Properties

Label 960.2.v.j.257.2
Level $960$
Weight $2$
Character 960.257
Analytic conductor $7.666$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [960,2,Mod(257,960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(960, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("960.257");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 960 = 2^{6} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 960.v (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.66563859404\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 480)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 257.2
Root \(0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 960.257
Dual form 960.2.v.j.833.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.70711 - 0.292893i) q^{3} +(-0.707107 + 2.12132i) q^{5} +(-3.00000 - 3.00000i) q^{7} +(2.82843 - 1.00000i) q^{9} -4.24264i q^{11} +(4.00000 - 4.00000i) q^{13} +(-0.585786 + 3.82843i) q^{15} +(-1.41421 + 1.41421i) q^{17} +(-6.00000 - 4.24264i) q^{21} +(-4.00000 - 3.00000i) q^{25} +(4.53553 - 2.53553i) q^{27} +4.24264 q^{29} -6.00000 q^{31} +(-1.24264 - 7.24264i) q^{33} +(8.48528 - 4.24264i) q^{35} +(2.00000 + 2.00000i) q^{37} +(5.65685 - 8.00000i) q^{39} +(6.00000 - 6.00000i) q^{43} +(0.121320 + 6.70711i) q^{45} +(8.48528 - 8.48528i) q^{47} +11.0000i q^{49} +(-2.00000 + 2.82843i) q^{51} +(-2.82843 - 2.82843i) q^{53} +(9.00000 + 3.00000i) q^{55} -4.24264 q^{59} +6.00000 q^{61} +(-11.4853 - 5.48528i) q^{63} +(5.65685 + 11.3137i) q^{65} +8.48528i q^{71} +(-5.00000 + 5.00000i) q^{73} +(-7.70711 - 3.94975i) q^{75} +(-12.7279 + 12.7279i) q^{77} -6.00000i q^{79} +(7.00000 - 5.65685i) q^{81} +(8.48528 + 8.48528i) q^{83} +(-2.00000 - 4.00000i) q^{85} +(7.24264 - 1.24264i) q^{87} -8.48528 q^{89} -24.0000 q^{91} +(-10.2426 + 1.75736i) q^{93} +(-5.00000 - 5.00000i) q^{97} +(-4.24264 - 12.0000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 12 q^{7} + 16 q^{13} - 8 q^{15} - 24 q^{21} - 16 q^{25} + 4 q^{27} - 24 q^{31} + 12 q^{33} + 8 q^{37} + 24 q^{43} - 8 q^{45} - 8 q^{51} + 36 q^{55} + 24 q^{61} - 12 q^{63} - 20 q^{73} - 28 q^{75}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/960\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(577\) \(641\) \(901\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.70711 0.292893i 0.985599 0.169102i
\(4\) 0 0
\(5\) −0.707107 + 2.12132i −0.316228 + 0.948683i
\(6\) 0 0
\(7\) −3.00000 3.00000i −1.13389 1.13389i −0.989524 0.144370i \(-0.953885\pi\)
−0.144370 0.989524i \(-0.546115\pi\)
\(8\) 0 0
\(9\) 2.82843 1.00000i 0.942809 0.333333i
\(10\) 0 0
\(11\) 4.24264i 1.27920i −0.768706 0.639602i \(-0.779099\pi\)
0.768706 0.639602i \(-0.220901\pi\)
\(12\) 0 0
\(13\) 4.00000 4.00000i 1.10940 1.10940i 0.116171 0.993229i \(-0.462938\pi\)
0.993229 0.116171i \(-0.0370621\pi\)
\(14\) 0 0
\(15\) −0.585786 + 3.82843i −0.151249 + 0.988496i
\(16\) 0 0
\(17\) −1.41421 + 1.41421i −0.342997 + 0.342997i −0.857493 0.514496i \(-0.827979\pi\)
0.514496 + 0.857493i \(0.327979\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) −6.00000 4.24264i −1.30931 0.925820i
\(22\) 0 0
\(23\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(24\) 0 0
\(25\) −4.00000 3.00000i −0.800000 0.600000i
\(26\) 0 0
\(27\) 4.53553 2.53553i 0.872864 0.487964i
\(28\) 0 0
\(29\) 4.24264 0.787839 0.393919 0.919145i \(-0.371119\pi\)
0.393919 + 0.919145i \(0.371119\pi\)
\(30\) 0 0
\(31\) −6.00000 −1.07763 −0.538816 0.842424i \(-0.681128\pi\)
−0.538816 + 0.842424i \(0.681128\pi\)
\(32\) 0 0
\(33\) −1.24264 7.24264i −0.216316 1.26078i
\(34\) 0 0
\(35\) 8.48528 4.24264i 1.43427 0.717137i
\(36\) 0 0
\(37\) 2.00000 + 2.00000i 0.328798 + 0.328798i 0.852129 0.523331i \(-0.175311\pi\)
−0.523331 + 0.852129i \(0.675311\pi\)
\(38\) 0 0
\(39\) 5.65685 8.00000i 0.905822 1.28103i
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 6.00000 6.00000i 0.914991 0.914991i −0.0816682 0.996660i \(-0.526025\pi\)
0.996660 + 0.0816682i \(0.0260248\pi\)
\(44\) 0 0
\(45\) 0.121320 + 6.70711i 0.0180854 + 0.999836i
\(46\) 0 0
\(47\) 8.48528 8.48528i 1.23771 1.23771i 0.276769 0.960936i \(-0.410736\pi\)
0.960936 0.276769i \(-0.0892637\pi\)
\(48\) 0 0
\(49\) 11.0000i 1.57143i
\(50\) 0 0
\(51\) −2.00000 + 2.82843i −0.280056 + 0.396059i
\(52\) 0 0
\(53\) −2.82843 2.82843i −0.388514 0.388514i 0.485643 0.874157i \(-0.338586\pi\)
−0.874157 + 0.485643i \(0.838586\pi\)
\(54\) 0 0
\(55\) 9.00000 + 3.00000i 1.21356 + 0.404520i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −4.24264 −0.552345 −0.276172 0.961108i \(-0.589066\pi\)
−0.276172 + 0.961108i \(0.589066\pi\)
\(60\) 0 0
\(61\) 6.00000 0.768221 0.384111 0.923287i \(-0.374508\pi\)
0.384111 + 0.923287i \(0.374508\pi\)
\(62\) 0 0
\(63\) −11.4853 5.48528i −1.44701 0.691080i
\(64\) 0 0
\(65\) 5.65685 + 11.3137i 0.701646 + 1.40329i
\(66\) 0 0
\(67\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 8.48528i 1.00702i 0.863990 + 0.503509i \(0.167958\pi\)
−0.863990 + 0.503509i \(0.832042\pi\)
\(72\) 0 0
