Properties

Label 1600.3.b.j.1151.1
Level $1600$
Weight $3$
Character 1600.1151
Analytic conductor $43.597$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1600,3,Mod(1151,1600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1600.1151");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1600 = 2^{6} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1600.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(43.5968422976\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 400)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1151.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1600.1151
Dual form 1600.3.b.j.1151.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205i q^{3} +3.46410i q^{7} +6.00000 q^{9} -12.1244i q^{11} +16.0000 q^{13} +3.00000 q^{17} +22.5167i q^{19} +6.00000 q^{21} +45.0333i q^{23} -25.9808i q^{27} -12.0000 q^{29} +31.1769i q^{31} -21.0000 q^{33} +50.0000 q^{37} -27.7128i q^{39} -63.0000 q^{41} -62.3538i q^{43} -13.8564i q^{47} +37.0000 q^{49} -5.19615i q^{51} +18.0000 q^{53} +39.0000 q^{57} +55.4256i q^{59} -26.0000 q^{61} +20.7846i q^{63} -32.9090i q^{67} +78.0000 q^{69} +27.7128i q^{71} +17.0000 q^{73} +42.0000 q^{77} +86.6025i q^{79} +9.00000 q^{81} +98.7269i q^{83} +20.7846i q^{87} +99.0000 q^{89} +55.4256i q^{91} +54.0000 q^{93} +134.000 q^{97} -72.7461i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 12 q^{9} + 32 q^{13} + 6 q^{17} + 12 q^{21} - 24 q^{29} - 42 q^{33} + 100 q^{37} - 126 q^{41} + 74 q^{49} + 36 q^{53} + 78 q^{57} - 52 q^{61} + 156 q^{69} + 34 q^{73} + 84 q^{77} + 18 q^{81} + 198 q^{89}+ \cdots + 268 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1600\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1151\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.73205i − 0.577350i −0.957427 0.288675i \(-0.906785\pi\)
0.957427 0.288675i \(-0.0932147\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 3.46410i 0.494872i 0.968904 + 0.247436i \(0.0795879\pi\)
−0.968904 + 0.247436i \(0.920412\pi\)
\(8\) 0 0
\(9\) 6.00000 0.666667
\(10\) 0 0
\(11\) − 12.1244i − 1.10221i −0.834435 0.551107i \(-0.814206\pi\)
0.834435 0.551107i \(-0.185794\pi\)
\(12\) 0 0
\(13\) 16.0000 1.23077 0.615385 0.788227i \(-0.289001\pi\)
0.615385 + 0.788227i \(0.289001\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.00000 0.176471 0.0882353 0.996100i \(-0.471877\pi\)
0.0882353 + 0.996100i \(0.471877\pi\)
\(18\) 0 0
\(19\) 22.5167i 1.18509i 0.805538 + 0.592544i \(0.201876\pi\)
−0.805538 + 0.592544i \(0.798124\pi\)
\(20\) 0 0
\(21\) 6.00000 0.285714
\(22\) 0 0
\(23\) 45.0333i 1.95797i 0.203931 + 0.978985i \(0.434628\pi\)
−0.203931 + 0.978985i \(0.565372\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 25.9808i − 0.962250i
\(28\) 0 0
\(29\) −12.0000 −0.413793 −0.206897 0.978363i \(-0.566336\pi\)
−0.206897 + 0.978363i \(0.566336\pi\)
\(30\) 0 0
\(31\) 31.1769i 1.00571i 0.864372 + 0.502853i \(0.167716\pi\)
−0.864372 + 0.502853i \(0.832284\pi\)
\(32\) 0 0
\(33\) −21.0000 −0.636364
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 50.0000 1.35135 0.675676 0.737199i \(-0.263852\pi\)
0.675676 + 0.737199i \(0.263852\pi\)
\(38\) 0 0
\(39\) − 27.7128i − 0.710585i
\(40\) 0 0
\(41\) −63.0000 −1.53659 −0.768293 0.640099i \(-0.778893\pi\)
−0.768293 + 0.640099i \(0.778893\pi\)
\(42\) 0 0
\(43\) − 62.3538i − 1.45009i −0.688702 0.725045i \(-0.741819\pi\)
0.688702 0.725045i \(-0.258181\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 13.8564i − 0.294817i −0.989076 0.147409i \(-0.952907\pi\)
0.989076 0.147409i \(-0.0470932\pi\)
\(48\) 0 0
\(49\) 37.0000 0.755102
\(50\) 0 0
\(51\) − 5.19615i − 0.101885i
\(52\) 0 0
\(53\) 18.0000 0.339623 0.169811 0.985477i \(-0.445684\pi\)
0.169811 + 0.985477i \(0.445684\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 39.0000 0.684211
\(58\) 0 0
\(59\) 55.4256i 0.939417i 0.882821 + 0.469709i \(0.155641\pi\)
−0.882821 + 0.469709i \(0.844359\pi\)
\(60\) 0 0
\(61\) −26.0000 −0.426230 −0.213115 0.977027i \(-0.568361\pi\)
−0.213115 + 0.977027i \(0.568361\pi\)
\(62\) 0 0
\(63\) 20.7846i 0.329914i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 32.9090i − 0.491179i −0.969374 0.245589i \(-0.921019\pi\)
0.969374 0.245589i \(-0.0789815\pi\)
\(68\) 0 0
\(69\) 78.0000 1.13043
\(70\) 0 0
\(71\) 27.7128i 0.390321i 0.980771 + 0.195161i \(0.0625228\pi\)
