Properties

Label 8-832e4-1.1-c3e4-0-3
Degree 88
Conductor 479174066176479174066176
Sign 11
Analytic cond. 5.80707×1065.80707\times 10^{6}
Root an. cond. 7.006397.00639
Motivic weight 33
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank 00

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 108·9-s + 500·25-s − 1.24e3·53-s + 3.52e3·61-s + 7.29e3·81-s + 5.99e3·101-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 4.39e3·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s − 5.40e4·225-s + 227-s + ⋯
L(s)  = 1  − 4·9-s + 4·25-s − 3.21·53-s + 7.40·61-s + 10·81-s + 5.90·101-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + 0.000508·157-s + 0.000480·163-s + 0.000463·167-s + 2·169-s + 0.000439·173-s + 0.000417·179-s + 0.000410·181-s + 0.000378·191-s + 0.000372·193-s + 0.000361·197-s + 0.000356·199-s + 0.000326·211-s + 0.000300·223-s − 16·225-s + 0.000292·227-s + ⋯

Functional equation

Λ(s)=((224134)s/2ΓC(s)4L(s)=(Λ(4s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(4-s)\end{aligned}
Λ(s)=((224134)s/2ΓC(s+3/2)4L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+3/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

Invariants

Degree: 88
Conductor: 2241342^{24} \cdot 13^{4}
Sign: 11
Analytic conductor: 5.80707×1065.80707\times 10^{6}
Root analytic conductor: 7.006397.00639
Motivic weight: 33
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: 00
Selberg data: (8, 224134, ( :3/2,3/2,3/2,3/2), 1)(8,\ 2^{24} \cdot 13^{4} ,\ ( \ : 3/2, 3/2, 3/2, 3/2 ),\ 1 )