\(73\) −5.00000 + 5.00000i −0.585206 + 0.585206i −0.936329 0.351123i \(-0.885800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) 0 0
\(75\) −7.70711 3.94975i −0.889940 0.456078i
\(76\) 0 0
\(77\) −12.7279 + 12.7279i −1.45048 + 1.45048i
\(78\) 0 0
\(79\) 6.00000i 0.675053i −0.941316 0.337526i \(-0.890410\pi\)
0.941316 0.337526i \(-0.109590\pi\)
\(80\) 0 0
\(81\) 7.00000 5.65685i 0.777778 0.628539i
\(82\) 0 0
\(83\) 8.48528 + 8.48528i 0.931381 + 0.931381i 0.997792 0.0664117i \(-0.0211551\pi\)
−0.0664117 + 0.997792i \(0.521155\pi\)
\(84\) 0 0
\(85\) −2.00000 4.00000i −0.216930 0.433861i
\(86\) 0 0
\(87\) 7.24264 1.24264i 0.776493 0.133225i
\(88\) 0 0
\(89\) −8.48528 −0.899438 −0.449719 0.893170i \(-0.648476\pi\)
−0.449719 + 0.893170i \(0.648476\pi\)
\(90\) 0 0
\(91\) −24.0000 −2.51588
\(92\) 0 0
\(93\) −10.2426 + 1.75736i −1.06211 + 0.182230i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −5.00000 5.00000i −0.507673 0.507673i 0.406138 0.913812i \(-0.366875\pi\)
−0.913812 + 0.406138i \(0.866875\pi\)
\(98\) 0 0
\(99\) −4.24264 12.0000i −0.426401 1.20605i
\(100\) 0 0
\(101\) 9.89949i 0.985037i 0.870302 + 0.492518i \(0.163924\pi\)
−0.870302 + 0.492518i \(0.836076\pi\)
\(102\) 0 0
\(103\) 3.00000 3.00000i 0.295599 0.295599i −0.543688 0.839287i \(-0.682973\pi\)
0.839287 + 0.543688i \(0.182973\pi\)
\(104\) 0 0
\(105\) 13.2426 9.72792i 1.29235 0.949348i
\(106\) 0 0
\(107\) −8.48528 + 8.48528i −0.820303 + 0.820303i −0.986151 0.165848i \(-0.946964\pi\)
0.165848 + 0.986151i \(0.446964\pi\)
\(108\) 0 0
\(109\) 2.00000i 0.191565i 0.995402 + 0.0957826i \(0.0305354\pi\)
−0.995402 + 0.0957826i \(0.969465\pi\)
\(110\) 0 0
\(111\) 4.00000 + 2.82843i 0.379663 + 0.268462i
\(112\) 0 0
\(113\) 1.41421 + 1.41421i 0.133038 + 0.133038i 0.770490 0.637452i \(-0.220012\pi\)
−0.637452 + 0.770490i \(0.720012\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 7.31371 15.3137i 0.676153 1.41575i
\(118\) 0 0
\(119\) 8.48528 0.777844
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 9.19239 6.36396i 0.822192 0.569210i
\(126\) 0 0
\(127\) 3.00000 + 3.00000i 0.266207 + 0.266207i 0.827570 0.561363i \(-0.189723\pi\)
−0.561363 + 0.827570i \(0.689723\pi\)
\(128\) 0 0
\(129\) 8.48528 12.0000i 0.747087 1.05654i
\(130\) 0 0
\(131\) 12.7279i 1.11204i 0.831168 + 0.556022i \(0.187673\pi\)
−0.831168 + 0.556022i \(0.812327\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 2.17157 + 11.4142i 0.186899 + 0.982379i
\(136\) 0 0
\(137\) −7.07107 + 7.07107i −0.604122 + 0.604122i −0.941404 0.337282i \(-0.890493\pi\)
0.337282 + 0.941404i \(0.390493\pi\)
\(138\) 0 0
\(139\) 12.0000i 1.01783i 0.860818 + 0.508913i \(0.169953\pi\)
−0.860818 + 0.508913i \(0.830047\pi\)
\(140\) 0 0
\(141\) 12.0000 16.9706i 1.01058 1.42918i
\(142\) 0 0
\(143\) −16.9706 16.9706i −1.41915 1.41915i
\(144\) 0 0
\(145\) −3.00000 + 9.00000i −0.249136 + 0.747409i
\(146\) 0 0
\(147\) 3.22183 + 18.7782i 0.265732 + 1.54880i
\(148\) 0 0
\(149\) 1.41421 0.115857 0.0579284 0.998321i \(-0.481550\pi\)
0.0579284 + 0.998321i \(0.481550\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) −2.58579 + 5.41421i −0.209048 + 0.437713i
\(154\) 0 0
\(155\) 4.24264 12.7279i 0.340777 1.02233i
\(156\) 0 0
\(157\) −8.00000 8.00000i −0.638470 0.638470i 0.311708 0.950178i \(-0.399099\pi\)
−0.950178 + 0.311708i \(0.899099\pi\)
\(158\) 0 0
\(159\) −5.65685 4.00000i −0.448618 0.317221i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 12.0000 12.0000i 0.939913 0.939913i −0.0583818 0.998294i \(-0.518594\pi\)
0.998294 + 0.0583818i \(0.0185941\pi\)
\(164\) 0 0
\(165\) 16.2426 + 2.48528i 1.26449 + 0.193479i
\(166\) 0 0
\(167\) −8.48528 + 8.48528i −0.656611 + 0.656611i −0.954577 0.297966i \(-0.903692\pi\)
0.297966 + 0.954577i \(0.403692\pi\)
\(168\) 0 0
\(169\) 19.0000i 1.46154i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 9.89949 + 9.89949i 0.752645 + 0.752645i 0.974972 0.222327i \(-0.0713654\pi\)
−0.222327 + 0.974972i \(0.571365\pi\)
\(174\) 0 0
\(175\) 3.00000 + 21.0000i 0.226779 + 1.58745i
\(176\) 0 0
\(177\) −7.24264 + 1.24264i −0.544390 + 0.0934026i
\(178\) 0 0
\(179\) −21.2132 −1.58555 −0.792775 0.609515i \(-0.791364\pi\)
−0.792775 + 0.609515i \(0.791364\pi\)
\(180\) 0 0
\(181\) −2.00000 −0.148659 −0.0743294 0.997234i \(-0.523682\pi\)
−0.0743294 + 0.997234i \(0.523682\pi\)
\(182\) 0 0
\(183\) 10.2426 1.75736i 0.757158 0.129908i
\(184\) 0 0
\(185\) −5.65685 + 2.82843i −0.415900 + 0.207950i
\(186\) 0 0
\(187\) 6.00000 + 6.00000i 0.438763 + 0.438763i
\(188\) 0 0
\(189\) −21.2132 6.00000i −1.54303 0.436436i
\(190\) 0 0
\(191\) 8.48528i 0.613973i 0.951714 + 0.306987i \(0.0993207\pi\)
−0.951714 + 0.306987i \(0.900679\pi\)
\(192\) 0 0
\(193\) 17.0000 17.0000i 1.22369 1.22369i 0.257375 0.966312i \(-0.417142\pi\)
0.966312 0.257375i \(-0.0828576\pi\)
\(194\) 0 0
\(195\) 12.9706 + 17.6569i 0.928841 + 1.26443i
\(196\) 0 0
\(197\) −5.65685 + 5.65685i −0.403034 + 0.403034i −0.879301 0.476267i \(-0.841990\pi\)
