L(s) = 1 | + 6·4-s − 8·13-s + 19·16-s + 32·47-s − 48·52-s + 36·64-s + 48·67-s − 81-s + 40·89-s − 24·101-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 12·169-s + 173-s + 179-s + 181-s + 192·188-s + 191-s + 193-s + 197-s + ⋯ |
L(s) = 1 | + 3·4-s − 2.21·13-s + 19/4·16-s + 4.66·47-s − 6.65·52-s + 9/2·64-s + 5.86·67-s − 1/9·81-s + 4.23·89-s − 2.38·101-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.923·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 14.0·188-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + ⋯ |
Λ(s)=(=((34⋅178)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((34⋅178)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
34⋅178
|
Sign: |
1
|
Analytic conductor: |
2297.12 |
Root analytic conductor: |
2.63116 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 34⋅178, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
7.076695451 |
L(21) |
≈ |
7.076695451 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 3 | C22 | 1+T4 |
| 17 | | 1 |
good | 2 | C22 | (1−3T2+p2T4)2 |
| 5 | C22 | (1+p2T4)2 |
| 7 | C23 | 1−94T4+p4T8 |
| 11 | C23 | 1−206T4+p4T8 |
| 13 | C2 | (1+2T+pT2)4 |
| 19 | C22 | (1−22T2+p2T4)2 |
| 23 | C23 | 1−158T4+p4T8 |
| 29 | C22 | (1+p2T4)2 |
| 31 | C23 | 1+194T4+p4T8 |
| 37 | C23 | 1−2638T4+p4T8 |
| 41 | C22×C22 | (1−80T2+p2T4)(1+80T2+p2T4) |
| 43 | C22 | (1−70T2+p2T4)2 |
| 47 | C2 | (1−8T+pT2)4 |
| 53 | C22 | (1−70T2+p2T4)2 |
| 59 | C22 | (1+26T2+p2T4)2 |
| 61 | C23 | 1−4078T4+p4T8 |
| 67 | C2 | (1−12T+pT2)4 |
| 71 | C23 | 1−10078T4+p4T8 |
| 73 | C22 | (1+p2T4)2 |
| 79 | C23 | 1+7682T4+p4T8 |
| 83 | C22 | (1−22T2+p2T4)2 |
| 89 | C2 | (1−10T+pT2)4 |
| 97 | C23 | 1−14974T4+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.24855481526897250176318709932, −7.09446953773647332066480738063, −6.82774272324287118620274547717, −6.65067942891167034305187767781, −6.49149435301475766187675589905, −6.33353520234343961750241681204, −5.94583115840277757570483074124, −5.71789386427427522169938518220, −5.41011017483418362932083092950, −5.40548779991955172021917267478, −5.02926382336883831668377067466, −4.74623200455836089600652149511, −4.54294338165024402937305069733, −3.99799860331990027746249921808, −3.77751178235424578980270167458, −3.65216790123326349616584524263, −3.31417160239880765780433016567, −2.75412167457608938169415456766, −2.50622774027584122798337491566, −2.40105704805085328042931097410, −2.36943668241269769636834931132, −2.06619823248521273630654774686, −1.53927791480247816916690213492, −1.04011391364982053581673139782, −0.60823112969553030483359783508,
0.60823112969553030483359783508, 1.04011391364982053581673139782, 1.53927791480247816916690213492, 2.06619823248521273630654774686, 2.36943668241269769636834931132, 2.40105704805085328042931097410, 2.50622774027584122798337491566, 2.75412167457608938169415456766, 3.31417160239880765780433016567, 3.65216790123326349616584524263, 3.77751178235424578980270167458, 3.99799860331990027746249921808, 4.54294338165024402937305069733, 4.74623200455836089600652149511, 5.02926382336883831668377067466, 5.40548779991955172021917267478, 5.41011017483418362932083092950, 5.71789386427427522169938518220, 5.94583115840277757570483074124, 6.33353520234343961750241681204, 6.49149435301475766187675589905, 6.65067942891167034305187767781, 6.82774272324287118620274547717, 7.09446953773647332066480738063, 7.24855481526897250176318709932