L(s) = 1 | + 4·3-s − 12·7-s + 8·9-s + 16·13-s − 48·21-s − 8·25-s + 12·27-s − 24·31-s + 8·37-s + 64·39-s + 24·43-s + 72·49-s + 24·61-s − 96·63-s − 20·73-s − 32·75-s + 23·81-s − 192·91-s − 96·93-s − 20·97-s + 12·103-s + 32·111-s + 128·117-s + 8·121-s + 127-s + 96·129-s + 131-s + ⋯ |
L(s) = 1 | + 2.30·3-s − 4.53·7-s + 8/3·9-s + 4.43·13-s − 10.4·21-s − 8/5·25-s + 2.30·27-s − 4.31·31-s + 1.31·37-s + 10.2·39-s + 3.65·43-s + 72/7·49-s + 3.07·61-s − 12.0·63-s − 2.34·73-s − 3.69·75-s + 23/9·81-s − 20.1·91-s − 9.95·93-s − 2.03·97-s + 1.18·103-s + 3.03·111-s + 11.8·117-s + 8/11·121-s + 0.0887·127-s + 8.45·129-s + 0.0873·131-s + ⋯ |
Λ(s)=(=((224⋅34⋅54)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((224⋅34⋅54)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
224⋅34⋅54
|
Sign: |
1
|
Analytic conductor: |
3452.97 |
Root analytic conductor: |
2.76868 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 224⋅34⋅54, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
4.631058124 |
L(21) |
≈ |
4.631058124 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C22 | 1−4T+8T2−4pT3+p2T4 |
| 5 | C22 | 1+8T2+p2T4 |
good | 7 | C22 | (1+6T+18T2+6pT3+p2T4)2 |
| 11 | C22 | (1−4T2+p2T4)2 |
| 13 | C22 | (1−8T+32T2−8pT3+p2T4)2 |
| 17 | C22×C22 | (1−16T2+p2T4)(1+16T2+p2T4) |
| 19 | C2 | (1−pT2)4 |
| 23 | C22 | (1+p2T4)2 |
| 29 | C22 | (1+40T2+p2T4)2 |
| 31 | C2 | (1+6T+pT2)4 |
| 37 | C22 | (1−4T+8T2−4pT3+p2T4)2 |
| 41 | C2 | (1−pT2)4 |
| 43 | C22 | (1−12T+72T2−12pT3+p2T4)2 |
| 47 | C23 | 1−1918T4+p4T8 |
| 53 | C22×C22 | (1−56T2+p2T4)(1+56T2+p2T4) |
| 59 | C22 | (1+100T2+p2T4)2 |
| 61 | C2 | (1−6T+pT2)4 |
| 67 | C22 | (1+p2T4)2 |
| 71 | C22 | (1−70T2+p2T4)2 |
| 73 | C2 | (1−6T+pT2)2(1+16T+pT2)2 |
| 79 | C22 | (1−122T2+p2T4)2 |
| 83 | C23 | 1−13294T4+p4T8 |
| 89 | C22 | (1+106T2+p2T4)2 |
| 97 | C2 | (1−8T+pT2)2(1+18T+pT2)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.21882941327888256406858854487, −6.87767047453469128926400276933, −6.76966120296393570104665420764, −6.62826075166578478662473603672, −6.23455631638341328741887238318, −5.97309433578686554779372364654, −5.90926478266370462989078415274, −5.85424792360133125057835830602, −5.56348688227006660243153311328, −5.45704910753024725401134782941, −4.64707340392894239388772660273, −4.13490424023523478376184179693, −3.96348929002292576271643311653, −3.85850916374785836390468947240, −3.79801806628595102645844559849, −3.57291182840820787735519729547, −3.33969957863949245298513156681, −3.13842988822093115157566073242, −2.75670639595133415185613565284, −2.70076205535659613484145516909, −2.28317104324599484769650277545, −1.68327855821624396119253193632, −1.65470950003202506112875733631, −0.77536610629000277239181481738, −0.53415062381479163906272182814,
0.53415062381479163906272182814, 0.77536610629000277239181481738, 1.65470950003202506112875733631, 1.68327855821624396119253193632, 2.28317104324599484769650277545, 2.70076205535659613484145516909, 2.75670639595133415185613565284, 3.13842988822093115157566073242, 3.33969957863949245298513156681, 3.57291182840820787735519729547, 3.79801806628595102645844559849, 3.85850916374785836390468947240, 3.96348929002292576271643311653, 4.13490424023523478376184179693, 4.64707340392894239388772660273, 5.45704910753024725401134782941, 5.56348688227006660243153311328, 5.85424792360133125057835830602, 5.90926478266370462989078415274, 5.97309433578686554779372364654, 6.23455631638341328741887238318, 6.62826075166578478662473603672, 6.76966120296393570104665420764, 6.87767047453469128926400276933, 7.21882941327888256406858854487