L(s) = 1 | + 2·3-s + 2·9-s − 12·11-s + 8·23-s + 8·25-s + 6·27-s − 24·33-s − 16·37-s + 32·47-s + 16·49-s − 4·59-s + 16·61-s + 16·69-s + 8·71-s − 8·73-s + 16·75-s + 11·81-s − 20·83-s − 16·97-s − 24·99-s + 12·107-s − 16·109-s − 32·111-s + 56·121-s + 127-s + 131-s + 137-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 2/3·9-s − 3.61·11-s + 1.66·23-s + 8/5·25-s + 1.15·27-s − 4.17·33-s − 2.63·37-s + 4.66·47-s + 16/7·49-s − 0.520·59-s + 2.04·61-s + 1.92·69-s + 0.949·71-s − 0.936·73-s + 1.84·75-s + 11/9·81-s − 2.19·83-s − 1.62·97-s − 2.41·99-s + 1.16·107-s − 1.53·109-s − 3.03·111-s + 5.09·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯ |
Λ(s)=(=((228⋅34)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((228⋅34)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
228⋅34
|
Sign: |
1
|
Analytic conductor: |
88.3961 |
Root analytic conductor: |
1.75107 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 228⋅34, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.488575444 |
L(21) |
≈ |
2.488575444 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C22 | 1−2T+2T2−2pT3+p2T4 |
good | 5 | D4×C2 | 1−8T2+46T4−8p2T6+p4T8 |
| 7 | D4×C2 | 1−16T2+142T4−16p2T6+p4T8 |
| 11 | C4 | (1+6T+26T2+6pT3+p2T4)2 |
| 13 | C22 | (1+6T2+p2T4)2 |
| 17 | D4×C2 | 1−20T2+358T4−20p2T6+p4T8 |
| 19 | D4×C2 | 1−48T2+1118T4−48p2T6+p4T8 |
| 23 | D4 | (1−4T+30T2−4pT3+p2T4)2 |
| 29 | D4×C2 | 1−8T2+718T4−8p2T6+p4T8 |
| 31 | D4×C2 | 1−96T2+4046T4−96p2T6+p4T8 |
| 37 | D4 | (1+8T+70T2+8pT3+p2T4)2 |
| 41 | D4×C2 | 1−116T2+6406T4−116p2T6+p4T8 |
| 43 | D4×C2 | 1−112T2+6334T4−112p2T6+p4T8 |
| 47 | C2 | (1−8T+pT2)4 |
| 53 | D4×C2 | 1−200T2+15598T4−200p2T6+p4T8 |
| 59 | D4 | (1+2T+114T2+2pT3+p2T4)2 |
| 61 | D4 | (1−8T+118T2−8pT3+p2T4)2 |
| 67 | D4×C2 | 1−160T2+13758T4−160p2T6+p4T8 |
| 71 | D4 | (1−4T−34T2−4pT3+p2T4)2 |
| 73 | C2 | (1+2T+pT2)4 |
| 79 | D4×C2 | 1−128T2+7758T4−128p2T6+p4T8 |
| 83 | D4 | (1+10T+186T2+10pT3+p2T4)2 |
| 89 | C22 | (1−162T2+p2T4)2 |
| 97 | D4 | (1+8T+190T2+8pT3+p2T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.218054529458063796990288542526, −8.095712444197151852803827793526, −7.81154220456290406141470382148, −7.31788822670226719981440106942, −7.31167834096556364237367427665, −7.04115419664090146379155592869, −6.87775482818256847204336463769, −6.87608787923098798869876049769, −5.92109346824573554556271882355, −5.90825067597875359038969952359, −5.58033037672935558922287635504, −5.30617010774444546975566291979, −5.06366884368233726996521205517, −5.01193824464423276237475718191, −4.59214357569285728443681311873, −4.08716589593396748958705805894, −3.98058799524650802644509326142, −3.49651607573513232125593208464, −2.99189521466023003254220494210, −2.81637949391504147846896050728, −2.69981003140452455874462258290, −2.38816110549454468176908182544, −2.04424415332624413801861504578, −1.18538501525557478656219182913, −0.61237961889001587365307450298,
0.61237961889001587365307450298, 1.18538501525557478656219182913, 2.04424415332624413801861504578, 2.38816110549454468176908182544, 2.69981003140452455874462258290, 2.81637949391504147846896050728, 2.99189521466023003254220494210, 3.49651607573513232125593208464, 3.98058799524650802644509326142, 4.08716589593396748958705805894, 4.59214357569285728443681311873, 5.01193824464423276237475718191, 5.06366884368233726996521205517, 5.30617010774444546975566291979, 5.58033037672935558922287635504, 5.90825067597875359038969952359, 5.92109346824573554556271882355, 6.87608787923098798869876049769, 6.87775482818256847204336463769, 7.04115419664090146379155592869, 7.31167834096556364237367427665, 7.31788822670226719981440106942, 7.81154220456290406141470382148, 8.095712444197151852803827793526, 8.218054529458063796990288542526