0.476267 + 0.879301i \(0.341990\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −12.7279 12.7279i −0.893325 0.893325i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 12.0000 0.826114 0.413057 0.910705i \(-0.364461\pi\)
0.413057 + 0.910705i \(0.364461\pi\)
\(212\) 0 0
\(213\) 2.48528 + 14.4853i 0.170289 + 0.992515i
\(214\) 0 0
\(215\) 8.48528 + 16.9706i 0.578691 + 1.15738i
\(216\) 0 0
\(217\) 18.0000 + 18.0000i 1.22192 + 1.22192i
\(218\) 0 0
\(219\) −7.07107 + 10.0000i −0.477818 + 0.675737i
\(220\) 0 0
\(221\) 11.3137i 0.761042i
\(222\) 0 0
\(223\) −3.00000 + 3.00000i −0.200895 + 0.200895i −0.800383 0.599489i \(-0.795371\pi\)
0.599489 + 0.800383i \(0.295371\pi\)
\(224\) 0 0
\(225\) −14.3137 4.48528i −0.954247 0.299019i
\(226\) 0 0
\(227\) 12.7279 12.7279i 0.844782 0.844782i −0.144695 0.989476i \(-0.546220\pi\)
0.989476 + 0.144695i \(0.0462199\pi\)
\(228\) 0 0
\(229\) 6.00000i 0.396491i 0.980152 + 0.198246i \(0.0635244\pi\)
−0.980152 + 0.198246i \(0.936476\pi\)
\(230\) 0 0
\(231\) −18.0000 + 25.4558i −1.18431 + 1.67487i
\(232\) 0 0
\(233\) 18.3848 + 18.3848i 1.20443 + 1.20443i 0.972806 + 0.231621i \(0.0744028\pi\)
0.231621 + 0.972806i \(0.425597\pi\)
\(234\) 0 0
\(235\) 12.0000 + 24.0000i 0.782794 + 1.56559i
\(236\) 0 0
\(237\) −1.75736 10.2426i −0.114153 0.665331i
\(238\) 0 0
\(239\) −25.4558 −1.64660 −0.823301 0.567605i \(-0.807870\pi\)
−0.823301 + 0.567605i \(0.807870\pi\)
\(240\) 0 0
\(241\) −12.0000 −0.772988 −0.386494 0.922292i \(-0.626314\pi\)
−0.386494 + 0.922292i \(0.626314\pi\)
\(242\) 0 0
\(243\) 10.2929 11.7071i 0.660289 0.751011i
\(244\) 0 0
\(245\) −23.3345 7.77817i −1.49079 0.496929i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 16.9706 + 12.0000i 1.07547 + 0.760469i
\(250\) 0 0
\(251\) 4.24264i 0.267793i 0.990995 + 0.133897i \(0.0427490\pi\)
−0.990995 + 0.133897i \(0.957251\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −4.58579 6.24264i −0.287173 0.390929i
\(256\) 0 0
\(257\) 15.5563 15.5563i 0.970378 0.970378i −0.0291953 0.999574i \(-0.509294\pi\)
0.999574 + 0.0291953i \(0.00929448\pi\)
\(258\) 0 0
\(259\) 12.0000i 0.745644i
\(260\) 0 0
\(261\) 12.0000 4.24264i 0.742781 0.262613i
\(262\) 0 0
\(263\) −8.48528 8.48528i −0.523225 0.523225i 0.395319 0.918544i \(-0.370634\pi\)
−0.918544 + 0.395319i \(0.870634\pi\)
\(264\) 0 0
\(265\) 8.00000 4.00000i 0.491436 0.245718i
\(266\) 0 0
\(267\) −14.4853 + 2.48528i −0.886485 + 0.152097i
\(268\) 0 0
\(269\) 18.3848 1.12094 0.560470 0.828175i \(-0.310621\pi\)
0.560470 + 0.828175i \(0.310621\pi\)
\(270\) 0 0
\(271\) −24.0000 −1.45790 −0.728948 0.684569i \(-0.759990\pi\)
−0.728948 + 0.684569i \(0.759990\pi\)
\(272\) 0 0
\(273\) −40.9706 + 7.02944i −2.47965 + 0.425441i
\(274\) 0 0
\(275\) −12.7279 + 16.9706i −0.767523 + 1.02336i
\(276\) 0 0
\(277\) 22.0000 + 22.0000i 1.32185 + 1.32185i 0.912276 + 0.409576i \(0.134323\pi\)
0.409576 + 0.912276i \(0.365677\pi\)
\(278\) 0 0
\(279\) −16.9706 + 6.00000i −1.01600 + 0.359211i
\(280\) 0 0
\(281\) 8.48528i 0.506189i −0.967442 0.253095i \(-0.918552\pi\)
0.967442 0.253095i \(-0.0814484\pi\)
\(282\) 0 0
\(283\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 13.0000i 0.764706i
\(290\) 0 0
\(291\) −10.0000 7.07107i −0.586210 0.414513i
\(292\) 0 0
\(293\) −22.6274 22.6274i −1.32191 1.32191i −0.912231 0.409677i \(-0.865641\pi\)
−0.409677 0.912231i \(-0.634359\pi\)
\(294\) 0 0
\(295\) 3.00000 9.00000i 0.174667 0.524000i
\(296\) 0 0
\(297\) −10.7574 19.2426i −0.624205 1.11657i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −36.0000 −2.07501
\(302\) 0 0
\(303\) 2.89949 + 16.8995i 0.166572 + 0.970851i
\(304\) 0 0
\(305\) −4.24264 + 12.7279i −0.242933 + 0.728799i
\(306\) 0 0
\(307\) 18.0000 + 18.0000i 1.02731 + 1.02731i 0.999616 + 0.0276979i \(0.00881765\pi\)
0.0276979 + 0.999616i \(0.491182\pi\)
\(308\) 0 0
\(309\) 4.24264 6.00000i 0.241355 0.341328i
\(310\) 0 0
\(311\) 8.48528i 0.481156i 0.970630 + 0.240578i \(0.0773370\pi\)
−0.970630 + 0.240578i \(0.922663\pi\)
\(312\) 0 0
\(313\) 17.0000 17.0000i 0.960897 0.960897i −0.0383669 0.999264i \(-0.512216\pi\)
0.999264 + 0.0383669i \(0.0122156\pi\)
\(314\) 0 0
\(315\) 19.7574 20.4853i 1.11320 1.15421i
\(316\) 0 0
\(317\) 9.89949 9.89949i 0.556011 0.556011i −0.372158 0.928169i \(-0.621382\pi\)
0.928169 + 0.372158i \(0.121382\pi\)
\(318\) 0 0
\(319\) 18.0000i 1.00781i
\(320\) 0 0
\(321\) −12.0000 + 16.9706i −0.669775 + 0.947204i
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −28.0000 + 4.00000i −1.55316 + 0.221880i
\(326\) 0 0
\(327\) 0.585786 + 3.41421i 0.0323941 + 0.188806i
\(328\) 0 0
\(329\) −50.9117 −2.80685
\(330\) 0 0
\(331\) −12.0000 −0.659580 −0.329790 0.944054i \(-0.606978\pi\)
−0.329790 + 0.944054i \(0.606978\pi\)
\(332\) 0 0
\(333\) 7.65685 + 3.65685i 0.419593 + 0.200394i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 7.00000 + 7.00000i 0.381314 + 0.381314i 0.871576 0.490261i \(-0.163099\pi\)
−0.490261 + 0.871576i \(0.663099\pi\)
\(338\) 0 0
\(339\) 2.82843 + 2.00000i 0.153619 + 0.108625i
\(340\) 0 0
\(341\) 25.4558i 1.37851i
