L(s) = 1 | + 2-s − 7-s + 9-s − 11-s − 14-s + 18-s − 22-s − 25-s − 32-s − 3·37-s + 2·43-s − 50-s − 3·53-s − 63-s − 64-s + 5·71-s − 3·74-s + 77-s − 3·79-s + 2·86-s − 99-s − 3·106-s + 3·107-s − 2·113-s − 126-s + 127-s + 131-s + ⋯ |
L(s) = 1 | + 2-s − 7-s + 9-s − 11-s − 14-s + 18-s − 22-s − 25-s − 32-s − 3·37-s + 2·43-s − 50-s − 3·53-s − 63-s − 64-s + 5·71-s − 3·74-s + 77-s − 3·79-s + 2·86-s − 99-s − 3·106-s + 3·107-s − 2·113-s − 126-s + 127-s + 131-s + ⋯ |
Λ(s)=(=((28⋅74⋅114)s/2ΓC(s)4L(s)Λ(1−s)
Λ(s)=(=((28⋅74⋅114)s/2ΓC(s)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
28⋅74⋅114
|
Sign: |
1
|
Analytic conductor: |
0.000558253 |
Root analytic conductor: |
0.392061 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 28⋅74⋅114, ( :0,0,0,0), 1)
|
Particular Values
L(21) |
≈ |
0.5000821996 |
L(21) |
≈ |
0.5000821996 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C4 | 1−T+T2−T3+T4 |
| 7 | C4 | 1+T+T2+T3+T4 |
| 11 | C4 | 1+T+T2+T3+T4 |
good | 3 | C4×C2 | 1−T2+T4−T6+T8 |
| 5 | C4×C4 | (1−T+T2−T3+T4)(1+T+T2+T3+T4) |
| 13 | C4×C2 | 1−T2+T4−T6+T8 |
| 17 | C4×C2 | 1−T2+T4−T6+T8 |
| 19 | C4×C4 | (1−T+T2−T3+T4)(1+T+T2+T3+T4) |
| 23 | C4×C4 | (1−T+T2−T3+T4)(1+T+T2+T3+T4) |
| 29 | C4×C4 | (1−T+T2−T3+T4)(1+T+T2+T3+T4) |
| 31 | C4×C2 | 1−T2+T4−T6+T8 |
| 37 | C1×C4 | (1+T)4(1−T+T2−T3+T4) |
| 41 | C4×C2 | 1−T2+T4−T6+T8 |
| 43 | C4 | (1−T+T2−T3+T4)2 |
| 47 | C4×C2 | 1−T2+T4−T6+T8 |
| 53 | C1×C4 | (1+T)4(1−T+T2−T3+T4) |
| 59 | C4×C2 | 1−T2+T4−T6+T8 |
| 61 | C4×C2 | 1−T2+T4−T6+T8 |
| 67 | C4×C4 | (1−T+T2−T3+T4)(1+T+T2+T3+T4) |
| 71 | C1×C4 | (1−T)4(1−T+T2−T3+T4) |
| 73 | C4×C2 | 1−T2+T4−T6+T8 |
| 79 | C1×C4 | (1+T)4(1−T+T2−T3+T4) |
| 83 | C4×C4 | (1−T+T2−T3+T4)(1+T+T2+T3+T4) |
| 89 | C1×C1 | (1−T)4(1+T)4 |
| 97 | C4×C4 | (1−T+T2−T3+T4)(1+T+T2+T3+T4) |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.881399509964142578173480154335, −8.404162664876180116596919548400, −8.229789242283892413502559059665, −7.86797693417786416749683553178, −7.74008318749546535126414633261, −7.44695276480689231780791241560, −7.25577357353975236947200284418, −6.77248739965654946590809032076, −6.73663614361854083901690259650, −6.35566491626277483957974503507, −6.30963892285751417809317182030, −5.64883353293780937296635881754, −5.48816545679951374629477683142, −5.22452612829304758347818127061, −5.21194012104362180367471639432, −4.53111078957030650189012729291, −4.43424937145661039226077371555, −4.20732118965755099865304951168, −3.73957420713434814425022933589, −3.45067266594494925634135014028, −3.26922858556763795880648304961, −2.86573205785808218237549130098, −2.20078112360369189262110859727, −2.01470570013651892664210429723, −1.41049860462560735985848609586,
1.41049860462560735985848609586, 2.01470570013651892664210429723, 2.20078112360369189262110859727, 2.86573205785808218237549130098, 3.26922858556763795880648304961, 3.45067266594494925634135014028, 3.73957420713434814425022933589, 4.20732118965755099865304951168, 4.43424937145661039226077371555, 4.53111078957030650189012729291, 5.21194012104362180367471639432, 5.22452612829304758347818127061, 5.48816545679951374629477683142, 5.64883353293780937296635881754, 6.30963892285751417809317182030, 6.35566491626277483957974503507, 6.73663614361854083901690259650, 6.77248739965654946590809032076, 7.25577357353975236947200284418, 7.44695276480689231780791241560, 7.74008318749546535126414633261, 7.86797693417786416749683553178, 8.229789242283892413502559059665, 8.404162664876180116596919548400, 8.881399509964142578173480154335