−0.980771 + 0.195161i \(0.937477\pi\)
\(72\) 0 0
\(73\) 17.0000 0.232877 0.116438 0.993198i \(-0.462852\pi\)
0.116438 + 0.993198i \(0.462852\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 42.0000 0.545455
\(78\) 0 0
\(79\) 86.6025i 1.09623i 0.836401 + 0.548117i \(0.184655\pi\)
−0.836401 + 0.548117i \(0.815345\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) 98.7269i 1.18948i 0.803918 + 0.594740i \(0.202745\pi\)
−0.803918 + 0.594740i \(0.797255\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 20.7846i 0.238904i
\(88\) 0 0
\(89\) 99.0000 1.11236 0.556180 0.831062i \(-0.312267\pi\)
0.556180 + 0.831062i \(0.312267\pi\)
\(90\) 0 0
\(91\) 55.4256i 0.609073i
\(92\) 0 0
\(93\) 54.0000 0.580645
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 134.000 1.38144 0.690722 0.723121i \(-0.257293\pi\)
0.690722 + 0.723121i \(0.257293\pi\)
\(98\) 0 0
\(99\) − 72.7461i − 0.734809i
\(100\) 0 0
\(101\) −150.000 −1.48515 −0.742574 0.669764i \(-0.766395\pi\)
−0.742574 + 0.669764i \(0.766395\pi\)
\(102\) 0 0
\(103\) − 110.851i − 1.07623i −0.842873 0.538113i \(-0.819137\pi\)
0.842873 0.538113i \(-0.180863\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 164.545i 1.53780i 0.639368 + 0.768901i \(0.279196\pi\)
−0.639368 + 0.768901i \(0.720804\pi\)
\(108\) 0 0
\(109\) 74.0000 0.678899 0.339450 0.940624i \(-0.389759\pi\)
0.339450 + 0.940624i \(0.389759\pi\)
\(110\) 0 0
\(111\) − 86.6025i − 0.780203i
\(112\) 0 0
\(113\) 201.000 1.77876 0.889381 0.457168i \(-0.151136\pi\)
0.889381 + 0.457168i \(0.151136\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 96.0000 0.820513
\(118\) 0 0
\(119\) 10.3923i 0.0873303i
\(120\) 0 0
\(121\) −26.0000 −0.214876
\(122\) 0 0
\(123\) 109.119i 0.887148i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 10.3923i 0.0818292i 0.999163 + 0.0409146i \(0.0130272\pi\)
−0.999163 + 0.0409146i \(0.986973\pi\)
\(128\) 0 0
\(129\) −108.000 −0.837209
\(130\) 0 0
\(131\) − 6.92820i − 0.0528870i −0.999650 0.0264435i \(-0.991582\pi\)
0.999650 0.0264435i \(-0.00841822\pi\)
\(132\) 0 0
\(133\) −78.0000 −0.586466
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 207.000 1.51095 0.755474 0.655178i \(-0.227406\pi\)
0.755474 + 0.655178i \(0.227406\pi\)
\(138\) 0 0
\(139\) − 178.401i − 1.28346i −0.766930 0.641731i \(-0.778217\pi\)
0.766930 0.641731i \(-0.221783\pi\)
\(140\) 0 0
\(141\) −24.0000 −0.170213
\(142\) 0 0
\(143\) − 193.990i − 1.35657i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 64.0859i − 0.435958i
\(148\) 0 0
\(149\) 108.000 0.724832 0.362416 0.932016i \(-0.381952\pi\)
0.362416 + 0.932016i \(0.381952\pi\)
\(150\) 0 0
\(151\) − 266.736i − 1.76646i −0.468938 0.883231i \(-0.655363\pi\)
0.468938 0.883231i \(-0.344637\pi\)
\(152\) 0 0
\(153\) 18.0000 0.117647
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 278.000 1.77070 0.885350 0.464925i \(-0.153919\pi\)
0.885350 + 0.464925i \(0.153919\pi\)
\(158\) 0 0
\(159\) − 31.1769i − 0.196081i
\(160\) 0 0
\(161\) −156.000 −0.968944
\(162\) 0 0
\(163\) − 19.0526i − 0.116887i −0.998291 0.0584434i \(-0.981386\pi\)
0.998291 0.0584434i \(-0.0186137\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 263.272i − 1.57648i −0.615370 0.788239i \(-0.710993\pi\)
0.615370 0.788239i \(-0.289007\pi\)
\(168\) 0 0
\(169\) 87.0000 0.514793
\(170\) 0 0
\(171\) 135.100i 0.790058i
\(172\) 0 0
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 96.0000 0.542373
\(178\) 0 0
\(179\) − 12.1244i − 0.0677338i −0.999426 0.0338669i \(-0.989218\pi\)
0.999426 0.0338669i \(-0.0107822\pi\)
\(180\) 0 0
\(181\) −166.000 −0.917127 −0.458564 0.888662i \(-0.651636\pi\)
−0.458564 + 0.888662i \(0.651636\pi\)
\(182\) 0 0
\(183\) 45.0333i 0.246084i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 36.3731i − 0.194508i
\(188\) 0 0
\(189\) 90.0000 0.476190
\(190\) 0 0
\(191\) 301.377i 1.57789i 0.614464 + 0.788945i \(0.289372\pi\)
−0.614464 + 0.788945i \(0.710628\pi\)
\(192\) 0 0
\(193\) 139.000 0.720207 0.360104 0.932912i \(-0.382741\pi\)
0.360104 + 0.932912i \(0.382741\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −126.000 −0.639594 −0.319797 0.947486i \(-0.603615\pi\)
−0.319797 + 0.947486i \(0.603615\pi\)
\(198\) 0 0
\(199\) − 76.2102i − 0.382966i −0.981496 0.191483i \(-0.938670\pi\)
0.981496 0.191483i \(-0.0613297\pi\)
\(200\) 0 0
\(201\) −57.0000 −0.283582
