Newspace parameters
Level: | |||
Weight: | |||
Character orbit: | 308.s (of order , degree , minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Projective image: | |
Projective field: | Galois closure of 10.2.5797306783837184.1 |
-expansion
The -expansion and trace form are shown below.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
83.1 |
|
0.809017 | + | 0.587785i | 0 | 0.309017 | + | 0.951057i | 0 | 0 | −0.809017 | + | 0.587785i | −0.309017 | + | 0.951057i | −0.309017 | − | 0.951057i | 0 | ||||||||||||||||||||
139.1 | −0.309017 | + | 0.951057i | 0 | −0.809017 | − | 0.587785i | 0 | 0 | 0.309017 | + | 0.951057i | 0.809017 | − | 0.587785i | 0.809017 | + | 0.587785i | 0 | |||||||||||||||||||||
167.1 | 0.809017 | − | 0.587785i | 0 | 0.309017 | − | 0.951057i | 0 | 0 | −0.809017 | − | 0.587785i | −0.309017 | − | 0.951057i | −0.309017 | + | 0.951057i | 0 | |||||||||||||||||||||
195.1 | −0.309017 | − | 0.951057i | 0 | −0.809017 | + | 0.587785i | 0 | 0 | 0.309017 | − | 0.951057i | 0.809017 | + | 0.587785i | 0.809017 | − | 0.587785i | 0 | |||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | CM by |
44.g | even | 10 | 1 | inner |
308.s | odd | 10 | 1 | inner |
Twists
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .