Properties

Label 308.1.s.b
Level 308308
Weight 11
Character orbit 308.s
Analytic conductor 0.1540.154
Analytic rank 00
Dimension 44
Projective image D10D_{10}
CM discriminant -7
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [308,1,Mod(83,308)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(308, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 5, 9]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("308.83");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 308=22711 308 = 2^{2} \cdot 7 \cdot 11
Weight: k k == 1 1
Character orbit: [χ][\chi] == 308.s (of order 1010, degree 44, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.1537120238910.153712023891
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ10)\Q(\zeta_{10})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x3+x2x+1 x^{4} - x^{3} + x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D10D_{10}
Projective field: Galois closure of 10.2.5797306783837184.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+ζ103q2ζ10q4+ζ102q7ζ104q8+ζ10q9+ζ104q11q14+ζ102q16+ζ104q18ζ102q22+q99+O(q100) q + \zeta_{10}^{3} q^{2} - \zeta_{10} q^{4} + \zeta_{10}^{2} q^{7} - \zeta_{10}^{4} q^{8} + \zeta_{10} q^{9} + \zeta_{10}^{4} q^{11} - q^{14} + \zeta_{10}^{2} q^{16} + \zeta_{10}^{4} q^{18} - \zeta_{10}^{2} q^{22} + \cdots - q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+q2q4q7+q8+q9q114q14q16q18+q22q25q284q32+q363q37+2q43+4q44+5q46q49+q50+4q99+O(q100) 4 q + q^{2} - q^{4} - q^{7} + q^{8} + q^{9} - q^{11} - 4 q^{14} - q^{16} - q^{18} + q^{22} - q^{25} - q^{28} - 4 q^{32} + q^{36} - 3 q^{37} + 2 q^{43} + 4 q^{44} + 5 q^{46} - q^{49} + q^{50}+ \cdots - 4 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/308Z)×\left(\mathbb{Z}/308\mathbb{Z}\right)^\times.

nn 4545 5757 155155
χ(n)\chi(n) 1-1 ζ102-\zeta_{10}^{2} 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
83.1
−0.309017 0.951057i
0.809017 + 0.587785i
−0.309017 + 0.951057i
0.809017 0.587785i
0.809017 + 0.587785i 0 0.309017 + 0.951057i 0 0 −0.809017 + 0.587785i −0.309017 + 0.951057i −0.309017 0.951057i 0
139.1 −0.309017 + 0.951057i 0 −0.809017 0.587785i 0 0 0.309017 + 0.951057i 0.809017 0.587785i 0.809017 + 0.587785i 0
167.1 0.809017 0.587785i 0 0.309017 0.951057i 0 0 −0.809017 0.587785i −0.309017 0.951057i −0.309017 + 0.951057i 0
195.1 −0.309017 0.951057i 0 −0.809017 + 0.587785i 0 0 0.309017 0.951057i 0.809017 + 0.587785i 0.809017 0.587785i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by Q(7)\Q(\sqrt{-7})
44.g even 10 1 inner
308.s odd 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 308.1.s.b yes 4
3.b odd 2 1 2772.1.dl.a 4
4.b odd 2 1 308.1.s.a 4
7.b odd 2 1 CM 308.1.s.b yes 4
7.c even 3 2 2156.1.bm.a 8
7.d odd 6 2 2156.1.bm.a 8
11.b odd 2 1 3388.1.s.b 4
11.c even 5 1 3388.1.g.b 4
11.c even 5 1 3388.1.s.a 4
11.c even 5 1 3388.1.s.e 4
11.c even 5 1 3388.1.s.g 4
11.d odd 10 1 308.1.s.a 4
11.d odd 10 1 3388.1.g.a 4
11.d odd 10 1 3388.1.s.d 4
11.d odd 10 1 3388.1.s.h 4
12.b even 2 1 2772.1.dl.b 4
21.c even 2 1 2772.1.dl.a 4
28.d even 2 1 308.1.s.a 4
28.f even 6 2 2156.1.bm.b 8
28.g odd 6 2 2156.1.bm.b 8
33.f even 10 1 2772.1.dl.b 4
44.c even 2 1 3388.1.s.g 4
44.g even 10 1 inner 308.1.s.b yes 4
44.g even 10 1 3388.1.g.b 4
44.g even 10 1 3388.1.s.a 4
44.g even 10 1 3388.1.s.e 4
44.h odd 10 1 3388.1.g.a 4
44.h odd 10 1 3388.1.s.b 4
44.h odd 10 1 3388.1.s.d 4
44.h odd 10 1 3388.1.s.h 4
77.b even 2 1 3388.1.s.b 4
77.j odd 10 1 3388.1.g.b 4
77.j odd 10 1 3388.1.s.a 4
77.j odd 10 1 3388.1.s.e 4
77.j odd 10 1 3388.1.s.g 4
77.l even 10 1 308.1.s.a 4
77.l even 10 1 3388.1.g.a 4
77.l even 10 1 3388.1.s.d 4
77.l even 10 1 3388.1.s.h 4
77.n even 30 2 2156.1.bm.b 8