\(202\) 0 0
\(203\) − 41.5692i − 0.204774i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 270.200i 1.30531i
\(208\) 0 0
\(209\) 273.000 1.30622
\(210\) 0 0
\(211\) − 188.794i − 0.894756i −0.894345 0.447378i \(-0.852358\pi\)
0.894345 0.447378i \(-0.147642\pi\)
\(212\) 0 0
\(213\) 48.0000 0.225352
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −108.000 −0.497696
\(218\) 0 0
\(219\) − 29.4449i − 0.134451i
\(220\) 0 0
\(221\) 48.0000 0.217195
\(222\) 0 0
\(223\) 145.492i 0.652432i 0.945295 + 0.326216i \(0.105774\pi\)
−0.945295 + 0.326216i \(0.894226\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 173.205i 0.763018i 0.924365 + 0.381509i \(0.124595\pi\)
−0.924365 + 0.381509i \(0.875405\pi\)
\(228\) 0 0
\(229\) 140.000 0.611354 0.305677 0.952135i \(-0.401117\pi\)
0.305677 + 0.952135i \(0.401117\pi\)
\(230\) 0 0
\(231\) − 72.7461i − 0.314918i
\(232\) 0 0
\(233\) −366.000 −1.57082 −0.785408 0.618979i \(-0.787547\pi\)
−0.785408 + 0.618979i \(0.787547\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 150.000 0.632911
\(238\) 0 0
\(239\) − 256.344i − 1.07257i −0.844038 0.536284i \(-0.819828\pi\)
0.844038 0.536284i \(-0.180172\pi\)
\(240\) 0 0
\(241\) 73.0000 0.302905 0.151452 0.988465i \(-0.451605\pi\)
0.151452 + 0.988465i \(0.451605\pi\)
\(242\) 0 0
\(243\) − 249.415i − 1.02640i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 360.267i 1.45857i
\(248\) 0 0
\(249\) 171.000 0.686747
\(250\) 0 0
\(251\) − 168.009i − 0.669358i −0.942332 0.334679i \(-0.891372\pi\)
0.942332 0.334679i \(-0.108628\pi\)
\(252\) 0 0
\(253\) 546.000 2.15810
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 282.000 1.09728 0.548638 0.836060i \(-0.315146\pi\)
0.548638 + 0.836060i \(0.315146\pi\)
\(258\) 0 0
\(259\) 173.205i 0.668745i
\(260\) 0 0
\(261\) −72.0000 −0.275862
\(262\) 0 0
\(263\) 169.741i 0.645403i 0.946501 + 0.322701i \(0.104591\pi\)
−0.946501 + 0.322701i \(0.895409\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 171.473i − 0.642221i
\(268\) 0 0
\(269\) −288.000 −1.07063 −0.535316 0.844652i \(-0.679807\pi\)
−0.535316 + 0.844652i \(0.679807\pi\)
\(270\) 0 0
\(271\) 169.741i 0.626350i 0.949695 + 0.313175i \(0.101393\pi\)
−0.949695 + 0.313175i \(0.898607\pi\)
\(272\) 0 0
\(273\) 96.0000 0.351648
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 76.0000 0.274368 0.137184 0.990546i \(-0.456195\pi\)
0.137184 + 0.990546i \(0.456195\pi\)
\(278\) 0 0
\(279\) 187.061i 0.670471i
\(280\) 0 0
\(281\) −354.000 −1.25979 −0.629893 0.776682i \(-0.716901\pi\)
−0.629893 + 0.776682i \(0.716901\pi\)
\(282\) 0 0
\(283\) − 316.965i − 1.12002i −0.828486 0.560009i \(-0.810798\pi\)
0.828486 0.560009i \(-0.189202\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 218.238i − 0.760413i
\(288\) 0 0
\(289\) −280.000 −0.968858
\(290\) 0 0
\(291\) − 232.095i − 0.797577i
\(292\) 0 0
\(293\) −426.000 −1.45392 −0.726962 0.686677i \(-0.759069\pi\)
−0.726962 + 0.686677i \(0.759069\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −315.000 −1.06061
\(298\) 0 0
\(299\) 720.533i 2.40981i
\(300\) 0 0
\(301\) 216.000 0.717608
\(302\) 0 0
\(303\) 259.808i 0.857451i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 223.435i − 0.727800i −0.931438 0.363900i \(-0.881445\pi\)
0.931438 0.363900i \(-0.118555\pi\)
\(308\) 0 0
\(309\) −192.000 −0.621359
\(310\) 0 0
\(311\) 433.013i 1.39232i 0.717885 + 0.696162i \(0.245110\pi\)
−0.717885 + 0.696162i \(0.754890\pi\)
\(312\) 0 0
\(313\) −218.000 −0.696486 −0.348243 0.937404i \(-0.613222\pi\)
−0.348243 + 0.937404i \(0.613222\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 12.0000 0.0378549 0.0189274 0.999821i \(-0.493975\pi\)
0.0189274 + 0.999821i \(0.493975\pi\)
\(318\) 0 0
\(319\) 145.492i 0.456089i
\(320\) 0 0
\(321\) 285.000 0.887850
\(322\) 0 0
\(323\) 67.5500i 0.209133i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 128.172i − 0.391963i
\(328\) 0 0
\(329\) 48.0000 0.145897
\(330\) 0 0
\(331\) 465.922i 1.40762i 0.710389 + 0.703809i \(0.248519\pi\)
−0.710389 + 0.703809i \(0.751481\pi\)
\(332\) 0 0
\(333\) 300.000 0.900901
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −67.0000 −0.198813 −0.0994065 0.995047i \(-0.531694\pi\)
−0.0994065 + 0.995047i \(0.531694\pi\)
\(338\) 0 0
\(339\) − 348.142i − 1.02697i
\(340\) 0 0
\(341\) 378.000 1.10850
\(342\) 0 0
