L(s) = 1 | + 4·5-s − 6·9-s + 32·13-s − 52·17-s − 48·25-s − 8·29-s + 80·37-s + 68·41-s − 24·45-s − 14·49-s + 16·53-s − 264·61-s + 128·65-s − 272·73-s + 27·81-s − 208·85-s − 172·89-s + 320·97-s − 436·101-s − 88·109-s + 424·113-s − 192·117-s + 464·121-s − 228·125-s + 127-s + 131-s + 137-s + ⋯ |
L(s) = 1 | + 4/5·5-s − 2/3·9-s + 2.46·13-s − 3.05·17-s − 1.91·25-s − 0.275·29-s + 2.16·37-s + 1.65·41-s − 0.533·45-s − 2/7·49-s + 0.301·53-s − 4.32·61-s + 1.96·65-s − 3.72·73-s + 1/3·81-s − 2.44·85-s − 1.93·89-s + 3.29·97-s − 4.31·101-s − 0.807·109-s + 3.75·113-s − 1.64·117-s + 3.83·121-s − 1.82·125-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + ⋯ |
Λ(s)=(=((216⋅34⋅74)s/2ΓC(s)4L(s)Λ(3−s)
Λ(s)=(=((216⋅34⋅74)s/2ΓC(s+1)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
216⋅34⋅74
|
Sign: |
1
|
Analytic conductor: |
7025.82 |
Root analytic conductor: |
3.02577 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 216⋅34⋅74, ( :1,1,1,1), 1)
|
Particular Values
L(23) |
≈ |
0.9684966478 |
L(21) |
≈ |
0.9684966478 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | (1+pT2)2 |
| 7 | C2 | (1+pT2)2 |
good | 5 | D4 | (1−2T+6pT2−2p2T3+p4T4)2 |
| 11 | D4×C2 | 1−464T2+83022T4−464p4T6+p8T8 |
| 13 | D4 | (1−16T+318T2−16p2T3+p4T4)2 |
| 17 | D4 | (1+26T+558T2+26p2T3+p4T4)2 |
| 19 | D4×C2 | 1−1124T2+554982T4−1124p4T6+p8T8 |
| 23 | D4×C2 | 1−1280T2+866382T4−1280p4T6+p8T8 |
| 29 | C2 | (1+2T+p2T2)4 |
| 31 | D4×C2 | 1−1444T2+1594182T4−1444p4T6+p8T8 |
| 37 | D4 | (1−40T+2382T2−40p2T3+p4T4)2 |
| 41 | D4 | (1−34T+102T2−34p2T3+p4T4)2 |
| 43 | D4×C2 | 1−2276T2+2627622T4−2276p4T6+p8T8 |
| 47 | D4×C2 | 1−7156T2+21968742T4−7156p4T6+p8T8 |
| 53 | D4 | (1−8T+3534T2−8p2T3+p4T4)2 |
| 59 | D4×C2 | 1−5204T2+17832582T4−5204p4T6+p8T8 |
| 61 | D4 | (1+132T+8774T2+132p2T3+p4T4)2 |
| 67 | D4×C2 | 1−12244T2+72446790T4−12244p4T6+p8T8 |
| 71 | D4×C2 | 1−12704T2+90771342T4−12704p4T6+p8T8 |
| 73 | D4 | (1+136T+14526T2+136p2T3+p4T4)2 |
| 79 | D4×C2 | 1−11764T2+106099302T4−11764p4T6+p8T8 |
| 83 | D4×C2 | 1−13124T2+100043430T4−13124p4T6+p8T8 |
| 89 | D4 | (1+86T+11622T2+86p2T3+p4T4)2 |
| 97 | D4 | (1−160T+24462T2−160p2T3+p4T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.291268838339024134350217859146, −7.86343455123646010052104887893, −7.82252355433795393305931857835, −7.25341379673887070567247729885, −7.22346200711701779626851718488, −6.92787894064860714349355581566, −6.30223976147776920791094645891, −6.20635598909133884367187035819, −6.17628448713047085910445165886, −5.89818173159035827076170462210, −5.71469711778685439179765640499, −5.57574571497726934448056107360, −4.67097754839930846468383883589, −4.60090305944645756590294390489, −4.49467769692893253723677708308, −4.04301177016299285349902101101, −3.92979426896007412020465047647, −3.30800246523290376398010510346, −3.10883524977804001640267427896, −2.56173708265340695628739762416, −2.42076055408657023679901619994, −1.79319150435058700318023390080, −1.64614872806148064218081681700, −1.07079857837807459949058201527, −0.21708212336815606221865577364,
0.21708212336815606221865577364, 1.07079857837807459949058201527, 1.64614872806148064218081681700, 1.79319150435058700318023390080, 2.42076055408657023679901619994, 2.56173708265340695628739762416, 3.10883524977804001640267427896, 3.30800246523290376398010510346, 3.92979426896007412020465047647, 4.04301177016299285349902101101, 4.49467769692893253723677708308, 4.60090305944645756590294390489, 4.67097754839930846468383883589, 5.57574571497726934448056107360, 5.71469711778685439179765640499, 5.89818173159035827076170462210, 6.17628448713047085910445165886, 6.20635598909133884367187035819, 6.30223976147776920791094645891, 6.92787894064860714349355581566, 7.22346200711701779626851718488, 7.25341379673887070567247729885, 7.82252355433795393305931857835, 7.86343455123646010052104887893, 8.291268838339024134350217859146