Particular Values

L(2)L(2) \approx 3.6670446653.667044665
L(12)L(\frac12) \approx 3.6670446653.667044665
L(52)L(\frac{5}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppGal(Fp)\Gal(F_p)Fp(T)F_p(T)
bad2 1 1
13C2C_2 (1p3T2)2 ( 1 - p^{3} T^{2} )^{2}
good3C2C_2 (1+p3T2)4 ( 1 + p^{3} T^{2} )^{4}
5C2C_2 (1p3T2)4 ( 1 - p^{3} T^{2} )^{4}
7C22C_2^2×\timesC22C_2^2 (138T+722T238p3T3+p6T4)(1+38T+722T2+38p3T3+p6T4) ( 1 - 38 T + 722 T^{2} - 38 p^{3} T^{3} + p^{6} T^{4} )( 1 + 38 T + 722 T^{2} + 38 p^{3} T^{3} + p^{6} T^{4} )
11C22C_2^2×\timesC22C_2^2 (190T+4050T290p3T3+p6T4)(1+90T+4050T2+90p3T3+p6T4) ( 1 - 90 T + 4050 T^{2} - 90 p^{3} T^{3} + p^{6} T^{4} )( 1 + 90 T + 4050 T^{2} + 90 p^{3} T^{3} + p^{6} T^{4} )
17C22C_2^2 (1+9774T2+p6T4)2 ( 1 + 9774 T^{2} + p^{6} T^{4} )^{2}
19C22C_2^2×\timesC22C_2^2 (170T+2450T270p3T3+p6T4)(1+70T+2450T2+70p3T3+p6T4) ( 1 - 70 T + 2450 T^{2} - 70 p^{3} T^{3} + p^{6} T^{4} )( 1 + 70 T + 2450 T^{2} + 70 p^{3} T^{3} + p^{6} T^{4} )
23C2C_2 (1+p3T2)4 ( 1 + p^{3} T^{2} )^{4}
29C22C_2^2 (114922T2+p6T4)2 ( 1 - 14922 T^{2} + p^{6} T^{4} )^{2}
31C22C_2^2×\timesC22C_2^2 (170T+2450T270p3T3+p6T4)(1+70T+2450T2+70p3T3+p6T4) ( 1 - 70 T + 2450 T^{2} - 70 p^{3} T^{3} + p^{6} T^{4} )( 1 + 70 T + 2450 T^{2} + 70 p^{3} T^{3} + p^{6} T^{4} )
37C2C_2 (1p3T2)4 ( 1 - p^{3} T^{2} )^{4}
41C2C_2 (1p3T2)4 ( 1 - p^{3} T^{2} )^{4}
43C2C_2 (1+p3T2)4 ( 1 + p^{3} T^{2} )^{4}
47C22C_2^2×\timesC22C_2^2 (1378T+71442T2378p3T3+p6T4)(1+378T+71442T2+378p3T3+p6T4) ( 1 - 378 T + 71442 T^{2} - 378 p^{3} T^{3} + p^{6} T^{4} )( 1 + 378 T + 71442 T^{2} + 378 p^{3} T^{3} + p^{6} T^{4} )
53C2C_2 (1+310T+p3T2)4 ( 1 + 310 T + p^{3} T^{2} )^{4}
59C22C_2^2×\timesC22C_2^2 (1350T+61250T2350p3T3+p6T4)(1+350T+61250T2+350p3T3+p6T4) ( 1 - 350 T + 61250 T^{2} - 350 p^{3} T^{3} + p^{6} T^{4} )( 1 + 350 T + 61250 T^{2} + 350 p^{3} T^{3} + p^{6} T^{4} )
61C2C_2 (1882T+p3T2)4 ( 1 - 882 T + p^{3} T^{2} )^{4}
67C22C_2^2×\timesC22C_2^2 (1902T+406802T2902p3T3+p6T4)(1+902T+406802T2+902p3T3+p6T4) ( 1 - 902 T + 406802 T^{2} - 902 p^{3} T^{3} + p^{6} T^{4} )( 1 + 902 T + 406802 T^{2} + 902 p^{3} T^{3} + p^{6} T^{4} )
71C22C_2^2×\timesC22C_2^2 (11630T+1328450T21630p3T3+p6T4)(1+1630T+1328450T2+1630p3T3+p6T4) ( 1 - 1630 T + 1328450 T^{2} - 1630 p^{3} T^{3} + p^{6} T^{4} )( 1 + 1630 T + 1328450 T^{2} + 1630 p^{3} T^{3} + p^{6} T^{4} )
73C2C_2 (1p3T2)4 ( 1 - p^{3} T^{2} )^{4}
79C2C_2 (1+p3T2)4 ( 1 + p^{3} T^{2} )^{4}
83C22C_2^2×\timesC22C_2^2 (12114T+2234498T22114p3T3+p6T4)(1+2114T+2234498T2+2114p3T3+p6T4) ( 1 - 2114 T + 2234498 T^{2} - 2114 p^{3} T^{3} + p^{6} T^{4} )( 1 + 2114 T + 2234498 T^{2} + 2114 p^{3} T^{3} + p^{6} T^{4} )
89C2C_2 (1p3T2)4 ( 1 - p^{3} T^{2} )^{4}
97C2C_2 (1p3T2)4 ( 1 - p^{3} T^{2} )^{4}
show more
show less
   L(s)=p j=18(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−6.74427609543950363013272719585, −6.66741823588049881352802126708, −6.54353147828337698666703729377, −6.19836069450057957923683370302, −6.00266617180120222714258715862, −5.71288533483853666480131884160, −5.53095773382860514302446923384, −5.22198392408249587632132871924, −5.14720708482754466018344338874, −4.89866130620108967124075190529, −4.71194650319374922516667788164, −4.42718308063220226979175489295, −3.83455120889396641225603986057, −3.63177432487925349151270965328, −3.25502484387917690549498134236, −3.16890763955198625754088585273, −3.10794551535238449424817721915, −2.55723349344410007001382285977, −2.37351055017806941999448819779, −2.28997265261417135209137563614, −1.82872458409628457585154922889, −1.13903369046564440223613104004, −0.68327313731946522732718797010, −0.66981311173468473817263537004, −0.34912008491548672885151133734, 0.34912008491548672885151133734, 0.66981311173468473817263537004, 0.68327313731946522732718797010, 1.13903369046564440223613104004, 1.82872458409628457585154922889, 2.28997265261417135209137563614, 2.37351055017806941999448819779, 2.55723349344410007001382285977, 3.10794551535238449424817721915, 3.16890763955198625754088585273, 3.25502484387917690549498134236, 3.63177432487925349151270965328, 3.83455120889396641225603986057, 4.42718308063220226979175489295, 4.71194650319374922516667788164, 4.89866130620108967124075190529, 5.14720708482754466018344338874, 5.22198392408249587632132871924, 5.53095773382860514302446923384, 5.71288533483853666480131884160, 6.00266617180120222714258715862, 6.19836069450057957923683370302, 6.54353147828337698666703729377, 6.66741823588049881352802126708, 6.74427609543950363013272719585

Graph of the ZZ-function along the critical line