\(343\) 297.913i 0.868550i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 192.258i 0.554057i 0.960862 + 0.277028i \(0.0893496\pi\)
−0.960862 + 0.277028i \(0.910650\pi\)
\(348\) 0 0
\(349\) −254.000 −0.727794 −0.363897 0.931439i \(-0.618554\pi\)
−0.363897 + 0.931439i \(0.618554\pi\)
\(350\) 0 0
\(351\) − 415.692i − 1.18431i
\(352\) 0 0
\(353\) 114.000 0.322946 0.161473 0.986877i \(-0.448376\pi\)
0.161473 + 0.986877i \(0.448376\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 18.0000 0.0504202
\(358\) 0 0
\(359\) − 370.659i − 1.03248i −0.856445 0.516238i \(-0.827332\pi\)
0.856445 0.516238i \(-0.172668\pi\)
\(360\) 0 0
\(361\) −146.000 −0.404432
\(362\) 0 0
\(363\) 45.0333i 0.124059i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 117.779i 0.320925i 0.987042 + 0.160462i \(0.0512986\pi\)
−0.987042 + 0.160462i \(0.948701\pi\)
\(368\) 0 0
\(369\) −378.000 −1.02439
\(370\) 0 0
\(371\) 62.3538i 0.168070i
\(372\) 0 0
\(373\) −274.000 −0.734584 −0.367292 0.930106i \(-0.619715\pi\)
−0.367292 + 0.930106i \(0.619715\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −192.000 −0.509284
\(378\) 0 0
\(379\) − 299.645i − 0.790619i −0.918548 0.395310i \(-0.870637\pi\)
0.918548 0.395310i \(-0.129363\pi\)
\(380\) 0 0
\(381\) 18.0000 0.0472441
\(382\) 0 0
\(383\) − 460.726i − 1.20294i −0.798896 0.601469i \(-0.794582\pi\)
0.798896 0.601469i \(-0.205418\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 374.123i − 0.966726i
\(388\) 0 0
\(389\) 510.000 1.31105 0.655527 0.755172i \(-0.272447\pi\)
0.655527 + 0.755172i \(0.272447\pi\)
\(390\) 0 0
\(391\) 135.100i 0.345524i
\(392\) 0 0
\(393\) −12.0000 −0.0305344
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −532.000 −1.34005 −0.670025 0.742338i \(-0.733717\pi\)
−0.670025 + 0.742338i \(0.733717\pi\)
\(398\) 0 0
\(399\) 135.100i 0.338596i
\(400\) 0 0
\(401\) 477.000 1.18953 0.594763 0.803901i \(-0.297246\pi\)
0.594763 + 0.803901i \(0.297246\pi\)
\(402\) 0 0
\(403\) 498.831i 1.23779i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 606.218i − 1.48948i
\(408\) 0 0
\(409\) 25.0000 0.0611247 0.0305623 0.999533i \(-0.490270\pi\)
0.0305623 + 0.999533i \(0.490270\pi\)
\(410\) 0 0
\(411\) − 358.535i − 0.872347i
\(412\) 0 0
\(413\) −192.000 −0.464891
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −309.000 −0.741007
\(418\) 0 0
\(419\) 57.1577i 0.136415i 0.997671 + 0.0682073i \(0.0217279\pi\)
−0.997671 + 0.0682073i \(0.978272\pi\)
\(420\) 0 0
\(421\) −388.000 −0.921615 −0.460808 0.887500i \(-0.652440\pi\)
−0.460808 + 0.887500i \(0.652440\pi\)
\(422\) 0 0
\(423\) − 83.1384i − 0.196545i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 90.0666i − 0.210929i
\(428\) 0 0
\(429\) −336.000 −0.783217
\(430\) 0 0
\(431\) − 245.951i − 0.570652i −0.958430 0.285326i \(-0.907898\pi\)
0.958430 0.285326i \(-0.0921019\pi\)
\(432\) 0 0
\(433\) 307.000 0.709007 0.354503 0.935055i \(-0.384650\pi\)
0.354503 + 0.935055i \(0.384650\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1014.00 −2.32037
\(438\) 0 0
\(439\) 561.184i 1.27832i 0.769072 + 0.639162i \(0.220719\pi\)
−0.769072 + 0.639162i \(0.779281\pi\)
\(440\) 0 0
\(441\) 222.000 0.503401
\(442\) 0 0
\(443\) 479.778i 1.08302i 0.840694 + 0.541510i \(0.182147\pi\)
−0.840694 + 0.541510i \(0.817853\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 187.061i − 0.418482i
\(448\) 0 0
\(449\) −39.0000 −0.0868597 −0.0434298 0.999056i \(-0.513828\pi\)
−0.0434298 + 0.999056i \(0.513828\pi\)
\(450\) 0 0
\(451\) 763.834i 1.69365i
\(452\) 0 0
\(453\) −462.000 −1.01987
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −349.000 −0.763676 −0.381838 0.924229i \(-0.624709\pi\)
−0.381838 + 0.924229i \(0.624709\pi\)
\(458\) 0 0
\(459\) − 77.9423i − 0.169809i
\(460\) 0 0
\(461\) 372.000 0.806941 0.403471 0.914993i \(-0.367804\pi\)
0.403471 + 0.914993i \(0.367804\pi\)
\(462\) 0 0
\(463\) − 422.620i − 0.912787i −0.889778 0.456394i \(-0.849141\pi\)
0.889778 0.456394i \(-0.150859\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 713.605i 1.52806i 0.645180 + 0.764031i \(0.276783\pi\)
−0.645180 + 0.764031i \(0.723217\pi\)
\(468\) 0 0
\(469\) 114.000 0.243070
\(470\) 0 0
\(471\) − 481.510i − 1.02231i
\(472\) 0 0
\(473\) −756.000 −1.59831
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 108.000 0.226415
\(478\) 0 0
\(479\) 758.638i 1.58380i 0.610653 + 0.791898i \(0.290907\pi\)
