Properties

Label 8-832e4-1.1-c1e4-0-4
Degree 88
Conductor 479174066176479174066176
Sign 11
Analytic cond. 1948.051948.05
Root an. cond. 2.577502.57750
Motivic weight 11
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·3-s + 16·9-s + 4·13-s − 6·17-s − 6·19-s + 6·23-s − 14·25-s − 24·27-s + 12·29-s − 8·37-s − 24·39-s − 18·41-s − 36·43-s − 10·49-s + 36·51-s + 36·57-s − 12·59-s + 36·61-s − 6·67-s − 36·69-s − 30·71-s + 84·75-s + 24·79-s + 21·81-s − 24·83-s − 72·87-s − 12·89-s + ⋯
L(s)  = 1  − 3.46·3-s + 16/3·9-s + 1.10·13-s − 1.45·17-s − 1.37·19-s + 1.25·23-s − 2.79·25-s − 4.61·27-s + 2.22·29-s − 1.31·37-s − 3.84·39-s − 2.81·41-s − 5.48·43-s − 1.42·49-s + 5.04·51-s + 4.76·57-s − 1.56·59-s + 4.60·61-s − 0.733·67-s − 4.33·69-s − 3.56·71-s + 9.69·75-s + 2.70·79-s + 7/3·81-s − 2.63·83-s − 7.71·87-s − 1.27·89-s + ⋯

Functional equation

Λ(s)=((224134)s/2ΓC(s)4L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}
Λ(s)=((224134)s/2ΓC(s+1/2)4L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

Invariants

Degree: 88
Conductor: 2241342^{24} \cdot 13^{4}
Sign: 11
Analytic conductor: 1948.051948.05
Root analytic conductor: 2.577502.57750
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (8, 224134, ( :1/2,1/2,1/2,1/2), 1)(8,\ 2^{24} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )

