L(s) = 1 | − 108·9-s + 500·25-s − 1.24e3·53-s + 3.52e3·61-s + 7.29e3·81-s + 5.99e3·101-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 4.39e3·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s − 5.40e4·225-s + 227-s + ⋯ |
L(s) = 1 | − 4·9-s + 4·25-s − 3.21·53-s + 7.40·61-s + 10·81-s + 5.90·101-s + 0.000698·127-s + 0.000666·131-s + 0.000623·137-s + 0.000610·139-s + 0.000549·149-s + 0.000538·151-s + 0.000508·157-s + 0.000480·163-s + 0.000463·167-s + 2·169-s + 0.000439·173-s + 0.000417·179-s + 0.000410·181-s + 0.000378·191-s + 0.000372·193-s + 0.000361·197-s + 0.000356·199-s + 0.000326·211-s + 0.000300·223-s − 16·225-s + 0.000292·227-s + ⋯ |
Λ(s)=(=((224⋅134)s/2ΓC(s)4L(s)Λ(4−s)
Λ(s)=(=((224⋅134)s/2ΓC(s+3/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
224⋅134
|
Sign: |
1
|
Analytic conductor: |
5.80707×106 |
Root analytic conductor: |
7.00639 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 224⋅134, ( :3/2,3/2,3/2,3/2), 1)
|
Particular Values
L(2) |
≈ |
3.667044665 |
L(21) |
≈ |
3.667044665 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 13 | C2 | (1−p3T2)2 |
good | 3 | C2 | (1+p3T2)4 |
| 5 | C2 | (1−p3T2)4 |
| 7 | C22×C22 | (1−38T+722T2−38p3T3+p6T4)(1+38T+722T2+38p3T3+p6T4) |
| 11 | C22×C22 | (1−90T+4050T2−90p3T3+p6T4)(1+90T+4050T2+90p3T3+p6T4) |
| 17 | C22 | (1+9774T2+p6T4)2 |
| 19 | C22×C22 | (1−70T+2450T2−70p3T3+p6T4)(1+70T+2450T2+70p3T3+p6T4) |
| 23 | C2 | (1+p3T2)4 |
| 29 | C22 | (1−14922T2+p6T4)2 |
| 31 | C22×C22 | (1−70T+2450T2−70p3T3+p6T4)(1+70T+2450T2+70p3T3+p6T4) |
| 37 | C2 | (1−p3T2)4 |
| 41 | C2 | (1−p3T2)4 |
| 43 | C2 | (1+p3T2)4 |
| 47 | C22×C22 | (1−378T+71442T2−378p3T3+p6T4)(1+378T+71442T2+378p3T3+p6T4) |
| 53 | C2 | (1+310T+p3T2)4 |
| 59 | C22×C22 | (1−350T+61250T2−350p3T3+p6T4)(1+350T+61250T2+350p3T3+p6T4) |
| 61 | C2 | (1−882T+p3T2)4 |
| 67 | C22×C22 | (1−902T+406802T2−902p3T3+p6T4)(1+902T+406802T2+902p3T3+p6T4) |
| 71 | C22×C22 | (1−1630T+1328450T2−1630p3T3+p6T4)(1+1630T+1328450T2+1630p3T3+p6T4) |
| 73 | C2 | (1−p3T2)4 |
| 79 | C2 | (1+p3T2)4 |
| 83 | C22×C22 | (1−2114T+2234498T2−2114p3T3+p6T4)(1+2114T+2234498T2+2114p3T3+p6T4) |
| 89 | C2 | (1−p3T2)4 |
| 97 | C2 | (1−p3T2)4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.74427609543950363013272719585, −6.66741823588049881352802126708, −6.54353147828337698666703729377, −6.19836069450057957923683370302, −6.00266617180120222714258715862, −5.71288533483853666480131884160, −5.53095773382860514302446923384, −5.22198392408249587632132871924, −5.14720708482754466018344338874, −4.89866130620108967124075190529, −4.71194650319374922516667788164, −4.42718308063220226979175489295, −3.83455120889396641225603986057, −3.63177432487925349151270965328, −3.25502484387917690549498134236, −3.16890763955198625754088585273, −3.10794551535238449424817721915, −2.55723349344410007001382285977, −2.37351055017806941999448819779, −2.28997265261417135209137563614, −1.82872458409628457585154922889, −1.13903369046564440223613104004, −0.68327313731946522732718797010, −0.66981311173468473817263537004, −0.34912008491548672885151133734,
0.34912008491548672885151133734, 0.66981311173468473817263537004, 0.68327313731946522732718797010, 1.13903369046564440223613104004, 1.82872458409628457585154922889, 2.28997265261417135209137563614, 2.37351055017806941999448819779, 2.55723349344410007001382285977, 3.10794551535238449424817721915, 3.16890763955198625754088585273, 3.25502484387917690549498134236, 3.63177432487925349151270965328, 3.83455120889396641225603986057, 4.42718308063220226979175489295, 4.71194650319374922516667788164, 4.89866130620108967124075190529, 5.14720708482754466018344338874, 5.22198392408249587632132871924, 5.53095773382860514302446923384, 5.71288533483853666480131884160, 6.00266617180120222714258715862, 6.19836069450057957923683370302, 6.54353147828337698666703729377, 6.66741823588049881352802126708, 6.74427609543950363013272719585