−0.610653 + 0.791898i \(0.709093\pi\)
\(480\) 0 0
\(481\) 800.000 1.66320
\(482\) 0 0
\(483\) 270.200i 0.559420i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 523.079i 1.07408i 0.843555 + 0.537042i \(0.180459\pi\)
−0.843555 + 0.537042i \(0.819541\pi\)
\(488\) 0 0
\(489\) −33.0000 −0.0674847
\(490\) 0 0
\(491\) − 478.046i − 0.973617i −0.873509 0.486809i \(-0.838161\pi\)
0.873509 0.486809i \(-0.161839\pi\)
\(492\) 0 0
\(493\) −36.0000 −0.0730223
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −96.0000 −0.193159
\(498\) 0 0
\(499\) 62.3538i 0.124958i 0.998046 + 0.0624788i \(0.0199006\pi\)
−0.998046 + 0.0624788i \(0.980099\pi\)
\(500\) 0 0
\(501\) −456.000 −0.910180
\(502\) 0 0
\(503\) − 561.184i − 1.11567i −0.829950 0.557837i \(-0.811631\pi\)
0.829950 0.557837i \(-0.188369\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 150.688i − 0.297216i
\(508\) 0 0
\(509\) −390.000 −0.766208 −0.383104 0.923705i \(-0.625145\pi\)
−0.383104 + 0.923705i \(0.625145\pi\)
\(510\) 0 0
\(511\) 58.8897i 0.115244i
\(512\) 0 0
\(513\) 585.000 1.14035
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −168.000 −0.324952
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −183.000 −0.351248 −0.175624 0.984457i \(-0.556194\pi\)
−0.175624 + 0.984457i \(0.556194\pi\)
\(522\) 0 0
\(523\) 185.329i 0.354358i 0.984179 + 0.177179i \(0.0566972\pi\)
−0.984179 + 0.177179i \(0.943303\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 93.5307i 0.177478i
\(528\) 0 0
\(529\) −1499.00 −2.83365
\(530\) 0 0
\(531\) 332.554i 0.626278i
\(532\) 0 0
\(533\) −1008.00 −1.89118
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −21.0000 −0.0391061
\(538\) 0 0
\(539\) − 448.601i − 0.832284i
\(540\) 0 0
\(541\) 968.000 1.78928 0.894640 0.446789i \(-0.147432\pi\)
0.894640 + 0.446789i \(0.147432\pi\)
\(542\) 0 0
\(543\) 287.520i 0.529504i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 510.955i 0.934104i 0.884230 + 0.467052i \(0.154684\pi\)
−0.884230 + 0.467052i \(0.845316\pi\)
\(548\) 0 0
\(549\) −156.000 −0.284153
\(550\) 0 0
\(551\) − 270.200i − 0.490381i
\(552\) 0 0
\(553\) −300.000 −0.542495
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −552.000 −0.991023 −0.495512 0.868601i \(-0.665019\pi\)
−0.495512 + 0.868601i \(0.665019\pi\)
\(558\) 0 0
\(559\) − 997.661i − 1.78472i
\(560\) 0 0
\(561\) −63.0000 −0.112299
\(562\) 0 0
\(563\) − 401.836i − 0.713740i −0.934154 0.356870i \(-0.883844\pi\)
0.934154 0.356870i \(-0.116156\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 31.1769i 0.0549857i
\(568\) 0 0
\(569\) 117.000 0.205624 0.102812 0.994701i \(-0.467216\pi\)
0.102812 + 0.994701i \(0.467216\pi\)
\(570\) 0 0
\(571\) 297.913i 0.521739i 0.965374 + 0.260869i \(0.0840092\pi\)
−0.965374 + 0.260869i \(0.915991\pi\)
\(572\) 0 0
\(573\) 522.000 0.910995
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −491.000 −0.850953 −0.425477 0.904969i \(-0.639894\pi\)
−0.425477 + 0.904969i \(0.639894\pi\)
\(578\) 0 0
\(579\) − 240.755i − 0.415812i
\(580\) 0 0
\(581\) −342.000 −0.588640
\(582\) 0 0
\(583\) − 218.238i − 0.374337i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 244.219i 0.416046i 0.978124 + 0.208023i \(0.0667029\pi\)
−0.978124 + 0.208023i \(0.933297\pi\)
\(588\) 0 0
\(589\) −702.000 −1.19185
\(590\) 0 0
\(591\) 218.238i 0.369270i
\(592\) 0 0
\(593\) 57.0000 0.0961214 0.0480607 0.998844i \(-0.484696\pi\)
0.0480607 + 0.998844i \(0.484696\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −132.000 −0.221106
\(598\) 0 0
\(599\) − 633.931i − 1.05831i −0.848524 0.529157i \(-0.822508\pi\)
0.848524 0.529157i \(-0.177492\pi\)
\(600\) 0 0
\(601\) 263.000 0.437604 0.218802 0.975769i \(-0.429785\pi\)
0.218802 + 0.975769i \(0.429785\pi\)
\(602\) 0 0
\(603\) − 197.454i − 0.327452i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 484.974i − 0.798969i −0.916740 0.399485i \(-0.869189\pi\)
0.916740 0.399485i \(-0.130811\pi\)
\(608\) 0 0
\(609\) −72.0000 −0.118227
\(610\) 0 0
\(611\) − 221.703i − 0.362852i
\(612\) 0 0
\(613\) 194.000 0.316476 0.158238 0.987401i \(-0.449419\pi\)
0.158238 + 0.987401i \(0.449419\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −726.000 −1.17666 −0.588331 0.808620i \(-0.700215\pi\)
−0.588331 + 0.808620i \(0.700215\pi\)
\(618\) 0 0
\(619\) − 408.764i − 0.660362i −0.943918 0.330181i \(-0.892890\pi\)
