0.00440165 0.999990i \(-0.498599\pi\)
0.00440165 + 0.999990i \(0.498599\pi\)
\(788\) 0 0
\(789\) 294.000 0.372624
\(790\) 0 0
\(791\) 696.284i 0.880258i
\(792\) 0 0
\(793\) − 416.000i − 0.524590i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1374.00i 1.72396i 0.506938 + 0.861982i \(0.330777\pi\)
−0.506938 + 0.861982i \(0.669223\pi\)
\(798\) 0 0
\(799\) 41.5692i 0.0520266i
\(800\) 0 0
\(801\) 594.000 0.741573
\(802\) 0 0
\(803\) −206.114 −0.256680
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 498.831 0.618130
\(808\) 0 0
\(809\) −546.000 −0.674907 −0.337454 0.941342i \(-0.609566\pi\)
−0.337454 + 0.941342i \(0.609566\pi\)
\(810\) 0 0
\(811\) 1309.43i 1.61459i 0.590150 + 0.807294i \(0.299069\pi\)
−0.590150 + 0.807294i \(0.700931\pi\)
\(812\) 0 0
\(813\) − 294.000i − 0.361624i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 1404.00i − 1.71848i
\(818\) 0 0
\(819\) 332.554i 0.406049i
\(820\) 0 0
\(821\) 1038.00 1.26431 0.632156 0.774841i \(-0.282170\pi\)
0.632156 + 0.774841i \(0.282170\pi\)
\(822\) 0 0
\(823\) −381.051 −0.463003 −0.231501 0.972835i \(-0.574364\pi\)
−0.231501 + 0.972835i \(0.574364\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 102.191 0.123568 0.0617842 0.998090i \(-0.480321\pi\)
0.0617842 + 0.998090i \(0.480321\pi\)
\(828\) 0 0
\(829\) 104.000 0.125452 0.0627262 0.998031i \(-0.480021\pi\)
0.0627262 + 0.998031i \(0.480021\pi\)
\(830\) 0 0
\(831\) − 131.636i − 0.158407i
\(832\) 0 0
\(833\) 111.000i 0.133253i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 810.000i 0.967742i
\(838\) 0 0
\(839\) − 1053.09i − 1.25517i −0.778548 0.627585i \(-0.784044\pi\)
0.778548 0.627585i \(-0.215956\pi\)
\(840\) 0 0
\(841\) −697.000 −0.828775
\(842\) 0 0
\(843\) 613.146 0.727338
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −90.0666 −0.106336
\(848\) 0 0
\(849\) 549.000 0.646643
\(850\) 0 0
\(851\) − 2251.67i − 2.64591i
\(852\) 0 0
\(853\) 1234.00i 1.44666i 0.690503 + 0.723329i \(0.257389\pi\)
−0.690503 + 0.723329i \(0.742611\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1185.00i 1.38273i 0.722505 + 0.691365i \(0.242990\pi\)
−0.722505 + 0.691365i \(0.757010\pi\)
\(858\) 0 0
\(859\) 1692.21i 1.96998i 0.172609 + 0.984990i \(0.444780\pi\)
−0.172609 + 0.984990i \(0.555220\pi\)
\(860\) 0 0
\(861\) 378.000 0.439024
\(862\) 0 0
\(863\) −893.738 −1.03562 −0.517809 0.855496i \(-0.673252\pi\)
−0.517809 + 0.855496i \(0.673252\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −484.974 −0.559371
\(868\) 0 0
\(869\) 1050.00 1.20829
\(870\) 0 0
\(871\) − 526.543i − 0.604527i
\(872\) 0 0
\(873\) 804.000i 0.920962i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 20.0000i 0.0228050i 0.999935 + 0.0114025i \(0.00362961\pi\)
