L(s) = 1 | − 2·3-s − 6·7-s + 5·9-s − 2·11-s + 4·13-s + 6·17-s + 6·19-s + 12·21-s + 6·23-s − 4·25-s − 10·27-s + 6·29-s + 4·33-s + 2·37-s − 8·39-s + 6·41-s − 6·43-s + 24·47-s + 21·49-s − 12·51-s − 12·57-s + 6·59-s + 14·61-s − 30·63-s + 18·67-s − 12·69-s + 6·71-s + ⋯ |
L(s) = 1 | − 1.15·3-s − 2.26·7-s + 5/3·9-s − 0.603·11-s + 1.10·13-s + 1.45·17-s + 1.37·19-s + 2.61·21-s + 1.25·23-s − 4/5·25-s − 1.92·27-s + 1.11·29-s + 0.696·33-s + 0.328·37-s − 1.28·39-s + 0.937·41-s − 0.914·43-s + 3.50·47-s + 3·49-s − 1.68·51-s − 1.58·57-s + 0.781·59-s + 1.79·61-s − 3.77·63-s + 2.19·67-s − 1.44·69-s + 0.712·71-s + ⋯ |
Λ(s)=(=((224⋅134)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((224⋅134)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
224⋅134
|
Sign: |
1
|
Analytic conductor: |
1948.05 |
Root analytic conductor: |
2.57750 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 224⋅134, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.299402127 |
L(21) |
≈ |
2.299402127 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 13 | C2 | (1−2T+pT2)2 |
good | 3 | D4×C2 | 1+2T−T2−2T3+4T4−2pT5−p2T6+2p3T7+p4T8 |
| 5 | C22 | (1+2T2+p2T4)2 |
| 7 | D4×C2 | 1+6T+15T2+6pT3+20pT4+6p2T5+15p2T6+6p3T7+p4T8 |
| 11 | D4×C2 | 1+2T−T2−34T3−140T4−34pT5−p2T6+2p3T7+p4T8 |
| 17 | D4×C2 | 1−6T+T2−6T3+324T4−6pT5+p2T6−6p3T7+p4T8 |
| 19 | D4×C2 | 1−6T+7T2+54T3−204T4+54pT5+7p2T6−6p3T7+p4T8 |
| 23 | D4×C2 | 1−6T−T2+54T3+12T4+54pT5−p2T6−6p3T7+p4T8 |
| 29 | D4×C2 | 1−6T+T2+138T3−660T4+138pT5+p2T6−6p3T7+p4T8 |
| 31 | C22 | (1+30T2+p2T4)2 |
| 37 | D4×C2 | 1−2T+T2+142T3−1508T4+142pT5+p2T6−2p3T7+p4T8 |
| 41 | D4×C2 | 1−6T−47T2−6T3+3732T4−6pT5−47p2T6−6p3T7+p4T8 |
| 43 | D4×C2 | 1+6T−9T2−246T3−1372T4−246pT5−9p2T6+6p3T7+p4T8 |
| 47 | C2 | (1−6T+pT2)4 |
| 53 | C22 | (1+98T2+p2T4)2 |
| 59 | D4×C2 | 1−6T−73T2+54T3+6276T4+54pT5−73p2T6−6p3T7+p4T8 |
| 61 | C22 | (1−7T−12T2−7pT3+p2T4)2 |
| 67 | D4×C2 | 1−18T+127T2−1134T3+12612T4−1134pT5+127p2T6−18p3T7+p4T8 |
| 71 | D4×C2 | 1−6T−97T2+54T3+10092T4+54pT5−97p2T6−6p3T7+p4T8 |
| 73 | D4 | (1−8T+90T2−8pT3+p2T4)2 |
| 79 | C2 | (1+6T+pT2)4 |
| 83 | C2 | (1+4T+pT2)4 |
| 89 | D4×C2 | 1−18T+97T2−882T3+14772T4−882pT5+97p2T6−18p3T7+p4T8 |
| 97 | C22 | (1−9T−16T2−9pT3+p2T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.42367889985727221066954763027, −7.06463475797698566488590736097, −6.77347482949091301193423200549, −6.69773559035657252024482080805, −6.44605905808942323504532348242, −5.97729111066116453338391042122, −5.88759816220109391128941307254, −5.86287536364522807191495214106, −5.71351726054065319705523389686, −5.09881409939928174720054268498, −5.03117479839358553622332199153, −5.02576607554580027059582804928, −4.48367652267624510098683715905, −3.99108539997565107867849714579, −3.98873509949693845456780606314, −3.54334959693829717513962914932, −3.45918456745962179279567063873, −3.36195251581474341094222528916, −2.74608692525034609031094034858, −2.46564452129749095240690330058, −2.35876940303121592843404105727, −1.66137058791137089865050745018, −1.03454823071485268761463618883, −0.76067898754223866459061005006, −0.70595703498957099556870557272,
0.70595703498957099556870557272, 0.76067898754223866459061005006, 1.03454823071485268761463618883, 1.66137058791137089865050745018, 2.35876940303121592843404105727, 2.46564452129749095240690330058, 2.74608692525034609031094034858, 3.36195251581474341094222528916, 3.45918456745962179279567063873, 3.54334959693829717513962914932, 3.98873509949693845456780606314, 3.99108539997565107867849714579, 4.48367652267624510098683715905, 5.02576607554580027059582804928, 5.03117479839358553622332199153, 5.09881409939928174720054268498, 5.71351726054065319705523389686, 5.86287536364522807191495214106, 5.88759816220109391128941307254, 5.97729111066116453338391042122, 6.44605905808942323504532348242, 6.69773559035657252024482080805, 6.77347482949091301193423200549, 7.06463475797698566488590736097, 7.42367889985727221066954763027