L(s) = 1 | − 8·7-s − 2·9-s − 16·23-s − 2·25-s − 16·31-s − 8·41-s + 16·47-s + 12·49-s + 16·63-s + 40·73-s − 16·79-s + 3·81-s − 24·89-s − 24·97-s − 8·103-s + 16·113-s + 12·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 128·161-s + 163-s + 167-s + ⋯ |
L(s) = 1 | − 3.02·7-s − 2/3·9-s − 3.33·23-s − 2/5·25-s − 2.87·31-s − 1.24·41-s + 2.33·47-s + 12/7·49-s + 2.01·63-s + 4.68·73-s − 1.80·79-s + 1/3·81-s − 2.54·89-s − 2.43·97-s − 0.788·103-s + 1.50·113-s + 1.09·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 10.0·161-s + 0.0783·163-s + 0.0773·167-s + ⋯ |
Λ(s)=(=((224⋅34⋅54)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((224⋅34⋅54)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
224⋅34⋅54
|
Sign: |
1
|
Analytic conductor: |
3452.97 |
Root analytic conductor: |
2.76868 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 224⋅34⋅54, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.2154672166 |
L(21) |
≈ |
0.2154672166 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C2 | (1+T2)2 |
| 5 | C2 | (1+T2)2 |
good | 7 | C2 | (1+2T+pT2)4 |
| 11 | D4×C2 | 1−12T2+86T4−12p2T6+p4T8 |
| 13 | D4×C2 | 1−20T2+246T4−20p2T6+p4T8 |
| 17 | C22 | (1+22T2+p2T4)2 |
| 19 | C22 | (1+10T2+p2T4)2 |
| 23 | C2 | (1+4T+pT2)4 |
| 29 | D4×C2 | 1−12T2+950T4−12p2T6+p4T8 |
| 31 | D4 | (1+8T+66T2+8pT3+p2T4)2 |
| 37 | D4×C2 | 1−52T2+1686T4−52p2T6+p4T8 |
| 41 | D4 | (1+4T+38T2+4pT3+p2T4)2 |
| 43 | C22 | (1−38T2+p2T4)2 |
| 47 | C2 | (1−4T+pT2)4 |
| 53 | D4×C2 | 1−44T2−810T4−44p2T6+p4T8 |
| 59 | D4×C2 | 1−140T2+10134T4−140p2T6+p4T8 |
| 61 | C22 | (1−106T2+p2T4)2 |
| 67 | C22 | (1−86T2+p2T4)2 |
| 71 | C22 | (1+94T2+p2T4)2 |
| 73 | C2 | (1−10T+pT2)4 |
| 79 | D4 | (1+8T+66T2+8pT3+p2T4)2 |
| 83 | C22 | (1−102T2+p2T4)2 |
| 89 | D4 | (1+12T+166T2+12pT3+p2T4)2 |
| 97 | D4 | (1+12T+182T2+12pT3+p2T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−6.99121605412110690812953763470, −6.88227941416571216392276642571, −6.85116923055588219210580640108, −6.49068351820525679154532060251, −6.21691590901304568780341913096, −6.01805275804041882373092162212, −6.00275596419484365203390871301, −5.62549663075719825389114024011, −5.45019366981643563032793904104, −5.20202905090805955754151396484, −5.12603774425515550222629191946, −4.37583482859781024001677135729, −4.16650753041499254463902367224, −4.11004329381752899349374828778, −3.69788109104502254868975505276, −3.63581330590336187451320717646, −3.33007010539779106782583254286, −3.06127327217362228335623237215, −2.82846252159331757408680160201, −2.45274542310608711658207058440, −2.06663045020158302442231631586, −1.86095555405810258373922402236, −1.50093436801183107640589598370, −0.51045255556737264298873622346, −0.18572842624847487243850789688,
0.18572842624847487243850789688, 0.51045255556737264298873622346, 1.50093436801183107640589598370, 1.86095555405810258373922402236, 2.06663045020158302442231631586, 2.45274542310608711658207058440, 2.82846252159331757408680160201, 3.06127327217362228335623237215, 3.33007010539779106782583254286, 3.63581330590336187451320717646, 3.69788109104502254868975505276, 4.11004329381752899349374828778, 4.16650753041499254463902367224, 4.37583482859781024001677135729, 5.12603774425515550222629191946, 5.20202905090805955754151396484, 5.45019366981643563032793904104, 5.62549663075719825389114024011, 6.00275596419484365203390871301, 6.01805275804041882373092162212, 6.21691590901304568780341913096, 6.49068351820525679154532060251, 6.85116923055588219210580640108, 6.88227941416571216392276642571, 6.99121605412110690812953763470