−0.999935 + 0.0114025i \(0.996370\pi\)
\(878\) 0 0
\(879\) − 737.854i − 0.839424i
\(880\) 0 0
\(881\) −330.000 −0.374574 −0.187287 0.982305i \(-0.559969\pi\)
−0.187287 + 0.982305i \(0.559969\pi\)
\(882\) 0 0
\(883\) 95.2628 0.107885 0.0539427 0.998544i \(-0.482821\pi\)
0.0539427 + 0.998544i \(0.482821\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1212.44 −1.36689 −0.683447 0.730000i \(-0.739520\pi\)
−0.683447 + 0.730000i \(0.739520\pi\)
\(888\) 0 0
\(889\) 36.0000 0.0404949
\(890\) 0 0
\(891\) 109.119i 0.122468i
\(892\) 0 0
\(893\) − 312.000i − 0.349384i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 1248.00i − 1.39130i
\(898\) 0 0
\(899\) − 374.123i − 0.416155i
\(900\) 0 0
\(901\) −54.0000 −0.0599334
\(902\) 0 0
\(903\) 374.123 0.414311
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 297.913 0.328459 0.164230 0.986422i \(-0.447486\pi\)
0.164230 + 0.986422i \(0.447486\pi\)
\(908\) 0 0
\(909\) −900.000 −0.990099
\(910\) 0 0
\(911\) − 48.4974i − 0.0532354i −0.999646 0.0266177i \(-0.991526\pi\)
0.999646 0.0266177i \(-0.00847367\pi\)
\(912\) 0 0
\(913\) 1197.00i 1.31106i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 24.0000i 0.0261723i
\(918\) 0 0
\(919\) − 758.638i − 0.825504i −0.910843 0.412752i \(-0.864568\pi\)
0.910843 0.412752i \(-0.135432\pi\)
\(920\) 0 0
\(921\) −387.000 −0.420195
\(922\) 0 0
\(923\) 443.405 0.480395
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −665.108 −0.717484
\(928\) 0 0
\(929\) 258.000 0.277718 0.138859 0.990312i \(-0.455657\pi\)
0.138859 + 0.990312i \(0.455657\pi\)
\(930\) 0 0
\(931\) − 833.116i − 0.894862i
\(932\) 0 0
\(933\) − 750.000i − 0.803859i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 481.000i − 0.513340i −0.966499 0.256670i \(-0.917375\pi\)
0.966499 0.256670i \(-0.0826254\pi\)
\(938\) 0 0
\(939\) 377.587i 0.402116i
\(940\) 0 0
\(941\) −24.0000 −0.0255048 −0.0127524 0.999919i \(-0.504059\pi\)
−0.0127524 + 0.999919i \(0.504059\pi\)
\(942\) 0 0
\(943\) 2837.10 3.00859
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 665.108 0.702331 0.351166 0.936313i \(-0.385785\pi\)
0.351166 + 0.936313i \(0.385785\pi\)
\(948\) 0 0
\(949\) 272.000 0.286617
\(950\) 0 0
\(951\) − 20.7846i − 0.0218555i
\(952\) 0 0
\(953\) 291.000i 0.305352i 0.988276 + 0.152676i \(0.0487890\pi\)
−0.988276 + 0.152676i \(0.951211\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 252.000i 0.263323i
\(958\) 0 0
\(959\) − 717.069i − 0.747726i
\(960\) 0 0
\(961\) −11.0000 −0.0114464
\(962\) 0 0
\(963\) 987.269 1.02520
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −1094.66 −1.13201 −0.566006 0.824401i \(-0.691512\pi\)