Particular Values

L(1)L(1) \approx 0.14050984980.1405098498
L(12)L(\frac12) \approx 0.14050984980.1405098498
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2 1 1
13C22C_2^2 14T+3T24pT3+p2T4 1 - 4 T + 3 T^{2} - 4 p T^{3} + p^{2} T^{4}
good3D4×C2D_4\times C_2 1+2pT+20T2+16pT3+91T4+16p2T5+20p2T6+2p4T7+p4T8 1 + 2 p T + 20 T^{2} + 16 p T^{3} + 91 T^{4} + 16 p^{2} T^{5} + 20 p^{2} T^{6} + 2 p^{4} T^{7} + p^{4} T^{8}
5C22C_2^2 (1+7T2+p2T4)2 ( 1 + 7 T^{2} + p^{2} T^{4} )^{2}
7C23C_2^3 1+10T2+51T4+10p2T6+p4T8 1 + 10 T^{2} + 51 T^{4} + 10 p^{2} T^{6} + p^{4} T^{8}
11C23C_2^3 110T221T410p2T6+p4T8 1 - 10 T^{2} - 21 T^{4} - 10 p^{2} T^{6} + p^{4} T^{8}
17D4×C2D_4\times C_2 1+6T+5T218T3+60T418pT5+5p2T6+6p3T7+p4T8 1 + 6 T + 5 T^{2} - 18 T^{3} + 60 T^{4} - 18 p T^{5} + 5 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8}
19D4×C2D_4\times C_2 1+6T8T2+36T3+891T4+36pT58p2T6+6p3T7+p4T8 1 + 6 T - 8 T^{2} + 36 T^{3} + 891 T^{4} + 36 p T^{5} - 8 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8}
23D4×C2D_4\times C_2 16T16T236T3+1347T436pT516p2T66p3T7+p4T8 1 - 6 T - 16 T^{2} - 36 T^{3} + 1347 T^{4} - 36 p T^{5} - 16 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8}
29D4×C2D_4\times C_2 112T+109T2732T3+4272T4732pT5+109p2T612p3T7+p4T8 1 - 12 T + 109 T^{2} - 732 T^{3} + 4272 T^{4} - 732 p T^{5} + 109 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8}
31D4×C2D_4\times C_2 120T2678T420p2T6+p4T8 1 - 20 T^{2} - 678 T^{4} - 20 p^{2} T^{6} + p^{4} T^{8}
37D4×C2D_4\times C_2 1+8T+T288T3+232T488pT5+p2T6+8p3T7+p4T8 1 + 8 T + T^{2} - 88 T^{3} + 232 T^{4} - 88 p T^{5} + p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8}
41C22C_2^2 (1+9T+68T2+9pT3+p2T4)2 ( 1 + 9 T + 68 T^{2} + 9 p T^{3} + p^{2} T^{4} )^{2}
43D4×C2D_4\times C_2 1+36T+622T2+6840T3+52827T4+6840pT5+622p2T6+36p3T7+p4T8 1 + 36 T + 622 T^{2} + 6840 T^{3} + 52827 T^{4} + 6840 p T^{5} + 622 p^{2} T^{6} + 36 p^{3} T^{7} + p^{4} T^{8}
47D4×C2D_4\times C_2 120T2+1818T420p2T6+p4T8 1 - 20 T^{2} + 1818 T^{4} - 20 p^{2} T^{6} + p^{4} T^{8}
53D4×C2D_4\times C_2 126T2+1899T426p2T6+p4T8 1 - 26 T^{2} + 1899 T^{4} - 26 p^{2} T^{6} + p^{4} T^{8}
59D4×C2D_4\times C_2 1+12T+38T2144T3741T4144pT5+38p2T6+12p3T7+p4T8 1 + 12 T + 38 T^{2} - 144 T^{3} - 741 T^{4} - 144 p T^{5} + 38 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8}
61D4×C2D_4\times C_2 136T+653T27956T3+71472T47956pT5+653p2T636p3T7+p4T8 1 - 36 T + 653 T^{2} - 7956 T^{3} + 71472 T^{4} - 7956 p T^{5} + 653 p^{2} T^{6} - 36 p^{3} T^{7} + p^{4} T^{8}
67D4×C2D_4\times C_2 1+6T80T2108T3+6555T4108pT580p2T6+6p3T7+p4T8 1 + 6 T - 80 T^{2} - 108 T^{3} + 6555 T^{4} - 108 p T^{5} - 80 p^{2} T^{6} + 6 p^{3} T^{7} + p^{4} T^{8}
71D4×C2D_4\times C_2 1+30T+508T2+6240T3+59523T4+6240pT5+508p2T6+30p3T7+p4T8 1 + 30 T + 508 T^{2} + 6240 T^{3} + 59523 T^{4} + 6240 p T^{5} + 508 p^{2} T^{6} + 30 p^{3} T^{7} + p^{4} T^{8}
73C22C_2^2 (1119T2+p2T4)2 ( 1 - 119 T^{2} + p^{2} T^{4} )^{2}
79C2C_2 (16T+pT2)4 ( 1 - 6 T + p T^{2} )^{4}
83D4D_{4} (1+12T+190T2+12pT3+p2T4)2 ( 1 + 12 T + 190 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2}
89D4×C2D_4\times C_2 1+12T+94T2+552T31533T4+552pT5+94p2T6+12p3T7+p4T8 1 + 12 T + 94 T^{2} + 552 T^{3} - 1533 T^{4} + 552 p T^{5} + 94 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8}
97C23C_2^3 1+158T2+15555T4+158p2T6+p4T8 1 + 158 T^{2} + 15555 T^{4} + 158 p^{2} T^{6} + p^{4} T^{8}
show more
show less
   L(s)=p j=18(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−7.03366007459414717175505264081, −6.89996849363826723968302867436, −6.83888435743621444972540711504, −6.57360282905079723222950624988, −6.40636232791891529767911468965, −6.17560028935469063834556694163, −6.03931729273489295845264799227, −5.53209272287889459887740227687, −5.47007774894861552043292521614, −5.33961648966361732952469451127, −5.26524818147576124065907596841, −4.72668638025934901512950445731, −4.58934915258781921975665968458, −4.34557721680566296593583925808, −4.32168144835051336123744765097, −3.67942922941807242589105191151, −3.46179129825555789843229820554, −3.10090611796105007247769626061, −3.04721831298631488284570755128, −2.24988707983899543841508529829, −1.82910717526818829491881239249, −1.55733465656631249562244936218, −1.51583098123029121049522291003, −0.38385948736561622085202010658, −0.29863194188471402552217509324, 0.29863194188471402552217509324, 0.38385948736561622085202010658, 1.51583098123029121049522291003, 1.55733465656631249562244936218, 1.82910717526818829491881239249, 2.24988707983899543841508529829, 3.04721831298631488284570755128, 3.10090611796105007247769626061, 3.46179129825555789843229820554, 3.67942922941807242589105191151, 4.32168144835051336123744765097, 4.34557721680566296593583925808, 4.58934915258781921975665968458, 4.72668638025934901512950445731, 5.26524818147576124065907596841, 5.33961648966361732952469451127, 5.47007774894861552043292521614, 5.53209272287889459887740227687, 6.03931729273489295845264799227, 6.17560028935469063834556694163, 6.40636232791891529767911468965, 6.57360282905079723222950624988, 6.83888435743621444972540711504, 6.89996849363826723968302867436, 7.03366007459414717175505264081

Graph of the ZZ-function along the critical line