\(342\) 0 0
\(343\) 12.0000 12.0000i 0.647939 0.647939i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 12.7279 12.7279i 0.683271 0.683271i −0.277465 0.960736i \(-0.589494\pi\)
0.960736 + 0.277465i \(0.0894943\pi\)
\(348\) 0 0
\(349\) 18.0000i 0.963518i 0.876304 + 0.481759i \(0.160002\pi\)
−0.876304 + 0.481759i \(0.839998\pi\)
\(350\) 0 0
\(351\) 8.00000 28.2843i 0.427008 1.50970i
\(352\) 0 0
\(353\) −1.41421 1.41421i −0.0752710 0.0752710i 0.668469 0.743740i \(-0.266950\pi\)
−0.743740 + 0.668469i \(0.766950\pi\)
\(354\) 0 0
\(355\) −18.0000 6.00000i −0.955341 0.318447i
\(356\) 0 0
\(357\) 14.4853 2.48528i 0.766642 0.131535i
\(358\) 0 0
\(359\) 16.9706 0.895672 0.447836 0.894116i \(-0.352195\pi\)
0.447836 + 0.894116i \(0.352195\pi\)
\(360\) 0 0
\(361\) 19.0000 1.00000
\(362\) 0 0
\(363\) −11.9497 + 2.05025i −0.627199 + 0.107610i
\(364\) 0 0
\(365\) −7.07107 14.1421i −0.370117 0.740233i
\(366\) 0 0
\(367\) 15.0000 + 15.0000i 0.782994 + 0.782994i 0.980335 0.197341i \(-0.0632307\pi\)
−0.197341 + 0.980335i \(0.563231\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 16.9706i 0.881068i
\(372\) 0 0
\(373\) 20.0000 20.0000i 1.03556 1.03556i 0.0362168 0.999344i \(-0.488469\pi\)
0.999344 0.0362168i \(-0.0115307\pi\)
\(374\) 0 0
\(375\) 13.8284 13.5563i 0.714097 0.700047i
\(376\) 0 0
\(377\) 16.9706 16.9706i 0.874028 0.874028i
\(378\) 0 0
\(379\) 36.0000i 1.84920i −0.380945 0.924598i \(-0.624401\pi\)
0.380945 0.924598i \(-0.375599\pi\)
\(380\) 0 0
\(381\) 6.00000 + 4.24264i 0.307389 + 0.217357i
\(382\) 0 0
\(383\) 25.4558 + 25.4558i 1.30073 + 1.30073i 0.927898 + 0.372835i \(0.121614\pi\)
0.372835 + 0.927898i \(0.378386\pi\)
\(384\) 0 0
\(385\) −18.0000 36.0000i −0.917365 1.83473i
\(386\) 0 0
\(387\) 10.9706 22.9706i 0.557665 1.16766i
\(388\) 0 0
\(389\) 15.5563 0.788738 0.394369 0.918952i \(-0.370963\pi\)
0.394369 + 0.918952i \(0.370963\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 3.72792 + 21.7279i 0.188049 + 1.09603i
\(394\) 0 0
\(395\) 12.7279 + 4.24264i 0.640411 + 0.213470i
\(396\) 0 0
\(397\) 14.0000 + 14.0000i 0.702640 + 0.702640i 0.964976 0.262337i \(-0.0844931\pi\)
−0.262337 + 0.964976i \(0.584493\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 14.1421i 0.706225i 0.935581 + 0.353112i \(0.114877\pi\)
−0.935581 + 0.353112i \(0.885123\pi\)
\(402\) 0 0
\(403\) −24.0000 + 24.0000i −1.19553 + 1.19553i
\(404\) 0 0
\(405\) 7.05025 + 18.8492i 0.350330 + 0.936626i
\(406\) 0 0
\(407\) 8.48528 8.48528i 0.420600 0.420600i
\(408\) 0 0
\(409\) 32.0000i 1.58230i 0.611623 + 0.791149i \(0.290517\pi\)
−0.611623 + 0.791149i \(0.709483\pi\)
\(410\) 0 0
\(411\) −10.0000 + 14.1421i −0.493264 + 0.697580i
\(412\) 0 0
\(413\) 12.7279 + 12.7279i 0.626300 + 0.626300i
\(414\) 0 0
\(415\) −24.0000 + 12.0000i −1.17811 + 0.589057i
\(416\) 0 0
\(417\) 3.51472 + 20.4853i 0.172117 + 1.00317i
\(418\) 0 0
\(419\) 29.6985 1.45087 0.725433 0.688293i \(-0.241640\pi\)
0.725433 + 0.688293i \(0.241640\pi\)
\(420\) 0 0
\(421\) −6.00000 −0.292422 −0.146211 0.989253i \(-0.546708\pi\)
−0.146211 + 0.989253i \(0.546708\pi\)
\(422\) 0 0
\(423\) 15.5147 32.4853i 0.754351 1.57949i
\(424\) 0 0
\(425\) 9.89949 1.41421i 0.480196 0.0685994i
\(426\) 0 0
\(427\) −18.0000 18.0000i −0.871081 0.871081i
\(428\) 0 0
\(429\) −33.9411 24.0000i −1.63869 1.15873i
\(430\) 0 0
\(431\) 16.9706i 0.817443i −0.912659 0.408722i \(-0.865975\pi\)
0.912659 0.408722i \(-0.134025\pi\)
\(432\) 0 0
\(433\) 7.00000 7.00000i 0.336399 0.336399i −0.518611 0.855010i \(-0.673551\pi\)
0.855010 + 0.518611i \(0.173551\pi\)
\(434\) 0 0
\(435\) −2.48528 + 16.2426i −0.119160 + 0.778775i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 24.0000i 1.14546i 0.819745 + 0.572729i \(0.194115\pi\)
−0.819745 + 0.572729i \(0.805885\pi\)
\(440\) 0 0
\(441\) 11.0000 + 31.1127i 0.523810 + 1.48156i
\(442\) 0 0
\(443\) −12.7279 12.7279i −0.604722 0.604722i 0.336840 0.941562i \(-0.390642\pi\)
−0.941562 + 0.336840i \(0.890642\pi\)
\(444\) 0 0
\(445\) 6.00000 18.0000i 0.284427 0.853282i
\(446\) 0 0
\(447\) 2.41421 0.414214i 0.114188 0.0195916i
\(448\) 0 0
\(449\) 31.1127 1.46830 0.734150 0.678988i \(-0.237581\pi\)
0.734150 + 0.678988i \(0.237581\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 16.9706 50.9117i 0.795592 2.38678i
\(456\) 0 0
\(457\) −7.00000 7.00000i −0.327446 0.327446i 0.524168 0.851615i \(-0.324376\pi\)
−0.851615 + 0.524168i \(0.824376\pi\)
\(458\) 0 0
\(459\) −2.82843 + 10.0000i −0.132020 + 0.466760i
\(460\) 0 0
\(461\) 15.5563i 0.724531i −0.932075 0.362266i \(-0.882003\pi\)
0.932075 0.362266i \(-0.117997\pi\)
\(462\) 0 0
\(463\) 15.0000 15.0000i 0.697109 0.697109i −0.266677 0.963786i \(-0.585926\pi\)
0.963786 + 0.266677i \(0.0859256\pi\)
\(464\) 0 0
\(465\) 3.51472 22.9706i 0.162991 1.06523i
\(466\) 0 0
\(467\) −8.48528 + 8.48528i −0.392652 + 0.392652i −0.875632 0.482980i \(-0.839555\pi\)
0.482980 + 0.875632i \(0.339555\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −16.0000 11.3137i −0.737241 0.521308i