0.943918 0.330181i \(-0.107110\pi\)
\(620\) 0 0
\(621\) 1170.00 1.88406
\(622\) 0 0
\(623\) 342.946i 0.550475i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 472.850i − 0.754147i
\(628\) 0 0
\(629\) 150.000 0.238474
\(630\) 0 0
\(631\) 502.295i 0.796030i 0.917379 + 0.398015i \(0.130301\pi\)
−0.917379 + 0.398015i \(0.869699\pi\)
\(632\) 0 0
\(633\) −327.000 −0.516588
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 592.000 0.929356
\(638\) 0 0
\(639\) 166.277i 0.260214i
\(640\) 0 0
\(641\) −174.000 −0.271451 −0.135725 0.990746i \(-0.543337\pi\)
−0.135725 + 0.990746i \(0.543337\pi\)
\(642\) 0 0
\(643\) − 976.877i − 1.51925i −0.650362 0.759624i \(-0.725383\pi\)
0.650362 0.759624i \(-0.274617\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 921.451i 1.42419i 0.702083 + 0.712095i \(0.252254\pi\)
−0.702083 + 0.712095i \(0.747746\pi\)
\(648\) 0 0
\(649\) 672.000 1.03544
\(650\) 0 0
\(651\) 187.061i 0.287345i
\(652\) 0 0
\(653\) 222.000 0.339969 0.169985 0.985447i \(-0.445628\pi\)
0.169985 + 0.985447i \(0.445628\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 102.000 0.155251
\(658\) 0 0
\(659\) 857.365i 1.30101i 0.759502 + 0.650505i \(0.225443\pi\)
−0.759502 + 0.650505i \(0.774557\pi\)
\(660\) 0 0
\(661\) 268.000 0.405446 0.202723 0.979236i \(-0.435021\pi\)
0.202723 + 0.979236i \(0.435021\pi\)
\(662\) 0 0
\(663\) − 83.1384i − 0.125397i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 540.400i − 0.810195i
\(668\) 0 0
\(669\) 252.000 0.376682
\(670\) 0 0
\(671\) 315.233i 0.469796i
\(672\) 0 0
\(673\) 550.000 0.817236 0.408618 0.912705i \(-0.366011\pi\)
0.408618 + 0.912705i \(0.366011\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −600.000 −0.886263 −0.443131 0.896457i \(-0.646133\pi\)
−0.443131 + 0.896457i \(0.646133\pi\)
\(678\) 0 0
\(679\) 464.190i 0.683637i
\(680\) 0 0
\(681\) 300.000 0.440529
\(682\) 0 0
\(683\) − 729.193i − 1.06763i −0.845600 0.533817i \(-0.820757\pi\)
0.845600 0.533817i \(-0.179243\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 242.487i − 0.352965i
\(688\) 0 0
\(689\) 288.000 0.417997
\(690\) 0 0
\(691\) − 1231.49i − 1.78218i −0.453824 0.891091i \(-0.649941\pi\)
0.453824 0.891091i \(-0.350059\pi\)
\(692\) 0 0
\(693\) 252.000 0.363636
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −189.000 −0.271162
\(698\) 0 0
\(699\) 633.931i 0.906911i
\(700\) 0 0
\(701\) −1008.00 −1.43795 −0.718973 0.695038i \(-0.755387\pi\)
−0.718973 + 0.695038i \(0.755387\pi\)
\(702\) 0 0
\(703\) 1125.83i 1.60147i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 519.615i − 0.734958i
\(708\) 0 0
\(709\) −388.000 −0.547250 −0.273625 0.961837i \(-0.588223\pi\)
−0.273625 + 0.961837i \(0.588223\pi\)
\(710\) 0 0
\(711\) 519.615i 0.730823i
\(712\) 0 0
\(713\) −1404.00 −1.96914
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −444.000 −0.619247
\(718\) 0 0
\(719\) − 973.413i − 1.35384i −0.736056 0.676921i \(-0.763314\pi\)
0.736056 0.676921i \(-0.236686\pi\)
\(720\) 0 0
\(721\) 384.000 0.532594
\(722\) 0 0
\(723\) − 126.440i − 0.174882i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 187.061i − 0.257306i −0.991690 0.128653i \(-0.958935\pi\)
0.991690 0.128653i \(-0.0410653\pi\)
\(728\) 0 0
\(729\) −351.000 −0.481481
\(730\) 0 0
\(731\) − 187.061i − 0.255898i
\(732\) 0 0
\(733\) 976.000 1.33151 0.665757 0.746168i \(-0.268109\pi\)
0.665757 + 0.746168i \(0.268109\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −399.000 −0.541384
\(738\) 0 0
\(739\) 270.200i 0.365629i 0.983147 + 0.182815i \(0.0585208\pi\)
−0.983147 + 0.182815i \(0.941479\pi\)
\(740\) 0 0
\(741\) 624.000 0.842105
\(742\) 0 0
\(743\) − 38.1051i − 0.0512855i −0.999671 0.0256427i \(-0.991837\pi\)
0.999671 0.0256427i \(-0.00816323\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 592.361i 0.792987i
\(748\) 0 0
\(749\) −570.000 −0.761015
\(750\) 0 0
\(751\) − 921.451i − 1.22697i −0.789708 0.613483i \(-0.789768\pi\)
0.789708 0.613483i \(-0.210232\pi\)
\(752\) 0 0
\(753\) −291.000 −0.386454
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −392.000 −0.517834 −0.258917 0.965900i \(-0.583366\pi\)
−0.258917 + 0.965900i \(0.583366\pi\)
\(758\) 0 0
\(759\) − 945.700i − 1.24598i
\(760\) 0 0
\(761\) −1335.00 −1.75427 −0.877135 0.480243i \(-0.840548\pi\)
−0.877135 + 0.480243i \(0.840548\pi\)
