L(s) = 1 | + 12·5-s − 2·9-s + 10·13-s − 6·17-s + 70·25-s + 6·29-s + 22·37-s − 18·41-s − 24·45-s − 10·49-s + 6·61-s + 120·65-s + 9·81-s − 72·85-s − 24·89-s + 48·97-s + 66·101-s − 40·109-s − 18·113-s − 20·117-s + 10·121-s + 240·125-s + 127-s + 131-s + 137-s + 139-s + 72·145-s + ⋯ |
L(s) = 1 | + 5.36·5-s − 2/3·9-s + 2.77·13-s − 1.45·17-s + 14·25-s + 1.11·29-s + 3.61·37-s − 2.81·41-s − 3.57·45-s − 1.42·49-s + 0.768·61-s + 14.8·65-s + 81-s − 7.80·85-s − 2.54·89-s + 4.87·97-s + 6.56·101-s − 3.83·109-s − 1.69·113-s − 1.84·117-s + 0.909·121-s + 21.4·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 5.97·145-s + ⋯ |
Λ(s)=(=((224⋅134)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((224⋅134)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
224⋅134
|
Sign: |
1
|
Analytic conductor: |
1948.05 |
Root analytic conductor: |
2.57750 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 224⋅134, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
13.28034148 |
L(21) |
≈ |
13.28034148 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 13 | C2 | (1−5T+pT2)2 |
good | 3 | C23 | 1+2T2−5T4+2p2T6+p4T8 |
| 5 | C2 | (1−3T+pT2)4 |
| 7 | C23 | 1+10T2+51T4+10p2T6+p4T8 |
| 11 | C23 | 1−10T2−21T4−10p2T6+p4T8 |
| 17 | C22 | (1+3T−8T2+3pT3+p2T4)2 |
| 19 | C22×C22 | (1−37T2+p2T4)(1+11T2+p2T4) |
| 23 | C23 | 1+2T2−525T4+2p2T6+p4T8 |
| 29 | C22 | (1−3T+32T2−3pT3+p2T4)2 |
| 31 | C22 | (1−46T2+p2T4)2 |
| 37 | C2 | (1−10T+pT2)2(1−T+pT2)2 |
| 41 | C22 | (1+9T+68T2+9pT3+p2T4)2 |
| 43 | C22×C22 | (1−61T2+p2T4)(1+83T2+p2T4) |
| 47 | C22 | (1−58T2+p2T4)2 |
| 53 | C22 | (1+41T2+p2T4)2 |
| 59 | C23 | 1−106T2+7755T4−106p2T6+p4T8 |
| 61 | C22 | (1−3T+64T2−3pT3+p2T4)2 |
| 67 | C23 | 1−86T2+2907T4−86p2T6+p4T8 |
| 71 | C23 | 1+106T2+6195T4+106p2T6+p4T8 |
| 73 | C22 | (1+T2+p2T4)2 |
| 79 | C22 | (1+146T2+p2T4)2 |
| 83 | C22 | (1+118T2+p2T4)2 |
| 89 | C22 | (1+12T+137T2+12pT3+p2T4)2 |
| 97 | C2 | (1−19T+pT2)2(1−5T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.04187050123495732505650361291, −6.89096421369472557559618420237, −6.50615787271399208738507079661, −6.48470779602025264408663185356, −6.36624380210407394217537853300, −6.03141076952646877595223168477, −5.94509160426653465885009543959, −5.91202368558215649598219805058, −5.83608773451308238364373758240, −5.15406000223628009449234090817, −5.10686273703375726937881321658, −4.93535309589584820946809917498, −4.78957187865614652179639619191, −4.22689262766705898670740590399, −3.93592406260603035914177269084, −3.52160472589566567952065896370, −3.33180932208966774494329845747, −2.83992475314975998045867389890, −2.55975754618398702944466960711, −2.36709004255334101646557394849, −2.17648547397391964082529955453, −1.76872828528182976199289387104, −1.53632524360471275931762260685, −1.29004654483349892036376943181, −0.854807221390718308225457398643,
0.854807221390718308225457398643, 1.29004654483349892036376943181, 1.53632524360471275931762260685, 1.76872828528182976199289387104, 2.17648547397391964082529955453, 2.36709004255334101646557394849, 2.55975754618398702944466960711, 2.83992475314975998045867389890, 3.33180932208966774494329845747, 3.52160472589566567952065896370, 3.93592406260603035914177269084, 4.22689262766705898670740590399, 4.78957187865614652179639619191, 4.93535309589584820946809917498, 5.10686273703375726937881321658, 5.15406000223628009449234090817, 5.83608773451308238364373758240, 5.91202368558215649598219805058, 5.94509160426653465885009543959, 6.03141076952646877595223168477, 6.36624380210407394217537853300, 6.48470779602025264408663185356, 6.50615787271399208738507079661, 6.89096421369472557559618420237, 7.04187050123495732505650361291