Properties

Label 308.1.s.b
Level $308$
Weight $1$
Character orbit 308.s
Analytic conductor $0.154$
Analytic rank $0$
Dimension $4$
Projective image $D_{10}$
CM discriminant -7
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [308,1,Mod(83,308)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(308, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 5, 9]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("308.83");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 308 = 2^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 308.s (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.153712023891\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{10}\)
Projective field: Galois closure of 10.2.5797306783837184.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{10}^{3} q^{2} - \zeta_{10} q^{4} + \zeta_{10}^{2} q^{7} - \zeta_{10}^{4} q^{8} + \zeta_{10} q^{9} + \zeta_{10}^{4} q^{11} - q^{14} + \zeta_{10}^{2} q^{16} + \zeta_{10}^{4} q^{18} - \zeta_{10}^{2} q^{22} + \cdots - q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} - q^{4} - q^{7} + q^{8} + q^{9} - q^{11} - 4 q^{14} - q^{16} - q^{18} + q^{22} - q^{25} - q^{28} - 4 q^{32} + q^{36} - 3 q^{37} + 2 q^{43} + 4 q^{44} + 5 q^{46} - q^{49} + q^{50}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/308\mathbb{Z}\right)^\times\).

\(n\) \(45\) \(57\) \(155\)
\(\chi(n)\) \(-1\) \(-\zeta_{10}^{2}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
83.1
−0.309017 0.951057i
0.809017 + 0.587785i
−0.309017 + 0.951057i
0.809017 0.587785i
0.809017 + 0.587785i 0 0.309017 + 0.951057i 0 0 −0.809017 + 0.587785i −0.309017 + 0.951057i −0.309017 0.951057i 0
139.1 −0.309017 + 0.951057i 0 −0.809017 0.587785i 0 0 0.309017 + 0.951057i 0.809017 0.587785i 0.809017 + 0.587785i 0
167.1 0.809017 0.587785i 0 0.309017 0.951057i 0 0 −0.809017 0.587785i −0.309017 0.951057i −0.309017 + 0.951057i 0
195.1 −0.309017 0.951057i 0 −0.809017 + 0.587785i 0 0 0.309017 0.951057i 0.809017 + 0.587785i 0.809017 0.587785i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by \(\Q(\sqrt{-7}) \)
44.g even 10 1 inner
308.s odd 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 308.1.s.b yes 4
3.b odd 2 1 2772.1.dl.a 4
4.b odd 2 1 308.1.s.a 4
7.b odd 2 1 CM 308.1.s.b yes 4
7.c even 3 2 2156.1.bm.a 8
7.d odd 6 2 2156.1.bm.a 8
11.b odd 2 1 3388.1.s.b 4
11.c even 5 1 3388.1.g.b 4
11.c even 5 1 3388.1.s.a 4
11.c even 5 1 3388.1.s.e 4
11.c even 5 1 3388.1.s.g 4
11.d odd 10 1 308.1.s.a 4
11.d odd 10 1 3388.1.g.a 4
11.d odd 10 1 3388.1.s.d 4
11.d odd 10 1 3388.1.s.h 4
12.b even 2 1 2772.1.dl.b 4
21.c even 2 1 2772.1.dl.a 4
28.d even 2 1 308.1.s.a 4
28.f even 6 2 2156.1.bm.b 8
28.g odd 6 2 2156.1.bm.b 8
33.f even 10 1 2772.1.dl.b 4
44.c even 2 1 3388.1.s.g 4
44.g even 10 1 inner 308.1.s.b yes 4
44.g even 10 1 3388.1.g.b 4
44.g even 10 1 3388.1.s.a 4
44.g even 10 1 3388.1.s.e 4
44.h odd 10 1 3388.1.g.a 4
44.h odd 10 1 3388.1.s.b 4
44.h odd 10 1 3388.1.s.d 4
44.h odd 10 1 3388.1.s.h 4
77.b even 2 1 3388.1.s.b 4
77.j odd 10 1 3388.1.g.b 4
77.j odd 10 1 3388.1.s.a 4