\(762\) 0 0
\(763\) 256.344i 0.335968i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 886.810i 1.15621i
\(768\) 0 0
\(769\) 509.000 0.661899 0.330949 0.943649i \(-0.392631\pi\)
0.330949 + 0.943649i \(0.392631\pi\)
\(770\) 0 0
\(771\) − 488.438i − 0.633513i
\(772\) 0 0
\(773\) −684.000 −0.884864 −0.442432 0.896802i \(-0.645884\pi\)
−0.442432 + 0.896802i \(0.645884\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 300.000 0.386100
\(778\) 0 0
\(779\) − 1418.55i − 1.82099i
\(780\) 0 0
\(781\) 336.000 0.430218
\(782\) 0 0
\(783\) 311.769i 0.398173i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 6.92820i − 0.00880331i −0.999990 0.00440165i \(-0.998599\pi\)
0.999990 0.00440165i \(-0.00140109\pi\)
\(788\) 0 0
\(789\) 294.000 0.372624
\(790\) 0 0
\(791\) 696.284i 0.880258i
\(792\) 0 0
\(793\) −416.000 −0.524590
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1374.00 1.72396 0.861982 0.506938i \(-0.169223\pi\)
0.861982 + 0.506938i \(0.169223\pi\)
\(798\) 0 0
\(799\) − 41.5692i − 0.0520266i
\(800\) 0 0
\(801\) 594.000 0.741573
\(802\) 0 0
\(803\) − 206.114i − 0.256680i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 498.831i 0.618130i
\(808\) 0 0
\(809\) 546.000 0.674907 0.337454 0.941342i \(-0.390434\pi\)
0.337454 + 0.941342i \(0.390434\pi\)
\(810\) 0 0
\(811\) − 1309.43i − 1.61459i −0.590150 0.807294i \(-0.700931\pi\)
0.590150 0.807294i \(-0.299069\pi\)
\(812\) 0 0
\(813\) 294.000 0.361624
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 1404.00 1.71848
\(818\) 0 0
\(819\) 332.554i 0.406049i
\(820\) 0 0
\(821\) −1038.00 −1.26431 −0.632156 0.774841i \(-0.717830\pi\)
−0.632156 + 0.774841i \(0.717830\pi\)
\(822\) 0 0
\(823\) 381.051i 0.463003i 0.972835 + 0.231501i \(0.0743638\pi\)
−0.972835 + 0.231501i \(0.925636\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 102.191i − 0.123568i −0.998090 0.0617842i \(-0.980321\pi\)
0.998090 0.0617842i \(-0.0196790\pi\)
\(828\) 0 0
\(829\) 104.000 0.125452 0.0627262 0.998031i \(-0.480021\pi\)
0.0627262 + 0.998031i \(0.480021\pi\)
\(830\) 0 0
\(831\) − 131.636i − 0.158407i
\(832\) 0 0
\(833\) 111.000 0.133253
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 810.000 0.967742
\(838\) 0 0
\(839\) 1053.09i 1.25517i 0.778548 + 0.627585i \(0.215956\pi\)
−0.778548 + 0.627585i \(0.784044\pi\)
\(840\) 0 0
\(841\) −697.000 −0.828775
\(842\) 0 0
\(843\) 613.146i 0.727338i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 90.0666i − 0.106336i
\(848\) 0 0
\(849\) −549.000 −0.646643
\(850\) 0 0
\(851\) 2251.67i 2.64591i
\(852\) 0 0
\(853\) −1234.00 −1.44666 −0.723329 0.690503i \(-0.757389\pi\)
−0.723329 + 0.690503i \(0.757389\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1185.00 −1.38273 −0.691365 0.722505i \(-0.742990\pi\)
−0.691365 + 0.722505i \(0.742990\pi\)
\(858\) 0 0
\(859\) 1692.21i 1.96998i 0.172609 + 0.984990i \(0.444780\pi\)
−0.172609 + 0.984990i \(0.555220\pi\)
\(860\) 0 0
\(861\) −378.000 −0.439024
\(862\) 0 0
\(863\) 893.738i 1.03562i 0.855496 + 0.517809i \(0.173252\pi\)
−0.855496 + 0.517809i \(0.826748\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 484.974i 0.559371i
\(868\) 0 0
\(869\) 1050.00 1.20829
\(870\) 0 0
\(871\) − 526.543i − 0.604527i
\(872\) 0 0
\(873\) 804.000 0.920962
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 20.0000 0.0228050 0.0114025 0.999935i \(-0.496370\pi\)
0.0114025 + 0.999935i \(0.496370\pi\)
\(878\) 0 0
\(879\) 737.854i 0.839424i
\(880\) 0 0
\(881\) −330.000 −0.374574 −0.187287 0.982305i \(-0.559969\pi\)
−0.187287 + 0.982305i \(0.559969\pi\)
\(882\) 0 0
\(883\) 95.2628i 0.107885i 0.998544 + 0.0539427i \(0.0171788\pi\)
−0.998544 + 0.0539427i \(0.982821\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 1212.44i − 1.36689i −0.730000 0.683447i \(-0.760480\pi\)
0.730000 0.683447i \(-0.239520\pi\)
\(888\) 0 0
\(889\) −36.0000 −0.0404949
\(890\) 0 0
\(891\) − 109.119i − 0.122468i
\(892\) 0 0
\(893\) 312.000 0.349384
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 1248.00 1.39130
\(898\) 0 0
\(899\) − 374.123i − 0.416155i
\(900\) 0 0
\(901\) 54.0000 0.0599334
\(902\) 0 0
\(903\) − 374.123i − 0.414311i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 297.913i − 0.328459i −0.986422 0.164230i \(-0.947486\pi\)
0.986422 0.164230i \(-0.0525138\pi\)
\(908\) 0 0
\(909\) −900.000 −0.990099
\(910\) 0 0
