L(s) = 1 | + 1.22e3·17-s + 1.32e3·25-s − 1.18e4·41-s + 2.87e3·49-s − 2.35e4·73-s − 3.50e4·89-s + 2.36e4·97-s − 6.14e4·113-s − 5.81e4·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 1.13e5·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯ |
L(s) = 1 | + 4.23·17-s + 2.11·25-s − 7.06·41-s + 1.19·49-s − 4.42·73-s − 4.42·89-s + 2.51·97-s − 4.80·113-s − 3.97·121-s + 6.20e−5·127-s + 5.82e−5·131-s + 5.32e−5·137-s + 5.17e−5·139-s + 4.50e−5·149-s + 4.38e−5·151-s + 4.05e−5·157-s + 3.76e−5·163-s + 3.58e−5·167-s + 3.96·169-s + 3.34e−5·173-s + 3.12e−5·179-s + 3.05e−5·181-s + 2.74e−5·191-s + 2.68e−5·193-s + 2.57e−5·197-s + 2.52e−5·199-s + 2.24e−5·211-s + ⋯ |
Λ(s)=(=((224⋅38)s/2ΓC(s)4L(s)Λ(5−s)
Λ(s)=(=((224⋅38)s/2ΓC(s+2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
224⋅38
|
Sign: |
1
|
Analytic conductor: |
1.25680×107 |
Root analytic conductor: |
7.71628 |
Motivic weight: |
4 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 224⋅38, ( :2,2,2,2), 1)
|
Particular Values
L(25) |
≈ |
1.553019086 |
L(21) |
≈ |
1.553019086 |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | | 1 |
good | 5 | C22 | (1−662T2+p8T4)2 |
| 7 | C22 | (1−1438T2+p8T4)2 |
| 11 | C22 | (1+29090T2+p8T4)2 |
| 13 | C22 | (1−56690T2+p8T4)2 |
| 17 | C2 | (1−18pT+p4T2)4 |
| 19 | C22 | (1−102670T2+p8T4)2 |
| 23 | C22 | (1−340658T2+p8T4)2 |
| 29 | C22 | (1+732586T2+p8T4)2 |
| 31 | C22 | (1−1834942T2+p8T4)2 |
| 37 | C22 | (1−2668322T2+p8T4)2 |
| 41 | C2 | (1+2970T+p4T2)4 |
| 43 | C22 | (1−1509070T2+p8T4)2 |
| 47 | C22 | (1−9602546T2+p8T4)2 |
| 53 | C22 | (1−14513462T2+p8T4)2 |
| 59 | C22 | (1+17045810T2+p8T4)2 |
| 61 | C22 | (1+8140126T2+p8T4)2 |
| 67 | C22 | (1+17250290T2+p8T4)2 |
| 71 | C22 | (1−7421618T2+p8T4)2 |
| 73 | C2 | (1+5894T+p4T2)4 |
| 79 | C22 | (1−5887966T2+p8T4)2 |
| 83 | C22 | (1+94916450T2+p8T4)2 |
| 89 | C2 | (1+8766T+p4T2)4 |
| 97 | C2 | (1−5918T+p4T2)4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.96853020118629211389195352374, −6.89926591036386455210925821746, −6.74935382347212281887900576114, −6.52685681212796169166746256605, −6.05334778555968845348108606937, −5.75912214044975777687463040411, −5.71707568254131179888104616009, −5.19108827014840352275216159500, −5.06387795348541500967621120396, −5.05039813869849369966718501602, −5.02888363041396077347805217448, −4.19854130125694695183558640409, −3.93296366845340768884598355175, −3.87807082957901220294997195080, −3.43941429242788714875623886050, −3.07772995700007501562644237282, −3.05382735755918681139550269290, −2.81874914104307685120001305152, −2.50603213485441464834279846211, −1.64889686292710059698867690061, −1.43059986297073727279643692032, −1.34453268586427533506611922395, −1.30226530012618004123728893309, −0.53589296286443654262950760966, −0.15988433332669184288079933666,
0.15988433332669184288079933666, 0.53589296286443654262950760966, 1.30226530012618004123728893309, 1.34453268586427533506611922395, 1.43059986297073727279643692032, 1.64889686292710059698867690061, 2.50603213485441464834279846211, 2.81874914104307685120001305152, 3.05382735755918681139550269290, 3.07772995700007501562644237282, 3.43941429242788714875623886050, 3.87807082957901220294997195080, 3.93296366845340768884598355175, 4.19854130125694695183558640409, 5.02888363041396077347805217448, 5.05039813869849369966718501602, 5.06387795348541500967621120396, 5.19108827014840352275216159500, 5.71707568254131179888104616009, 5.75912214044975777687463040411, 6.05334778555968845348108606937, 6.52685681212796169166746256605, 6.74935382347212281887900576114, 6.89926591036386455210925821746, 6.96853020118629211389195352374