77.j odd 10 1 3388.1.s.e 4
77.j odd 10 1 3388.1.s.g 4
77.l even 10 1 308.1.s.a 4
77.l even 10 1 3388.1.g.a 4
77.l even 10 1 3388.1.s.d 4
77.l even 10 1 3388.1.s.h 4
77.n even 30 2 2156.1.bm.b 8
77.o odd 30 2 2156.1.bm.b 8
84.h odd 2 1 2772.1.dl.b 4
132.n odd 10 1 2772.1.dl.a 4
231.r odd 10 1 2772.1.dl.b 4
308.g odd 2 1 3388.1.s.g 4
308.s odd 10 1 inner 308.1.s.b yes 4
308.s odd 10 1 3388.1.g.b 4
308.s odd 10 1 3388.1.s.a 4
308.s odd 10 1 3388.1.s.e 4
308.t even 10 1 3388.1.g.a 4
308.t even 10 1 3388.1.s.b 4
308.t even 10 1 3388.1.s.d 4
308.t even 10 1 3388.1.s.h 4
308.bc even 30 2 2156.1.bm.a 8
308.bd odd 30 2 2156.1.bm.a 8
924.bj even 10 1 2772.1.dl.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
308.1.s.a 4 4.b odd 2 1
308.1.s.a 4 11.d odd 10 1
308.1.s.a 4 28.d even 2 1
308.1.s.a 4 77.l even 10 1
308.1.s.b yes 4 1.a even 1 1 trivial
308.1.s.b yes 4 7.b odd 2 1 CM
308.1.s.b yes 4 44.g even 10 1 inner
308.1.s.b yes 4 308.s odd 10 1 inner
2156.1.bm.a 8 7.c even 3 2
2156.1.bm.a 8 7.d odd 6 2
2156.1.bm.a 8 308.bc even 30 2
2156.1.bm.a 8 308.bd odd 30 2
2156.1.bm.b 8 28.f even 6 2
2156.1.bm.b 8 28.g odd 6 2
2156.1.bm.b 8 77.n even 30 2
2156.1.bm.b 8 77.o odd 30 2
2772.1.dl.a 4 3.b odd 2 1
2772.1.dl.a 4 21.c even 2 1
2772.1.dl.a 4 132.n odd 10 1
2772.1.dl.a 4 924.bj even 10 1
2772.1.dl.b 4 12.b even 2 1
2772.1.dl.b 4 33.f even 10 1
2772.1.dl.b 4 84.h odd 2 1
2772.1.dl.b 4 231.r odd 10 1
3388.1.g.a 4 11.d odd 10 1
3388.1.g.a 4 44.h odd 10 1
3388.1.g.a 4 77.l even 10 1
3388.1.g.a 4 308.t even 10 1
3388.1.g.b 4 11.c even 5 1
3388.1.g.b 4 44.g even 10 1
3388.1.g.b 4 77.j odd 10 1
3388.1.g.b 4 308.s odd 10 1
3388.1.s.a 4 11.c even 5 1
3388.1.s.a 4 44.g even 10 1
3388.1.s.a 4 77.j odd 10 1
3388.1.s.a 4 308.s odd 10 1
3388.1.s.b 4 11.b odd 2 1
3388.1.s.b 4 44.h odd 10 1
3388.1.s.b 4 77.b even 2 1
3388.1.s.b 4 308.t even 10 1
3388.1.s.d 4 11.d odd 10 1
3388.1.s.d 4 44.h odd 10 1
3388.1.s.d 4 77.l even 10 1
3388.1.s.d 4 308.t even 10 1
3388.1.s.e 4 11.c even 5 1
3388.1.s.e 4 44.g even 10 1
3388.1.s.e 4 77.j odd 10 1
3388.1.s.e 4 308.s odd 10 1
3388.1.s.g 4 11.c even 5 1
3388.1.s.g 4 44.c even 2 1
3388.1.s.g 4 77.j odd 10 1
3388.1.s.g 4 308.g odd 2 1
3388.1.s.h 4 11.d odd 10 1
3388.1.s.h 4 44.h odd 10 1
3388.1.s.h 4 77.l even 10 1
3388.1.s.h 4 308.t even 10 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{43}^{2} - T_{43} - 1 \) acting on \(S_{1}^{\mathrm{new}}(308, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{4} + T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} + 5T^{2} + 5 \) Copy content Toggle raw display
$29$ \( T^{4} + 5T + 5 \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} + 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} - T - 1)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( T^{4} + 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( T^{4} + 5T^{2} + 5 \) Copy content Toggle raw display
$71$ \( T^{4} - 5 T^{3} + \cdots + 5 \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} + 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less