\(472\) 0 0
\(473\) −25.4558 25.4558i −1.17046 1.17046i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −10.8284 5.17157i −0.495800 0.236790i
\(478\) 0 0
\(479\) −8.48528 −0.387702 −0.193851 0.981031i \(-0.562098\pi\)
−0.193851 + 0.981031i \(0.562098\pi\)
\(480\) 0 0
\(481\) 16.0000 0.729537
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 14.1421 7.07107i 0.642161 0.321081i
\(486\) 0 0
\(487\) 3.00000 + 3.00000i 0.135943 + 0.135943i 0.771804 0.635861i \(-0.219355\pi\)
−0.635861 + 0.771804i \(0.719355\pi\)
\(488\) 0 0
\(489\) 16.9706 24.0000i 0.767435 1.08532i
\(490\) 0 0
\(491\) 12.7279i 0.574403i 0.957870 + 0.287202i \(0.0927249\pi\)
−0.957870 + 0.287202i \(0.907275\pi\)
\(492\) 0 0
\(493\) −6.00000 + 6.00000i −0.270226 + 0.270226i
\(494\) 0 0
\(495\) 28.4558 0.514719i 1.27900 0.0231349i
\(496\) 0 0
\(497\) 25.4558 25.4558i 1.14185 1.14185i
\(498\) 0 0
\(499\) 24.0000i 1.07439i −0.843459 0.537194i \(-0.819484\pi\)
0.843459 0.537194i \(-0.180516\pi\)
\(500\) 0 0
\(501\) −12.0000 + 16.9706i −0.536120 + 0.758189i
\(502\) 0 0
\(503\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(504\) 0 0
\(505\) −21.0000 7.00000i −0.934488 0.311496i
\(506\) 0 0
\(507\) −5.56497 32.4350i −0.247149 1.44049i
\(508\) 0 0
\(509\) −12.7279 −0.564155 −0.282078 0.959392i \(-0.591024\pi\)
−0.282078 + 0.959392i \(0.591024\pi\)
\(510\) 0 0
\(511\) 30.0000 1.32712
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 4.24264 + 8.48528i 0.186953 + 0.373906i
\(516\) 0 0
\(517\) −36.0000 36.0000i −1.58328 1.58328i
\(518\) 0 0
\(519\) 19.7990 + 14.0000i 0.869079 + 0.614532i
\(520\) 0 0
\(521\) 31.1127i 1.36307i −0.731785 0.681536i \(-0.761312\pi\)
0.731785 0.681536i \(-0.238688\pi\)
\(522\) 0 0
\(523\) 12.0000 12.0000i 0.524723 0.524723i −0.394271 0.918994i \(-0.629003\pi\)
0.918994 + 0.394271i \(0.129003\pi\)
\(524\) 0 0
\(525\) 11.2721 + 34.9706i 0.491954 + 1.52624i
\(526\) 0 0
\(527\) 8.48528 8.48528i 0.369625 0.369625i
\(528\) 0 0
\(529\) 23.0000i 1.00000i
\(530\) 0 0
\(531\) −12.0000 + 4.24264i −0.520756 + 0.184115i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −12.0000 24.0000i −0.518805 1.03761i
\(536\) 0 0
\(537\) −36.2132 + 6.21320i −1.56272 + 0.268120i
\(538\) 0 0
\(539\) 46.6690 2.01018
\(540\) 0 0
\(541\) 2.00000 0.0859867 0.0429934 0.999075i \(-0.486311\pi\)
0.0429934 + 0.999075i \(0.486311\pi\)
\(542\) 0 0
\(543\) −3.41421 + 0.585786i −0.146518 + 0.0251385i
\(544\) 0 0
\(545\) −4.24264 1.41421i −0.181735 0.0605783i
\(546\) 0 0
\(547\) −18.0000 18.0000i −0.769624 0.769624i 0.208416 0.978040i \(-0.433169\pi\)
−0.978040 + 0.208416i \(0.933169\pi\)
\(548\) 0 0
\(549\) 16.9706 6.00000i 0.724286 0.256074i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −18.0000 + 18.0000i −0.765438 + 0.765438i
\(554\) 0 0
\(555\) −8.82843 + 6.48528i −0.374746 + 0.275285i
\(556\) 0 0
\(557\) 11.3137 11.3137i 0.479377 0.479377i −0.425555 0.904932i \(-0.639921\pi\)
0.904932 + 0.425555i \(0.139921\pi\)
\(558\) 0 0
\(559\) 48.0000i 2.03018i
\(560\) 0 0
\(561\) 12.0000 + 8.48528i 0.506640 + 0.358249i
\(562\) 0 0
\(563\) −21.2132 21.2132i −0.894030 0.894030i 0.100870 0.994900i \(-0.467837\pi\)
−0.994900 + 0.100870i \(0.967837\pi\)
\(564\) 0 0
\(565\) −4.00000 + 2.00000i −0.168281 + 0.0841406i
\(566\) 0 0
\(567\) −37.9706 4.02944i −1.59461 0.169220i
\(568\) 0 0
\(569\) −2.82843 −0.118574 −0.0592869 0.998241i \(-0.518883\pi\)
−0.0592869 + 0.998241i \(0.518883\pi\)
\(570\) 0 0
\(571\) 12.0000 0.502184 0.251092 0.967963i \(-0.419210\pi\)
0.251092 + 0.967963i \(0.419210\pi\)
\(572\) 0 0
\(573\) 2.48528 + 14.4853i 0.103824 + 0.605131i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 5.00000 + 5.00000i 0.208153 + 0.208153i 0.803482 0.595329i \(-0.202978\pi\)
−0.595329 + 0.803482i \(0.702978\pi\)
\(578\) 0 0
\(579\) 24.0416 34.0000i 0.999136 1.41299i
\(580\) 0 0
\(581\) 50.9117i 2.11217i
\(582\) 0 0
\(583\) −12.0000 + 12.0000i −0.496989 + 0.496989i
\(584\) 0 0
\(585\) 27.3137 + 26.3431i 1.12928 + 1.08916i
\(586\) 0 0
\(587\) −8.48528 + 8.48528i −0.350225 + 0.350225i −0.860193 0.509968i \(-0.829657\pi\)
0.509968 + 0.860193i \(0.329657\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −8.00000 + 11.3137i −0.329076 + 0.465384i
\(592\) 0 0
\(593\) 24.0416 + 24.0416i 0.987271 + 0.987271i 0.999920 0.0126486i \(-0.00402627\pi\)
−0.0126486 + 0.999920i \(0.504026\pi\)
\(594\) 0 0
\(595\) −6.00000 + 18.0000i −0.245976 + 0.737928i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −16.9706 −0.693398 −0.346699 0.937976i \(-0.612698\pi\)
−0.346699 + 0.937976i \(0.612698\pi\)
\(600\) 0 0
\(601\) −42.0000 −1.71322 −0.856608 0.515968i \(-0.827432\pi\)
−0.856608 + 0.515968i \(0.827432\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 4.94975 14.8492i 0.201236 0.603708i
\(606\) 0 0
\(607\) 9.00000 + 9.00000i 0.365299 + 0.365299i 0.865759 0.500461i \(-0.166836\pi\)
−0.500461 + 0.865759i \(0.666836\pi\)
\(608\) 0 0
\(609\) −25.4558 18.0000i −1.03152 0.729397i
\(610\) 0 0
\(611\) 67.8823i 2.74622i
