Properties

Label 336.3.m.c
Level 336336
Weight 33
Character orbit 336.m
Analytic conductor 9.1559.155
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [336,3,Mod(127,336)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(336, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("336.127");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 336=2437 336 = 2^{4} \cdot 3 \cdot 7
Weight: k k == 3 3
Character orbit: [χ][\chi] == 336.m (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 9.155336882519.15533688251
Analytic rank: 00
Dimension: 44
Coefficient field: Q(3,7)\Q(\sqrt{-3}, \sqrt{-7})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x3x22x+4 x^{4} - x^{3} - x^{2} - 2x + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 24 2^{4}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β2q3+(β1+1)q5β3q73q9+(β3+β2)q11+(2β1+8)q13+(3β3+β2)q15+(3β113)q17++(3β33β2)q99+O(q100) q + \beta_{2} q^{3} + ( - \beta_1 + 1) q^{5} - \beta_{3} q^{7} - 3 q^{9} + ( - \beta_{3} + \beta_{2}) q^{11} + ( - 2 \beta_1 + 8) q^{13} + ( - 3 \beta_{3} + \beta_{2}) q^{15} + ( - 3 \beta_1 - 13) q^{17}+ \cdots + (3 \beta_{3} - 3 \beta_{2}) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+4q512q9+32q1352q1712q258q2912q33+80q37+68q4112q4528q49+16q53+48q57264q61+200q65+60q69272q73++320q97+O(q100) 4 q + 4 q^{5} - 12 q^{9} + 32 q^{13} - 52 q^{17} - 12 q^{25} - 8 q^{29} - 12 q^{33} + 80 q^{37} + 68 q^{41} - 12 q^{45} - 28 q^{49} + 16 q^{53} + 48 q^{57} - 264 q^{61} + 200 q^{65} + 60 q^{69} - 272 q^{73}+ \cdots + 320 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4x3x22x+4 x^{4} - x^{3} - x^{2} - 2x + 4 : Copy content Toggle raw display

β1\beta_{1}== ν3+ν2+3ν+1 -\nu^{3} + \nu^{2} + 3\nu + 1 Copy content Toggle raw display
β2\beta_{2}== ν3+ν2ν3 \nu^{3} + \nu^{2} - \nu - 3 Copy content Toggle raw display
β3\beta_{3}== 2ν35 2\nu^{3} - 5 Copy content Toggle raw display
ν\nu== (β3β2+β1+1)/4 ( \beta_{3} - \beta_{2} + \beta _1 + 1 ) / 4 Copy content Toggle raw display
ν2\nu^{2}== (β3+3β2+β1+3)/4 ( -\beta_{3} + 3\beta_{2} + \beta _1 + 3 ) / 4 Copy content Toggle raw display
ν3\nu^{3}== (β3+5)/2 ( \beta_{3} + 5 ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/336Z)×\left(\mathbb{Z}/336\mathbb{Z}\right)^\times.

nn 8585 113113 127127 241241
χ(n)\chi(n) 11 11 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
127.1
1.39564 0.228425i
−0.895644 + 1.09445i
1.39564 + 0.228425i
−0.895644 1.09445i
0 1.73205i 0 −3.58258 0 2.64575i 0 −3.00000 0
127.2 0 1.73205i 0 5.58258 0 2.64575i 0 −3.00000 0
127.3 0 1.73205i 0 −3.58258 0 2.64575i 0 −3.00000 0
127.4 0 1.73205i 0 5.58258 0 2.64575i 0 −3.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 336.3.m.c 4
3.b odd 2 1 1008.3.m.b 4
4.b odd 2 1 inner 336.3.m.c 4
7.b odd 2 1 2352.3.m.f 4
8.b even 2 1 1344.3.m.a 4
8.d odd 2 1 1344.3.m.a 4
12.b even 2 1 1008.3.m.b 4
28.d even 2 1 2352.3.m.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
336.3.m.c 4 1.a even 1 1 trivial
336.3.m.c 4 4.b odd 2 1 inner
1008.3.m.b 4 3.b odd 2 1
1008.3.m.b 4 12.b even 2 1
1344.3.m.a 4 8.b even 2 1
1344.3.m.a 4 8.d odd 2 1
2352.3.m.f 4 7.b odd 2 1
2352.3.m.f 4 28.d even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T522T520 T_{5}^{2} - 2T_{5} - 20 acting on S3new(336,[χ])S_{3}^{\mathrm{new}}(336, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 (T2+3)2 (T^{2} + 3)^{2} Copy content Toggle raw display
55 (T22T20)2 (T^{2} - 2 T - 20)^{2} Copy content Toggle raw display
77 (T2+7)2 (T^{2} + 7)^{2} Copy content Toggle raw display
1111 T4+20T2+16 T^{4} + 20T^{2} + 16 Copy content Toggle raw display
1313 (T216T20)2 (T^{2} - 16 T - 20)^{2} Copy content Toggle raw display
1717 (T2+26T20)2 (T^{2} + 26 T - 20)^{2} Copy content Toggle raw display
1919 T4+320T2+4096 T^{4} + 320T^{2} + 4096 Copy content Toggle raw display
2323 T4+836T2+71824 T^{4} + 836 T^{2} + 71824 Copy content Toggle raw display
2929 (T+2)4 (T + 2)^{4} Copy content Toggle raw display
3131 T4+2400T2+665856 T^{4} + 2400 T^{2} + 665856 Copy content Toggle raw display
3737 (T240T356)2 (T^{2} - 40 T - 356)^{2} Copy content Toggle raw display
4141 (T234T3260)2 (T^{2} - 34 T - 3260)^{2} Copy content Toggle raw display
4343 T4+5120T2+1048576 T^{4} + 5120 T^{2} + 1048576 Copy content Toggle raw display
4747 T4+1680T2+112896 T^{4} + 1680 T^{2} + 112896 Copy content Toggle raw display
5353 (T28T2084)2 (T^{2} - 8 T - 2084)^{2} Copy content Toggle raw display
5959 T4+8720T2+5837056 T^{4} + 8720 T^{2} + 5837056 Copy content Toggle raw display
6161 (T2+132T+1332)2 (T^{2} + 132 T + 1332)^{2} Copy content Toggle raw display
6767 T4+5712T2+2822400 T^{4} + 5712 T^{2} + 2822400 Copy content Toggle raw display
7171 T4+7460T2+13512976 T^{4} + 7460 T^{2} + 13512976 Copy content Toggle raw display
7373 (T2+136T+3868)2 (T^{2} + 136 T + 3868)^{2} Copy content Toggle raw display
7979 T4+13200T2+37161216 T^{4} + 13200 T^{2} + 37161216 Copy content Toggle raw display
8383 T4+14432T2+14137600 T^{4} + 14432 T^{2} + 14137600 Copy content Toggle raw display
8989 (T2+86T4220)2 (T^{2} + 86 T - 4220)^{2} Copy content Toggle raw display
9797 (T2160T+5644)2 (T^{2} - 160 T + 5644)^{2} Copy content Toggle raw display
show more
show less