\(911\) − 48.4974i − 0.0532354i −0.999646 0.0266177i \(-0.991526\pi\)
0.999646 0.0266177i \(-0.00847367\pi\)
\(912\) 0 0
\(913\) 1197.00 1.31106
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 24.0000 0.0261723
\(918\) 0 0
\(919\) 758.638i 0.825504i 0.910843 + 0.412752i \(0.135432\pi\)
−0.910843 + 0.412752i \(0.864568\pi\)
\(920\) 0 0
\(921\) −387.000 −0.420195
\(922\) 0 0
\(923\) 443.405i 0.480395i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 665.108i − 0.717484i
\(928\) 0 0
\(929\) −258.000 −0.277718 −0.138859 0.990312i \(-0.544343\pi\)
−0.138859 + 0.990312i \(0.544343\pi\)
\(930\) 0 0
\(931\) 833.116i 0.894862i
\(932\) 0 0
\(933\) 750.000 0.803859
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 481.000 0.513340 0.256670 0.966499i \(-0.417375\pi\)
0.256670 + 0.966499i \(0.417375\pi\)
\(938\) 0 0
\(939\) 377.587i 0.402116i
\(940\) 0 0
\(941\) 24.0000 0.0255048 0.0127524 0.999919i \(-0.495941\pi\)
0.0127524 + 0.999919i \(0.495941\pi\)
\(942\) 0 0
\(943\) − 2837.10i − 3.00859i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 665.108i − 0.702331i −0.936313 0.351166i \(-0.885785\pi\)
0.936313 0.351166i \(-0.114215\pi\)
\(948\) 0 0
\(949\) 272.000 0.286617
\(950\) 0 0
\(951\) − 20.7846i − 0.0218555i
\(952\) 0 0
\(953\) 291.000 0.305352 0.152676 0.988276i \(-0.451211\pi\)
0.152676 + 0.988276i \(0.451211\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 252.000 0.263323
\(958\) 0 0
\(959\) 717.069i 0.747726i
\(960\) 0 0
\(961\) −11.0000 −0.0114464
\(962\) 0 0
\(963\) 987.269i 1.02520i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 1094.66i − 1.13201i −0.824401 0.566006i \(-0.808488\pi\)
0.824401 0.566006i \(-0.191512\pi\)
\(968\) 0 0
\(969\) 117.000 0.120743
\(970\) 0 0
\(971\) 611.414i 0.629674i 0.949146 + 0.314837i \(0.101950\pi\)
−0.949146 + 0.314837i \(0.898050\pi\)
\(972\) 0 0
\(973\) 618.000 0.635149
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 231.000 0.236438 0.118219 0.992988i \(-0.462282\pi\)
0.118219 + 0.992988i \(0.462282\pi\)
\(978\) 0 0
\(979\) − 1200.31i − 1.22606i
\(980\) 0 0
\(981\) 444.000 0.452599
\(982\) 0 0
\(983\) 162.813i 0.165628i 0.996565 + 0.0828142i \(0.0263908\pi\)
−0.996565 + 0.0828142i \(0.973609\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 83.1384i − 0.0842335i
\(988\) 0 0
\(989\) 2808.00 2.83923
\(990\) 0 0
\(991\) 723.997i 0.730572i 0.930895 + 0.365286i \(0.119029\pi\)
−0.930895 + 0.365286i \(0.880971\pi\)
\(992\) 0 0
\(993\) 807.000 0.812689
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1100.00 1.10331 0.551655 0.834072i \(-0.313997\pi\)
0.551655 + 0.834072i \(0.313997\pi\)
\(998\) 0 0
\(999\) − 1299.04i − 1.30034i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1600.3.b.j.1151.1 2
4.3 odd 2 inner 1600.3.b.j.1151.2 2
5.2 odd 4 1600.3.h.h.1599.1 4
5.3 odd 4 1600.3.h.h.1599.3 4
5.4 even 2 1600.3.b.i.1151.2 2
8.3 odd 2 400.3.b.e.351.1 2
8.5 even 2 400.3.b.e.351.2 yes 2
20.3 even 4 1600.3.h.h.1599.2 4
20.7 even 4 1600.3.h.h.1599.4 4
20.19 odd 2 1600.3.b.i.1151.1 2
24.5 odd 2 3600.3.e.j.3151.2 2
24.11 even 2 3600.3.e.j.3151.1 2
40.3 even 4 400.3.h.b.399.3 4
40.13 odd 4 400.3.h.b.399.2 4
40.19 odd 2 400.3.b.f.351.2 yes 2
40.27 even 4 400.3.h.b.399.1 4
40.29 even 2 400.3.b.f.351.1 yes 2
40.37 odd 4 400.3.h.b.399.4 4
120.29 odd 2 3600.3.e.u.3151.1 2
120.53 even 4 3600.3.j.f.1999.3 4
120.59 even 2 3600.3.e.u.3151.2 2
120.77 even 4 3600.3.j.f.1999.1 4
120.83 odd 4 3600.3.j.f.1999.2 4
120.107 odd 4 3600.3.j.f.1999.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
400.3.b.e.351.1 2 8.3 odd 2
400.3.b.e.351.2 yes 2 8.5 even 2
400.3.b.f.351.1 yes 2 40.29 even 2
400.3.b.f.351.2 yes 2 40.19 odd 2
400.3.h.b.399.1 4 40.27 even 4
400.3.h.b.399.2 4 40.13 odd 4
400.3.h.b.399.3 4 40.3 even 4
400.3.h.b.399.4 4 40.37 odd 4
1600.3.b.i.1151.1 2 20.19 odd 2
1600.3.b.i.1151.2 2 5.4 even 2
1600.3.b.j.1151.1 2 1.1 even 1 trivial
1600.3.b.j.1151.2 2 4.3 odd 2 inner
1600.3.h.h.1599.1 4 5.2 odd 4
1600.3.h.h.1599.2 4 20.3 even 4
1600.3.h.h.1599.3 4 5.3 odd 4
1600.3.h.h.1599.4 4 20.7 even 4
3600.3.e.j.3151.1 2 24.11 even 2
3600.3.e.j.3151.2 2 24.5 odd 2
3600.3.e.u.3151.1 2 120.29 odd 2
3600.3.e.u.3151.2 2 120.59 even 2
3600.3.j.f.1999.1 4 120.77 even 4
3600.3.j.f.1999.2 4 120.83 odd 4
3600.3.j.f.1999.3 4 120.53 even 4
3600.3.j.f.1999.4 4 120.107 odd 4