\(612\) 0 0
\(613\) 10.0000 10.0000i 0.403896 0.403896i −0.475707 0.879604i \(-0.657808\pi\)
0.879604 + 0.475707i \(0.157808\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −26.8701 + 26.8701i −1.08175 + 1.08175i −0.0854011 + 0.996347i \(0.527217\pi\)
−0.996347 + 0.0854011i \(0.972783\pi\)
\(618\) 0 0
\(619\) 36.0000i 1.44696i 0.690344 + 0.723481i \(0.257459\pi\)
−0.690344 + 0.723481i \(0.742541\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 25.4558 + 25.4558i 1.01987 + 1.01987i
\(624\) 0 0
\(625\) 7.00000 + 24.0000i 0.280000 + 0.960000i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −5.65685 −0.225554
\(630\) 0 0
\(631\) −18.0000 −0.716569 −0.358284 0.933613i \(-0.616638\pi\)
−0.358284 + 0.933613i \(0.616638\pi\)
\(632\) 0 0
\(633\) 20.4853 3.51472i 0.814217 0.139698i
\(634\) 0 0
\(635\) −8.48528 + 4.24264i −0.336728 + 0.168364i
\(636\) 0 0
\(637\) 44.0000 + 44.0000i 1.74334 + 1.74334i
\(638\) 0 0
\(639\) 8.48528 + 24.0000i 0.335673 + 0.949425i
\(640\) 0 0
\(641\) 16.9706i 0.670297i −0.942165 0.335148i \(-0.891214\pi\)
0.942165 0.335148i \(-0.108786\pi\)
\(642\) 0 0
\(643\) −24.0000 + 24.0000i −0.946468 + 0.946468i −0.998638 0.0521706i \(-0.983386\pi\)
0.0521706 + 0.998638i \(0.483386\pi\)
\(644\) 0 0
\(645\) 19.4558 + 26.4853i 0.766073 + 1.04286i
\(646\) 0 0
\(647\) −16.9706 + 16.9706i −0.667182 + 0.667182i −0.957063 0.289881i \(-0.906384\pi\)
0.289881 + 0.957063i \(0.406384\pi\)
\(648\) 0 0
\(649\) 18.0000i 0.706562i
\(650\) 0 0
\(651\) 36.0000 + 25.4558i 1.41095 + 0.997693i
\(652\) 0 0
\(653\) −7.07107 7.07107i −0.276712 0.276712i 0.555083 0.831795i \(-0.312687\pi\)
−0.831795 + 0.555083i \(0.812687\pi\)
\(654\) 0 0
\(655\) −27.0000 9.00000i −1.05498 0.351659i
\(656\) 0 0
\(657\) −9.14214 + 19.1421i −0.356669 + 0.746806i
\(658\) 0 0
\(659\) −38.1838 −1.48743 −0.743714 0.668498i \(-0.766938\pi\)
−0.743714 + 0.668498i \(0.766938\pi\)
\(660\) 0 0
\(661\) 30.0000 1.16686 0.583432 0.812162i \(-0.301709\pi\)
0.583432 + 0.812162i \(0.301709\pi\)
\(662\) 0 0
\(663\) 3.31371 + 19.3137i 0.128694 + 0.750082i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −4.24264 + 6.00000i −0.164030 + 0.231973i
\(670\) 0 0
\(671\) 25.4558i 0.982712i
\(672\) 0 0
\(673\) −11.0000 + 11.0000i −0.424019 + 0.424019i −0.886585 0.462566i \(-0.846929\pi\)
0.462566 + 0.886585i \(0.346929\pi\)
\(674\) 0 0
\(675\) −25.7487 3.46447i −0.991069 0.133347i
\(676\) 0 0
\(677\) −26.8701 + 26.8701i −1.03270 + 1.03270i −0.0332533 + 0.999447i \(0.510587\pi\)
−0.999447 + 0.0332533i \(0.989413\pi\)
\(678\) 0 0
\(679\) 30.0000i 1.15129i
\(680\) 0 0
\(681\) 18.0000 25.4558i 0.689761 0.975470i
\(682\) 0 0
\(683\) 8.48528 + 8.48528i 0.324680 + 0.324680i 0.850559 0.525879i \(-0.176264\pi\)
−0.525879 + 0.850559i \(0.676264\pi\)
\(684\) 0 0
\(685\) −10.0000 20.0000i −0.382080 0.764161i
\(686\) 0 0
\(687\) 1.75736 + 10.2426i 0.0670474 + 0.390781i
\(688\) 0 0
\(689\) −22.6274 −0.862036
\(690\) 0 0
\(691\) 48.0000 1.82601 0.913003 0.407953i \(-0.133757\pi\)
0.913003 + 0.407953i \(0.133757\pi\)
\(692\) 0 0
\(693\) −23.2721 + 48.7279i −0.884033 + 1.85102i
\(694\) 0 0
\(695\) −25.4558 8.48528i −0.965595 0.321865i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 36.7696 + 26.0000i 1.39075 + 0.983410i
\(700\) 0 0
\(701\) 29.6985i 1.12170i 0.827919 + 0.560848i \(0.189525\pi\)
−0.827919 + 0.560848i \(0.810475\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 27.5147 + 37.4558i 1.03626 + 1.41067i
\(706\) 0 0
\(707\) 29.6985 29.6985i 1.11693 1.11693i
\(708\) 0 0
\(709\) 30.0000i 1.12667i 0.826227 + 0.563337i \(0.190483\pi\)
−0.826227 + 0.563337i \(0.809517\pi\)
\(710\) 0 0
\(711\) −6.00000 16.9706i −0.225018 0.636446i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 48.0000 24.0000i 1.79510 0.897549i
\(716\) 0 0
\(717\) −43.4558 + 7.45584i −1.62289 + 0.278444i
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) −18.0000 −0.670355
\(722\) 0 0
\(723\) −20.4853 + 3.51472i −0.761856 + 0.130714i
\(724\) 0 0
\(725\) −16.9706 12.7279i −0.630271 0.472703i
\(726\) 0 0
\(727\) −33.0000 33.0000i −1.22390 1.22390i −0.966233 0.257669i \(-0.917046\pi\)
−0.257669 0.966233i \(-0.582954\pi\)
\(728\) 0 0
\(729\) 14.1421 23.0000i 0.523783 0.851852i
\(730\) 0 0
\(731\) 16.9706i 0.627679i
\(732\) 0 0
\(733\) 2.00000 2.00000i 0.0738717 0.0738717i −0.669206 0.743077i \(-0.733365\pi\)
0.743077 + 0.669206i \(0.233365\pi\)
\(734\) 0 0
\(735\) −42.1127 6.44365i −1.55335 0.237678i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 12.0000i 0.441427i −0.975339 0.220714i \(-0.929161\pi\)
0.975339 0.220714i \(-0.0708386\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 16.9706 + 16.9706i 0.622590 + 0.622590i 0.946193 0.323603i \(-0.104894\pi\)
−0.323603 + 0.946193i \(0.604894\pi\)
\(744\) 0 0
\(745\) −1.00000 + 3.00000i −0.0366372 + 0.109911i
\(746\) 0 0
\(747\) 32.4853 + 15.5147i 1.18857 + 0.567654i
\(748\) 0 0
\(749\) 50.9117 1.86027
\(750\) 0 0
\(751\) 6.00000 0.218943 0.109472 0.993990i \(-0.465084\pi\)
