Properties

Label 8-2106e4-1.1-c1e4-0-0
Degree 88
Conductor 1.967×10131.967\times 10^{13}
Sign 11
Analytic cond. 79972.779972.7
Root an. cond. 4.100794.10079
Motivic weight 11
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 4-s − 2·5-s + 4·7-s − 2·8-s − 4·10-s − 4·11-s + 2·13-s + 8·14-s − 4·16-s + 12·19-s − 2·20-s − 8·22-s − 2·23-s + 8·25-s + 4·26-s + 4·28-s − 2·29-s + 4·31-s − 2·32-s − 8·35-s − 24·37-s + 24·38-s + 4·40-s − 18·41-s + 4·43-s − 4·44-s + ⋯
L(s)  = 1  + 1.41·2-s + 1/2·4-s − 0.894·5-s + 1.51·7-s − 0.707·8-s − 1.26·10-s − 1.20·11-s + 0.554·13-s + 2.13·14-s − 16-s + 2.75·19-s − 0.447·20-s − 1.70·22-s − 0.417·23-s + 8/5·25-s + 0.784·26-s + 0.755·28-s − 0.371·29-s + 0.718·31-s − 0.353·32-s − 1.35·35-s − 3.94·37-s + 3.89·38-s + 0.632·40-s − 2.81·41-s + 0.609·43-s − 0.603·44-s + ⋯

Functional equation

Λ(s)=((24316134)s/2ΓC(s)4L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{16} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}
Λ(s)=((24316134)s/2ΓC(s+1/2)4L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{16} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

Invariants

Degree: 88
Conductor: 243161342^{4} \cdot 3^{16} \cdot 13^{4}
Sign: 11
Analytic conductor: 79972.779972.7
Root analytic conductor: 4.100794.10079
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (8, 24316134, ( :1/2,1/2,1/2,1/2), 1)(8,\ 2^{4} \cdot 3^{16} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )

Particular Values

L(1)L(1) \approx 0.52602592470.5260259247
L(12)L(\frac12) \approx 0.52602592470.5260259247
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2C2C_2 (1T+T2)2 ( 1 - T + T^{2} )^{2}
3 1 1
13C2C_2 (1T+T2)2 ( 1 - T + T^{2} )^{2}
good5D4×C2D_4\times C_2 1+2T4T24T3+19T44pT54p2T6+2p3T7+p4T8 1 + 2 T - 4 T^{2} - 4 T^{3} + 19 T^{4} - 4 p T^{5} - 4 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8}
7D4×C2D_4\times C_2 14T+T24T3+64T44pT5+p2T64p3T7+p4T8 1 - 4 T + T^{2} - 4 T^{3} + 64 T^{4} - 4 p T^{5} + p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8}
11D4×C2D_4\times C_2 1+4T7T2+4T3+232T4+4pT57p2T6+4p3T7+p4T8 1 + 4 T - 7 T^{2} + 4 T^{3} + 232 T^{4} + 4 p T^{5} - 7 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8}
17C22C_2^2 (1+22T2+p2T4)2 ( 1 + 22 T^{2} + p^{2} T^{4} )^{2}
19D4D_{4} (16T+35T26pT3+p2T4)2 ( 1 - 6 T + 35 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2}
23D4×C2D_4\times C_2 1+2T16T252T3221T452pT516p2T6+2p3T7+p4T8 1 + 2 T - 16 T^{2} - 52 T^{3} - 221 T^{4} - 52 p T^{5} - 16 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8}
29D4×C2D_4\times C_2 1+2T43T222T3+1252T422pT543p2T6+2p3T7+p4T8 1 + 2 T - 43 T^{2} - 22 T^{3} + 1252 T^{4} - 22 p T^{5} - 43 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8}
31D4×C2D_4\times C_2 14T38T2+32T3+1459T4+32pT538p2T64p3T7+p4T8 1 - 4 T - 38 T^{2} + 32 T^{3} + 1459 T^{4} + 32 p T^{5} - 38 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8}
37D4D_{4} (1+12T+98T2+12pT3+p2T4)2 ( 1 + 12 T + 98 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2}
41D4×C2D_4\times C_2 1+18T+4pT2+1404T3+10635T4+1404pT5+4p3T6+18p3T7+p4T8 1 + 18 T + 4 p T^{2} + 1404 T^{3} + 10635 T^{4} + 1404 p T^{5} + 4 p^{3} T^{6} + 18 p^{3} T^{7} + p^{4} T^{8}
43D4×C2D_4\times C_2 14T26T2+176T3773T4+176pT526p2T64p3T7+p4T8 1 - 4 T - 26 T^{2} + 176 T^{3} - 773 T^{4} + 176 p T^{5} - 26 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8}
47D4×C2D_4\times C_2 1+16T+110T2+832T3+7075T4+832pT5+110p2T6+16p3T7+p4T8 1 + 16 T + 110 T^{2} + 832 T^{3} + 7075 T^{4} + 832 p T^{5} + 110 p^{2} T^{6} + 16 p^{3} T^{7} + p^{4} T^{8}
53D4D_{4} (118T+175T218pT3+p2T4)2 ( 1 - 18 T + 175 T^{2} - 18 p T^{3} + p^{2} T^{4} )^{2}
59D4×C2D_4\times C_2 1+8T67T2+104T3+9904T4+104pT567p2T6+8p3T7+p4T8 1 + 8 T - 67 T^{2} + 104 T^{3} + 9904 T^{4} + 104 p T^{5} - 67 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8}
61D4×C2D_4\times C_2 1+8T47T288T3+4696T488pT547p2T6+8p3T7+p4T8 1 + 8 T - 47 T^{2} - 88 T^{3} + 4696 T^{4} - 88 p T^{5} - 47 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8}
67D4×C2D_4\times C_2 1+8T+22T2736T37013T4736pT5+22p2T6+8p3T7+p4T8 1 + 8 T + 22 T^{2} - 736 T^{3} - 7013 T^{4} - 736 p T^{5} + 22 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8}
71D4D_{4} (110T+155T210pT3+p2T4)2 ( 1 - 10 T + 155 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2}
73D4D_{4} (14T+138T24pT3+p2T4)2 ( 1 - 4 T + 138 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2}
79D4×C2D_4\times C_2 12T128T2+52T3+10867T4+52pT5128p2T62p3T7+p4T8 1 - 2 T - 128 T^{2} + 52 T^{3} + 10867 T^{4} + 52 p T^{5} - 128 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8}
83C23C_2^3 1163T2+19680T4163p2T6+p4T8 1 - 163 T^{2} + 19680 T^{4} - 163 p^{2} T^{6} + p^{4} T^{8}
89D4D_{4} (16T+160T26pT3+p2T4)2 ( 1 - 6 T + 160 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2}
97D4×C2D_4\times C_2 1+10T116T2+220T3+27547T4+220pT5116p2T6+10p3T7+p4T8 1 + 10 T - 116 T^{2} + 220 T^{3} + 27547 T^{4} + 220 p T^{5} - 116 p^{2} T^{6} + 10 p^{3} T^{7} + p^{4} T^{8}
show more
show less
   L(s)=p j=18(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−6.65495605911808078002642626910, −6.05505466283440958196458853658, −5.78352058987840913788428577415, −5.70287610151473388827034524293, −5.49504355795238319256167123954, −5.39148317235382564909973808226, −5.04566340429515439781577502537, −4.94221495514448330439039268979, −4.89717722135159697096672964178, −4.75777179193384338369110591872, −4.42104189111532090502491692338, −3.94586966352482256103471520908, −3.81579806839292712127108358467, −3.76438198009230223649727214923, −3.36680999624882043998214294260, −3.27389088621332962054789077218, −3.15778854311640775513978274279, −2.67607569047536963884230594186, −2.50950836345299019447686592868, −2.06104523704225003684701285957, −1.94309141310677753050423118824, −1.39156657826037108155557357547, −1.14509969527452040214592027751, −0.948906439198902314950339057350, −0.093154557555477989788543417803, 0.093154557555477989788543417803, 0.948906439198902314950339057350, 1.14509969527452040214592027751, 1.39156657826037108155557357547, 1.94309141310677753050423118824, 2.06104523704225003684701285957, 2.50950836345299019447686592868, 2.67607569047536963884230594186, 3.15778854311640775513978274279, 3.27389088621332962054789077218, 3.36680999624882043998214294260, 3.76438198009230223649727214923, 3.81579806839292712127108358467, 3.94586966352482256103471520908, 4.42104189111532090502491692338, 4.75777179193384338369110591872, 4.89717722135159697096672964178, 4.94221495514448330439039268979, 5.04566340429515439781577502537, 5.39148317235382564909973808226, 5.49504355795238319256167123954, 5.70287610151473388827034524293, 5.78352058987840913788428577415, 6.05505466283440958196458853658, 6.65495605911808078002642626910

Graph of the ZZ-function along the critical line