77.o odd 30 2 2156.1.bm.b 8
84.h odd 2 1 2772.1.dl.b 4
132.n odd 10 1 2772.1.dl.a 4
231.r odd 10 1 2772.1.dl.b 4
308.g odd 2 1 3388.1.s.g 4
308.s odd 10 1 inner 308.1.s.b yes 4
308.s odd 10 1 3388.1.g.b 4
308.s odd 10 1 3388.1.s.a 4
308.s odd 10 1 3388.1.s.e 4
308.t even 10 1 3388.1.g.a 4
308.t even 10 1 3388.1.s.b 4
308.t even 10 1 3388.1.s.d 4
308.t even 10 1 3388.1.s.h 4
308.bc even 30 2 2156.1.bm.a 8
308.bd odd 30 2 2156.1.bm.a 8
924.bj even 10 1 2772.1.dl.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
308.1.s.a 4 4.b odd 2 1
308.1.s.a 4 11.d odd 10 1
308.1.s.a 4 28.d even 2 1
308.1.s.a 4 77.l even 10 1
308.1.s.b yes 4 1.a even 1 1 trivial
308.1.s.b yes 4 7.b odd 2 1 CM
308.1.s.b yes 4 44.g even 10 1 inner
308.1.s.b yes 4 308.s odd 10 1 inner
2156.1.bm.a 8 7.c even 3 2
2156.1.bm.a 8 7.d odd 6 2
2156.1.bm.a 8 308.bc even 30 2
2156.1.bm.a 8 308.bd odd 30 2
2156.1.bm.b 8 28.f even 6 2
2156.1.bm.b 8 28.g odd 6 2
2156.1.bm.b 8 77.n even 30 2
2156.1.bm.b 8 77.o odd 30 2
2772.1.dl.a 4 3.b odd 2 1
2772.1.dl.a 4 21.c even 2 1
2772.1.dl.a 4 132.n odd 10 1
2772.1.dl.a 4 924.bj even 10 1
2772.1.dl.b 4 12.b even 2 1
2772.1.dl.b 4 33.f even 10 1
2772.1.dl.b 4 84.h odd 2 1
2772.1.dl.b 4 231.r odd 10 1
3388.1.g.a 4 11.d odd 10 1
3388.1.g.a 4 44.h odd 10 1
3388.1.g.a 4 77.l even 10 1
3388.1.g.a 4 308.t even 10 1
3388.1.g.b 4 11.c even 5 1
3388.1.g.b 4 44.g even 10 1
3388.1.g.b 4 77.j odd 10 1
3388.1.g.b 4 308.s odd 10 1
3388.1.s.a 4 11.c even 5 1
3388.1.s.a 4 44.g even 10 1
3388.1.s.a 4 77.j odd 10 1
3388.1.s.a 4 308.s odd 10 1
3388.1.s.b 4 11.b odd 2 1
3388.1.s.b 4 44.h odd 10 1
3388.1.s.b 4 77.b even 2 1
3388.1.s.b 4 308.t even 10 1
3388.1.s.d 4 11.d odd 10 1
3388.1.s.d 4 44.h odd 10 1
3388.1.s.d 4 77.l even 10 1
3388.1.s.d 4 308.t even 10 1
3388.1.s.e 4 11.c even 5 1
3388.1.s.e 4 44.g even 10 1
3388.1.s.e 4 77.j odd 10 1
3388.1.s.e 4 308.s odd 10 1
3388.1.s.g 4 11.c even 5 1
3388.1.s.g 4 44.c even 2 1
3388.1.s.g 4 77.j odd 10 1
3388.1.s.g 4 308.g odd 2 1
3388.1.s.h 4 11.d odd 10 1
3388.1.s.h 4 44.h odd 10 1
3388.1.s.h 4 77.l even 10 1
3388.1.s.h 4 308.t even 10 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T432T431 T_{43}^{2} - T_{43} - 1 acting on S1new(308,[χ])S_{1}^{\mathrm{new}}(308, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4T3+T2++1 T^{4} - T^{3} + T^{2} + \cdots + 1 Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T4+T3+T2++1 T^{4} + T^{3} + T^{2} + \cdots + 1 Copy content Toggle raw display
1111 T4+T3+T2++1 T^{4} + T^{3} + T^{2} + \cdots + 1 Copy content Toggle raw display
1313 T4 T^{4} Copy content Toggle raw display
1717 T4 T^{4} Copy content Toggle raw display
1919 T4 T^{4} Copy content Toggle raw display
2323 T4+5T2+5 T^{4} + 5T^{2} + 5 Copy content Toggle raw display
2929 T4+5T+5 T^{4} + 5T + 5 Copy content Toggle raw display
3131 T4 T^{4} Copy content Toggle raw display
3737 T4+3T3++1 T^{4} + 3 T^{3} + \cdots + 1 Copy content Toggle raw display
4141 T4 T^{4} Copy content Toggle raw display
4343 (T2T1)2 (T^{2} - T - 1)^{2} Copy content Toggle raw display
4747 T4 T^{4} Copy content Toggle raw display
5353 T4+3T3++1 T^{4} + 3 T^{3} + \cdots + 1 Copy content Toggle raw display
5959 T4 T^{4} Copy content Toggle raw display
6161 T4 T^{4} Copy content Toggle raw display
6767 T4+5T2+5 T^{4} + 5T^{2} + 5 Copy content Toggle raw display
7171 T45T3++5 T^{4} - 5 T^{3} + \cdots + 5 Copy content Toggle raw display
7373 T4 T^{4} Copy content Toggle raw display
7979 T4+3T3++1 T^{4} + 3 T^{3} + \cdots + 1 Copy content Toggle raw display
8383 T4 T^{4} Copy content Toggle raw display
8989 T4 T^{4} Copy content Toggle raw display
9797 T4 T^{4} Copy content Toggle raw display
show more
show less