0.109472 + 0.993990i \(0.465084\pi\)
\(752\) 0 0
\(753\) 1.24264 + 7.24264i 0.0452843 + 0.263936i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −26.0000 26.0000i −0.944986 0.944986i 0.0535776 0.998564i \(-0.482938\pi\)
−0.998564 + 0.0535776i \(0.982938\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 36.7696i 1.33290i −0.745552 0.666448i \(-0.767814\pi\)
0.745552 0.666448i \(-0.232186\pi\)
\(762\) 0 0
\(763\) 6.00000 6.00000i 0.217215 0.217215i
\(764\) 0 0
\(765\) −9.65685 9.31371i −0.349144 0.336738i
\(766\) 0 0
\(767\) −16.9706 + 16.9706i −0.612772 + 0.612772i
\(768\) 0 0
\(769\) 42.0000i 1.51456i 0.653091 + 0.757279i \(0.273472\pi\)
−0.653091 + 0.757279i \(0.726528\pi\)
\(770\) 0 0
\(771\) 22.0000 31.1127i 0.792311 1.12050i
\(772\) 0 0
\(773\) −26.8701 26.8701i −0.966449 0.966449i 0.0330063 0.999455i \(-0.489492\pi\)
−0.999455 + 0.0330063i \(0.989492\pi\)
\(774\) 0 0
\(775\) 24.0000 + 18.0000i 0.862105 + 0.646579i
\(776\) 0 0
\(777\) −3.51472 20.4853i −0.126090 0.734905i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 36.0000 1.28818
\(782\) 0 0
\(783\) 19.2426 10.7574i 0.687676 0.384437i
\(784\) 0 0
\(785\) 22.6274 11.3137i 0.807607 0.403804i
\(786\) 0 0
\(787\) 24.0000 + 24.0000i 0.855508 + 0.855508i 0.990805 0.135297i \(-0.0431990\pi\)
−0.135297 + 0.990805i \(0.543199\pi\)
\(788\) 0 0
\(789\) −16.9706 12.0000i −0.604168 0.427211i
\(790\) 0 0
\(791\) 8.48528i 0.301702i
\(792\) 0 0
\(793\) 24.0000 24.0000i 0.852265 0.852265i
\(794\) 0 0
\(795\) 12.4853 9.17157i 0.442807 0.325282i
\(796\) 0 0
\(797\) 1.41421 1.41421i 0.0500940 0.0500940i −0.681616 0.731710i \(-0.738723\pi\)
0.731710 + 0.681616i \(0.238723\pi\)
\(798\) 0 0
\(799\) 24.0000i 0.849059i
\(800\) 0 0
\(801\) −24.0000 + 8.48528i −0.847998 + 0.299813i
\(802\) 0 0
\(803\) 21.2132 + 21.2132i 0.748598 + 0.748598i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 31.3848 5.38478i 1.10480 0.189553i
\(808\) 0 0
\(809\) 33.9411 1.19331 0.596653 0.802499i \(-0.296497\pi\)
0.596653 + 0.802499i \(0.296497\pi\)
\(810\) 0 0
\(811\) −24.0000 −0.842754 −0.421377 0.906886i \(-0.638453\pi\)
−0.421377 + 0.906886i \(0.638453\pi\)
\(812\) 0 0
\(813\) −40.9706 + 7.02944i −1.43690 + 0.246533i
\(814\) 0 0
\(815\) 16.9706 + 33.9411i 0.594453 + 1.18891i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −67.8823 + 24.0000i −2.37200 + 0.838628i
\(820\) 0 0
\(821\) 21.2132i 0.740346i −0.928963 0.370173i \(-0.879298\pi\)
0.928963 0.370173i \(-0.120702\pi\)
\(822\) 0 0
\(823\) −27.0000 + 27.0000i −0.941161 + 0.941161i −0.998363 0.0572018i \(-0.981782\pi\)
0.0572018 + 0.998363i \(0.481782\pi\)
\(824\) 0 0
\(825\) −16.7574 + 32.6985i −0.583416 + 1.13842i
\(826\) 0 0
\(827\) −21.2132 + 21.2132i −0.737655 + 0.737655i −0.972124 0.234468i \(-0.924665\pi\)
0.234468 + 0.972124i \(0.424665\pi\)
\(828\) 0 0
\(829\) 38.0000i 1.31979i −0.751356 0.659897i \(-0.770600\pi\)
0.751356 0.659897i \(-0.229400\pi\)
\(830\) 0 0
\(831\) 44.0000 + 31.1127i 1.52634 + 1.07929i
\(832\) 0 0
\(833\) −15.5563 15.5563i −0.538996 0.538996i
\(834\) 0 0
\(835\) −12.0000 24.0000i −0.415277 0.830554i
\(836\) 0 0
\(837\) −27.2132 + 15.2132i −0.940626 + 0.525845i
\(838\) 0 0
\(839\) −33.9411 −1.17178 −0.585889 0.810391i \(-0.699255\pi\)
−0.585889 + 0.810391i \(0.699255\pi\)
\(840\) 0 0
\(841\) −11.0000 −0.379310
\(842\) 0 0
\(843\) −2.48528 14.4853i −0.0855976 0.498900i
\(844\) 0 0
\(845\) 40.3051 + 13.4350i 1.38654 + 0.462179i
\(846\) 0 0
\(847\) 21.0000 + 21.0000i 0.721569 + 0.721569i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 22.0000 22.0000i 0.753266 0.753266i −0.221822 0.975087i \(-0.571200\pi\)
0.975087 + 0.221822i \(0.0712003\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 9.89949 9.89949i 0.338160 0.338160i −0.517514 0.855675i \(-0.673143\pi\)
0.855675 + 0.517514i \(0.173143\pi\)
\(858\) 0 0
\(859\) 36.0000i 1.22830i 0.789188 + 0.614152i \(0.210502\pi\)
−0.789188 + 0.614152i \(0.789498\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(864\) 0 0
\(865\) −28.0000 + 14.0000i −0.952029 + 0.476014i
\(866\) 0 0
\(867\) 3.80761 + 22.1924i 0.129313 + 0.753693i
\(868\) 0 0
\(869\) −25.4558 −0.863530
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −19.1421 9.14214i −0.647863 0.309414i
\(874\) 0 0
\(875\) −46.6690 8.48528i −1.57770 0.286855i
\(876\) 0 0
\(877\) 4.00000 + 4.00000i 0.135070 + 0.135070i 0.771409 0.636339i \(-0.219552\pi\)
−0.636339 + 0.771409i \(0.719552\pi\)
\(878\) 0 0
\(879\) −45.2548 32.0000i −1.52641 1.07933i
\(880\) 0 0
\(881\) 25.4558i 0.857629i −0.903393 0.428815i \(-0.858931\pi\)
0.903393 0.428815i \(-0.141069\pi\)
\(882\) 0 0
\(883\) −12.0000 + 12.0000i −0.403832 + 0.403832i −0.879581 0.475749i \(-0.842177\pi\)
0.475749 + 0.879581i \(0.342177\pi\)
\(884\) 0 0
\(885\) 2.48528 16.2426i 0.0835418 0.545990i
\(886\) 0 0
\(887\) −16.9706 + 16.9706i −0.569816 + 0.569816i −0.932077 0.362261i \(-0.882005\pi\)
0.362261 + 0.932077i \(0.382005\pi\)
\(888\) 0 0
\(889\) 18.0000i 0.603701i
\(890\) 0 0