−0.566006 + 0.824401i \(0.691512\pi\)
\(968\) 0 0
\(969\) −117.000 −0.120743
\(970\) 0 0
\(971\) − 611.414i − 0.629674i −0.949146 0.314837i \(-0.898050\pi\)
0.949146 0.314837i \(-0.101950\pi\)
\(972\) 0 0
\(973\) − 618.000i − 0.635149i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 231.000i − 0.236438i −0.992988 0.118219i \(-0.962282\pi\)
0.992988 0.118219i \(-0.0377185\pi\)
\(978\) 0 0
\(979\) − 1200.31i − 1.22606i
\(980\) 0 0
\(981\) −444.000 −0.452599
\(982\) 0 0
\(983\) −162.813 −0.165628 −0.0828142 0.996565i \(-0.526391\pi\)
−0.0828142 + 0.996565i \(0.526391\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 83.1384 0.0842335
\(988\) 0 0
\(989\) 2808.00 2.83923
\(990\) 0 0
\(991\) 723.997i 0.730572i 0.930895 + 0.365286i \(0.119029\pi\)
−0.930895 + 0.365286i \(0.880971\pi\)
\(992\) 0 0
\(993\) 807.000i 0.812689i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1100.00i 1.10331i 0.834072 + 0.551655i \(0.186003\pi\)
−0.834072 + 0.551655i \(0.813997\pi\)
\(998\) 0 0
\(999\) 1299.04i 1.30034i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.3.h.b.399.2 4
3.2 odd 2 3600.3.j.f.1999.3 4
4.3 odd 2 inner 400.3.h.b.399.3 4
5.2 odd 4 400.3.b.e.351.2 yes 2
5.3 odd 4 400.3.b.f.351.1 yes 2
5.4 even 2 inner 400.3.h.b.399.4 4
8.3 odd 2 1600.3.h.h.1599.2 4
8.5 even 2 1600.3.h.h.1599.3 4
12.11 even 2 3600.3.j.f.1999.2 4
15.2 even 4 3600.3.e.j.3151.2 2
15.8 even 4 3600.3.e.u.3151.1 2
15.14 odd 2 3600.3.j.f.1999.1 4
20.3 even 4 400.3.b.f.351.2 yes 2
20.7 even 4 400.3.b.e.351.1 2
20.19 odd 2 inner 400.3.h.b.399.1 4
40.3 even 4 1600.3.b.i.1151.1 2
40.13 odd 4 1600.3.b.i.1151.2 2
40.19 odd 2 1600.3.h.h.1599.4 4
40.27 even 4 1600.3.b.j.1151.2 2
40.29 even 2 1600.3.h.h.1599.1 4
40.37 odd 4 1600.3.b.j.1151.1 2
60.23 odd 4 3600.3.e.u.3151.2 2
60.47 odd 4 3600.3.e.j.3151.1 2
60.59 even 2 3600.3.j.f.1999.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
400.3.b.e.351.1 2 20.7 even 4
400.3.b.e.351.2 yes 2 5.2 odd 4
400.3.b.f.351.1 yes 2 5.3 odd 4
400.3.b.f.351.2 yes 2 20.3 even 4
400.3.h.b.399.1 4 20.19 odd 2 inner
400.3.h.b.399.2 4 1.1 even 1 trivial
400.3.h.b.399.3 4 4.3 odd 2 inner
400.3.h.b.399.4 4 5.4 even 2 inner
1600.3.b.i.1151.1 2 40.3 even 4
1600.3.b.i.1151.2 2 40.13 odd 4
1600.3.b.j.1151.1 2 40.37 odd 4
1600.3.b.j.1151.2 2 40.27 even 4
1600.3.h.h.1599.1 4 40.29 even 2
1600.3.h.h.1599.2 4 8.3 odd 2
1600.3.h.h.1599.3 4 8.5 even 2
1600.3.h.h.1599.4 4 40.19 odd 2
3600.3.e.j.3151.1 2 60.47 odd 4
3600.3.e.j.3151.2 2 15.2 even 4
3600.3.e.u.3151.1 2 15.8 even 4
3600.3.e.u.3151.2 2 60.23 odd 4
3600.3.j.f.1999.1 4 15.14 odd 2
3600.3.j.f.1999.2 4 12.11 even 2
3600.3.j.f.1999.3 4 3.2 odd 2
3600.3.j.f.1999.4 4 60.59 even 2