L(s) = 1 | − 4·3-s + 6·9-s + 24·19-s − 4·25-s + 4·27-s + 8·43-s + 20·49-s − 96·57-s − 8·67-s + 24·73-s + 16·75-s − 37·81-s + 40·97-s + 28·121-s + 127-s − 32·129-s + 131-s + 137-s + 139-s − 80·147-s + 149-s + 151-s + 157-s + 163-s + 167-s + 44·169-s + 144·171-s + ⋯ |
L(s) = 1 | − 2.30·3-s + 2·9-s + 5.50·19-s − 4/5·25-s + 0.769·27-s + 1.21·43-s + 20/7·49-s − 12.7·57-s − 0.977·67-s + 2.80·73-s + 1.84·75-s − 4.11·81-s + 4.06·97-s + 2.54·121-s + 0.0887·127-s − 2.81·129-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 6.59·147-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 3.38·169-s + 11.0·171-s + ⋯ |
Λ(s)=(=((232⋅34)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((232⋅34)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
232⋅34
|
Sign: |
1
|
Analytic conductor: |
1414.33 |
Root analytic conductor: |
2.47639 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 232⋅34, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
1.799986447 |
L(21) |
≈ |
1.799986447 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | (1+2T+pT2)2 |
good | 5 | C22 | (1+2T2+p2T4)2 |
| 7 | C22 | (1−10T2+p2T4)2 |
| 11 | C2 | (1−6T+pT2)2(1+6T+pT2)2 |
| 13 | C22 | (1−22T2+p2T4)2 |
| 17 | C2 | (1−pT2)4 |
| 19 | C2 | (1−6T+pT2)4 |
| 23 | C22 | (1+14T2+p2T4)2 |
| 29 | C22 | (1+50T2+p2T4)2 |
| 31 | C22 | (1−58T2+p2T4)2 |
| 37 | C22 | (1−38T2+p2T4)2 |
| 41 | C22 | (1−50T2+p2T4)2 |
| 43 | C2 | (1−2T+pT2)4 |
| 47 | C22 | (1−34T2+p2T4)2 |
| 53 | C22 | (1+34T2+p2T4)2 |
| 59 | C22 | (1−110T2+p2T4)2 |
| 61 | C22 | (1−118T2+p2T4)2 |
| 67 | C2 | (1+2T+pT2)4 |
| 71 | C22 | (1+110T2+p2T4)2 |
| 73 | C2 | (1−6T+pT2)4 |
| 79 | C22 | (1+38T2+p2T4)2 |
| 83 | C2 | (1−18T+pT2)2(1+18T+pT2)2 |
| 89 | C22 | (1+110T2+p2T4)2 |
| 97 | C2 | (1−10T+pT2)4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.44136780119340210157190534445, −7.21429759978967445603884307278, −6.98618684393061331716006404217, −6.74912287965975433785368990004, −6.41597717823481055078715679937, −5.99766610609118302943099009075, −5.84741892368229345307279839219, −5.78703279602356452623271551160, −5.71894897693456412260101745725, −5.27160400599861948464020251522, −5.09992699319263516767130241532, −5.01255937581447671062533828346, −4.76249596032280168370694187900, −4.42019268857796413045899048568, −4.00163574267424099965367794325, −3.78078906294554177843693138900, −3.37628091851646804423964913142, −3.15473104332175028005239317372, −2.97702873101470854607841532407, −2.60993133914374800312022424799, −2.04296572744955548990160430870, −1.71617496885459994640486993606, −0.898916531007710969705436753683, −0.831482585609022497589204033973, −0.74608280365055639237827980187,
0.74608280365055639237827980187, 0.831482585609022497589204033973, 0.898916531007710969705436753683, 1.71617496885459994640486993606, 2.04296572744955548990160430870, 2.60993133914374800312022424799, 2.97702873101470854607841532407, 3.15473104332175028005239317372, 3.37628091851646804423964913142, 3.78078906294554177843693138900, 4.00163574267424099965367794325, 4.42019268857796413045899048568, 4.76249596032280168370694187900, 5.01255937581447671062533828346, 5.09992699319263516767130241532, 5.27160400599861948464020251522, 5.71894897693456412260101745725, 5.78703279602356452623271551160, 5.84741892368229345307279839219, 5.99766610609118302943099009075, 6.41597717823481055078715679937, 6.74912287965975433785368990004, 6.98618684393061331716006404217, 7.21429759978967445603884307278, 7.44136780119340210157190534445