\(891\) −24.0000 29.6985i −0.804030 0.994937i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 15.0000 45.0000i 0.501395 1.50418i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −25.4558 −0.849000
\(900\) 0 0
\(901\) 8.00000 0.266519
\(902\) 0 0
\(903\) −61.4558 + 10.5442i −2.04512 + 0.350888i
\(904\) 0 0
\(905\) 1.41421 4.24264i 0.0470100 0.141030i
\(906\) 0 0
\(907\) −6.00000 6.00000i −0.199227 0.199227i 0.600442 0.799668i \(-0.294991\pi\)
−0.799668 + 0.600442i \(0.794991\pi\)
\(908\) 0 0
\(909\) 9.89949 + 28.0000i 0.328346 + 0.928701i
\(910\) 0 0
\(911\) 33.9411i 1.12452i 0.826961 + 0.562260i \(0.190068\pi\)
−0.826961 + 0.562260i \(0.809932\pi\)
\(912\) 0 0
\(913\) 36.0000 36.0000i 1.19143 1.19143i
\(914\) 0 0
\(915\) −3.51472 + 22.9706i −0.116193 + 0.759383i
\(916\) 0 0
\(917\) 38.1838 38.1838i 1.26094 1.26094i
\(918\) 0 0
\(919\) 42.0000i 1.38545i 0.721201 + 0.692726i \(0.243591\pi\)
−0.721201 + 0.692726i \(0.756409\pi\)
\(920\) 0 0
\(921\) 36.0000 + 25.4558i 1.18624 + 0.838799i
\(922\) 0 0
\(923\) 33.9411 + 33.9411i 1.11719 + 1.11719i
\(924\) 0 0
\(925\) −2.00000 14.0000i −0.0657596 0.460317i
\(926\) 0 0
\(927\) 5.48528 11.4853i 0.180160 0.377226i
\(928\) 0 0
\(929\) 2.82843 0.0927977 0.0463988 0.998923i \(-0.485225\pi\)
0.0463988 + 0.998923i \(0.485225\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 2.48528 + 14.4853i 0.0813645 + 0.474227i
\(934\) 0 0
\(935\) −16.9706 + 8.48528i −0.554997 + 0.277498i
\(936\) 0 0
\(937\) 11.0000 + 11.0000i 0.359354 + 0.359354i 0.863575 0.504221i \(-0.168220\pi\)
−0.504221 + 0.863575i \(0.668220\pi\)
\(938\) 0 0
\(939\) 24.0416 34.0000i 0.784569 1.10955i
\(940\) 0 0
\(941\) 1.41421i 0.0461020i −0.999734 0.0230510i \(-0.992662\pi\)
0.999734 0.0230510i \(-0.00733802\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 27.7279 40.7574i 0.901989 1.32584i
\(946\) 0 0
\(947\) −21.2132 + 21.2132i −0.689336 + 0.689336i −0.962085 0.272749i \(-0.912067\pi\)
0.272749 + 0.962085i \(0.412067\pi\)
\(948\) 0 0
\(949\) 40.0000i 1.29845i
\(950\) 0 0
\(951\) 14.0000 19.7990i 0.453981 0.642026i
\(952\) 0 0
\(953\) −24.0416 24.0416i −0.778785 0.778785i 0.200839 0.979624i \(-0.435633\pi\)
−0.979624 + 0.200839i \(0.935633\pi\)
\(954\) 0 0
\(955\) −18.0000 6.00000i −0.582466 0.194155i
\(956\) 0 0
\(957\) −5.27208 30.7279i −0.170422 0.993293i
\(958\) 0 0
\(959\) 42.4264 1.37002
\(960\) 0 0
\(961\) 5.00000 0.161290
\(962\) 0 0
\(963\) −15.5147 + 32.4853i −0.499955 + 1.04682i
\(964\) 0 0
\(965\) 24.0416 + 48.0833i 0.773927 + 1.54785i
\(966\) 0 0
\(967\) −15.0000 15.0000i −0.482367 0.482367i 0.423520 0.905887i \(-0.360795\pi\)
−0.905887 + 0.423520i \(0.860795\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 46.6690i 1.49768i 0.662750 + 0.748841i \(0.269389\pi\)
−0.662750 + 0.748841i \(0.730611\pi\)
\(972\) 0 0
\(973\) 36.0000 36.0000i 1.15411 1.15411i
\(974\) 0 0
\(975\) −46.6274 + 15.0294i −1.49327 + 0.481327i
\(976\) 0 0
\(977\) −32.5269 + 32.5269i −1.04063 + 1.04063i −0.0414892 + 0.999139i \(0.513210\pi\)
−0.999139 + 0.0414892i \(0.986790\pi\)
\(978\) 0 0
\(979\) 36.0000i 1.15056i
\(980\) 0 0
\(981\) 2.00000 + 5.65685i 0.0638551 + 0.180609i
\(982\) 0 0
\(983\) −33.9411 33.9411i −1.08255 1.08255i −0.996271 0.0862831i \(-0.972501\pi\)
−0.0862831 0.996271i \(-0.527499\pi\)
\(984\) 0 0
\(985\) −8.00000 16.0000i −0.254901 0.509802i
\(986\) 0 0
\(987\) −86.9117 + 14.9117i −2.76643 + 0.474644i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 48.0000 1.52477 0.762385 0.647124i \(-0.224028\pi\)
0.762385 + 0.647124i \(0.224028\pi\)
\(992\) 0 0
\(993\) −20.4853 + 3.51472i −0.650081 + 0.111536i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 28.0000 + 28.0000i 0.886769 + 0.886769i 0.994211 0.107442i \(-0.0342661\pi\)
−0.107442 + 0.994211i \(0.534266\pi\)
\(998\) 0 0
\(999\) 14.1421 + 4.00000i 0.447437 + 0.126554i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 960.2.v.j.257.2 4
3.2 odd 2 inner 960.2.v.j.257.1 4
4.3 odd 2 960.2.v.d.257.1 4
5.3 odd 4 inner 960.2.v.j.833.1 4
8.3 odd 2 480.2.v.b.257.2 yes 4
8.5 even 2 480.2.v.a.257.1 4
12.11 even 2 960.2.v.d.257.2 4
15.8 even 4 inner 960.2.v.j.833.2 4
20.3 even 4 960.2.v.d.833.2 4
24.5 odd 2 480.2.v.a.257.2 yes 4
24.11 even 2 480.2.v.b.257.1 yes 4
40.3 even 4 480.2.v.b.353.1 yes 4
40.13 odd 4 480.2.v.a.353.2 yes 4
60.23 odd 4 960.2.v.d.833.1 4
120.53 even 4 480.2.v.a.353.1 yes 4
120.83 odd 4 480.2.v.b.353.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
480.2.v.a.257.1 4 8.5 even 2
480.2.v.a.257.2 yes 4 24.5 odd 2
480.2.v.a.353.1 yes 4 120.53 even 4
480.2.v.a.353.2 yes 4 40.13 odd 4
480.2.v.b.257.1 yes 4 24.11 even 2
480.2.v.b.257.2 yes 4 8.3 odd 2
480.2.v.b.353.1 yes 4 40.3 even 4
480.2.v.b.353.2 yes 4 120.83 odd 4
960.2.v.d.257.1 4 4.3 odd 2
960.2.v.d.257.2 4 12.11 even 2
960.2.v.d.833.1 4 60.23 odd 4
960.2.v.d.833.2 4 20.3 even 4
960.2.v.j.257.1 4 3.2 odd 2 inner
960.2.v.j.257.2 4 1.1 even 1 trivial
960.2.v.j.833.1 4 5.3 odd 4 inner
960.2.v.j.833.2 4 15.8 even 4 inner