L(s) = 1 | − 4·2-s + 6·3-s + 4·4-s + 5·5-s − 24·6-s + 16·8-s + 9·9-s − 20·10-s − 67·11-s + 24·12-s − 82·13-s + 30·15-s − 64·16-s − 92·17-s − 36·18-s + 43·19-s + 20·20-s + 268·22-s − 148·23-s + 96·24-s − 80·25-s + 328·26-s − 54·27-s + 154·29-s − 120·30-s − 520·31-s + 64·32-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 1.15·3-s + 1/2·4-s + 0.447·5-s − 1.63·6-s + 0.707·8-s + 1/3·9-s − 0.632·10-s − 1.83·11-s + 0.577·12-s − 1.74·13-s + 0.516·15-s − 16-s − 1.31·17-s − 0.471·18-s + 0.519·19-s + 0.223·20-s + 2.59·22-s − 1.34·23-s + 0.816·24-s − 0.639·25-s + 2.47·26-s − 0.384·27-s + 0.986·29-s − 0.730·30-s − 3.01·31-s + 0.353·32-s + ⋯ |
Λ(s)=(=((24⋅34⋅78)s/2ΓC(s)4L(s)Λ(4−s)
Λ(s)=(=((24⋅34⋅78)s/2ΓC(s+3/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
24⋅34⋅78
|
Sign: |
1
|
Analytic conductor: |
90542.7 |
Root analytic conductor: |
4.16492 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 24⋅34⋅78, ( :3/2,3/2,3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
0.09130521029 |
L(21) |
≈ |
0.09130521029 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | (1+pT+p2T2)2 |
| 3 | C2 | (1−pT+p2T2)2 |
| 7 | | 1 |
good | 5 | D4×C2 | 1−pT+21pT2+66p2T3−494p2T4+66p5T5+21p7T6−p10T7+p12T8 |
| 11 | D4×C2 | 1+67T+1041T2+52662T3+4142284T4+52662p3T5+1041p6T6+67p9T7+p12T8 |
| 13 | D4 | (1+41T+4478T2+41p3T3+p6T4)2 |
| 17 | D4×C2 | 1+92T+1902T2−17664pT3−78413p2T4−17664p4T5+1902p6T6+92p9T7+p12T8 |
| 19 | D4×C2 | 1−43T−9305T2+110252T3+64683544T4+110252p3T5−9305p6T6−43p9T7+p12T8 |
| 23 | D4×C2 | 1+148T−2526T2+14208T3+182283043T4+14208p3T5−2526p6T6+148p9T7+p12T8 |
| 29 | D4 | (1−77T+9574T2−77p3T3+p6T4)2 |
| 31 | D4×C2 | 1+520T+144563T2+34452600T3+6891960488T4+34452600p3T5+144563p6T6+520p9T7+p12T8 |
| 37 | D4×C2 | 1+7T−74033T2−190568T3+2919934318T4−190568p3T5−74033p6T6+7p9T7+p12T8 |
| 41 | D4 | (1−426T+171106T2−426p3T3+p6T4)2 |
| 43 | D4 | (1+107T+86220T2+107p3T3+p6T4)2 |
| 47 | D4×C2 | 1−576T+89606T2−19885824T3+13421113923T4−19885824p3T5+89606p6T6−576p9T7+p12T8 |
| 53 | D4×C2 | 1−243T−250441T2−2851848T3+64828660998T4−2851848p3T5−250441p6T6−243p9T7+p12T8 |
| 59 | D4×C2 | 1+7T−200565T2−1471008T3−1944620216T4−1471008p3T5−200565p6T6+7p9T7+p12T8 |
| 61 | D4×C2 | 1−224T−410950T2−1604736T3+149727814859T4−1604736p3T5−410950p6T6−224p9T7+p12T8 |
| 67 | D4×C2 | 1+687T−206863T2+53109222T3+228403689708T4+53109222p3T5−206863p6T6+687p9T7+p12T8 |
| 71 | D4 | (1−472T+637018T2−472p3T3+p6T4)2 |
| 73 | D4×C2 | 1+921T+270053T2−184058166T3−147013032042T4−184058166p3T5+270053p6T6+921p9T7+p12T8 |
| 79 | D4×C2 | 1−526T−757051T2−25063374T3+689091996644T4−25063374p3T5−757051p6T6−526p9T7+p12T8 |
| 83 | D4 | (1−221T+945628T2−221p3T3+p6T4)2 |
| 89 | D4×C2 | 1−774T−367486T2+343173024T3+14930800239T4+343173024p3T5−367486p6T6−774p9T7+p12T8 |
| 97 | D4 | (1+1953T+2366992T2+1953p3T3+p6T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.018501530828628551448918060774, −7.936480338683790001176559096966, −7.55565003644032229753366525302, −7.52479019802730056949740865507, −7.46122620358906704236580464815, −7.00465529752423820732720255064, −6.76791457889360561633335853008, −6.33072367385129767772116084212, −5.93609403693294786822780329581, −5.78023253182408109812016082003, −5.20767890743804762396596558351, −5.20122457338249944588479538557, −5.12771536620029890485343004511, −4.31237766489417542031878253864, −4.25416374499708619914777383916, −3.83659349463606102453932133079, −3.74041758720168146754045239081, −2.72249058556384181380223808557, −2.70281736935727476984077404219, −2.60103290262005161987481281344, −2.16788358256481329236877733480, −1.82244994494784831939437671044, −1.34335788745930428083131141337, −0.55162803863153112264212906285, −0.089878875687861273206985580797,
0.089878875687861273206985580797, 0.55162803863153112264212906285, 1.34335788745930428083131141337, 1.82244994494784831939437671044, 2.16788358256481329236877733480, 2.60103290262005161987481281344, 2.70281736935727476984077404219, 2.72249058556384181380223808557, 3.74041758720168146754045239081, 3.83659349463606102453932133079, 4.25416374499708619914777383916, 4.31237766489417542031878253864, 5.12771536620029890485343004511, 5.20122457338249944588479538557, 5.20767890743804762396596558351, 5.78023253182408109812016082003, 5.93609403693294786822780329581, 6.33072367385129767772116084212, 6.76791457889360561633335853008, 7.00465529752423820732720255064, 7.46122620358906704236580464815, 7.52479019802730056949740865507, 7.55565003644032229753366525302, 7.936480338683790001176559096966, 8.018501530828628551448918060774