Properties

Label 480.2.v.a.257.2
Level $480$
Weight $2$
Character 480.257
Analytic conductor $3.833$
Analytic rank $1$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [480,2,Mod(257,480)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(480, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("480.257");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 480 = 2^{5} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 480.v (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.83281929702\)
Analytic rank: \(1\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 257.2
Root \(0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 480.257
Dual form 480.2.v.a.353.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.292893 + 1.70711i) q^{3} +(-0.707107 + 2.12132i) q^{5} +(-3.00000 - 3.00000i) q^{7} +(-2.82843 - 1.00000i) q^{9} -4.24264i q^{11} +(-4.00000 + 4.00000i) q^{13} +(-3.41421 - 1.82843i) q^{15} +(1.41421 - 1.41421i) q^{17} +(6.00000 - 4.24264i) q^{21} +(-4.00000 - 3.00000i) q^{25} +(2.53553 - 4.53553i) q^{27} +4.24264 q^{29} -6.00000 q^{31} +(7.24264 + 1.24264i) q^{33} +(8.48528 - 4.24264i) q^{35} +(-2.00000 - 2.00000i) q^{37} +(-5.65685 - 8.00000i) q^{39} +(-6.00000 + 6.00000i) q^{43} +(4.12132 - 5.29289i) q^{45} +(-8.48528 + 8.48528i) q^{47} +11.0000i q^{49} +(2.00000 + 2.82843i) q^{51} +(-2.82843 - 2.82843i) q^{53} +(9.00000 + 3.00000i) q^{55} -4.24264 q^{59} -6.00000 q^{61} +(5.48528 + 11.4853i) q^{63} +(-5.65685 - 11.3137i) q^{65} -8.48528i q^{71} +(-5.00000 + 5.00000i) q^{73} +(6.29289 - 5.94975i) q^{75} +(-12.7279 + 12.7279i) q^{77} -6.00000i q^{79} +(7.00000 + 5.65685i) q^{81} +(8.48528 + 8.48528i) q^{83} +(2.00000 + 4.00000i) q^{85} +(-1.24264 + 7.24264i) q^{87} +8.48528 q^{89} +24.0000 q^{91} +(1.75736 - 10.2426i) q^{93} +(-5.00000 - 5.00000i) q^{97} +(-4.24264 + 12.0000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} - 12 q^{7} - 16 q^{13} - 8 q^{15} + 24 q^{21} - 16 q^{25} - 4 q^{27} - 24 q^{31} + 12 q^{33} - 8 q^{37} - 24 q^{43} + 8 q^{45} + 8 q^{51} + 36 q^{55} - 24 q^{61} - 12 q^{63} - 20 q^{73} + 28 q^{75}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/480\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(421\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.292893 + 1.70711i −0.169102 + 0.985599i
\(4\) 0 0
\(5\) −0.707107 + 2.12132i −0.316228 + 0.948683i
\(6\) 0 0
\(7\) −3.00000 3.00000i −1.13389 1.13389i −0.989524 0.144370i \(-0.953885\pi\)
−0.144370 0.989524i \(-0.546115\pi\)
\(8\) 0 0
\(9\) −2.82843 1.00000i −0.942809 0.333333i
\(10\) 0 0
\(11\) 4.24264i 1.27920i −0.768706 0.639602i \(-0.779099\pi\)
0.768706 0.639602i \(-0.220901\pi\)
\(12\) 0 0
\(13\) −4.00000 + 4.00000i −1.10940 + 1.10940i −0.116171 + 0.993229i \(0.537062\pi\)
−0.993229 + 0.116171i \(0.962938\pi\)
\(14\) 0 0
\(15\) −3.41421 1.82843i −0.881546 0.472098i
\(16\) 0 0
\(17\) 1.41421 1.41421i 0.342997 0.342997i −0.514496 0.857493i \(-0.672021\pi\)
0.857493 + 0.514496i \(0.172021\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 6.00000 4.24264i 1.30931 0.925820i
\(22\) 0 0
\(23\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(24\) 0 0
\(25\) −4.00000 3.00000i −0.800000 0.600000i
\(26\) 0 0
\(27\) 2.53553 4.53553i 0.487964 0.872864i
\(28\) 0 0
\(29\) 4.24264 0.787839 0.393919 0.919145i \(-0.371119\pi\)
0.393919 + 0.919145i \(0.371119\pi\)
\(30\) 0 0
\(31\) −6.00000 −1.07763 −0.538816 0.842424i \(-0.681128\pi\)
−0.538816 + 0.842424i \(0.681128\pi\)
\(32\) 0 0
\(33\) 7.24264 + 1.24264i 1.26078 + 0.216316i
\(34\) 0 0
\(35\) 8.48528 4.24264i 1.43427 0.717137i
\(36\) 0 0
\(37\) −2.00000 2.00000i −0.328798 0.328798i 0.523331 0.852129i \(-0.324689\pi\)
−0.852129 + 0.523331i \(0.824689\pi\)
\(38\) 0 0
\(39\) −5.65685 8.00000i −0.905822 1.28103i
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) −6.00000 + 6.00000i −0.914991 + 0.914991i −0.996660 0.0816682i \(-0.973975\pi\)
0.0816682 + 0.996660i \(0.473975\pi\)
\(44\) 0 0
\(45\) 4.12132 5.29289i 0.614370 0.789018i
\(46\) 0 0
\(47\) −8.48528 + 8.48528i −1.23771 + 1.23771i −0.276769 + 0.960936i \(0.589264\pi\)
−0.960936 + 0.276769i \(0.910736\pi\)
\(48\) 0 0
\(49\) 11.0000i 1.57143i
\(50\) 0 0
\(51\) 2.00000 + 2.82843i 0.280056 + 0.396059i
\(52\) 0 0
\(53\) −2.82843 2.82843i −0.388514 0.388514i 0.485643 0.874157i \(-0.338586\pi\)
−0.874157 + 0.485643i \(0.838586\pi\)
\(54\) 0 0
\(55\) 9.00000 + 3.00000i 1.21356 + 0.404520i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −4.24264 −0.552345 −0.276172 0.961108i \(-0.589066\pi\)
−0.276172 + 0.961108i \(0.589066\pi\)
\(60\) 0 0
\(61\) −6.00000 −0.768221 −0.384111 0.923287i \(-0.625492\pi\)
−0.384111 + 0.923287i \(0.625492\pi\)
\(62\) 0 0
\(63\) 5.48528 + 11.4853i 0.691080 + 1.44701i
\(64\) 0 0
\(65\) −5.65685 11.3137i −0.701646 1.40329i
\(66\) 0 0
\(67\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 8.48528i 1.00702i −0.863990 0.503509i \(-0.832042\pi\)
0.863990 0.503509i \(-0.167958\pi\)
\(72\) 0 0
\(73\) −5.00000 + 5.00000i −0.585206 + 0.585206i −0.936329 0.351123i \(-0.885800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) 0 0
\(75\) 6.29289 5.94975i 0.726641 0.687018i
\(76\) 0 0
\(77\) −12.7279 + 12.7279i −1.45048 + 1.45048i
\(78\) 0 0
\(79\) 6.00000i 0.675053i −0.941316 0.337526i \(-0.890410\pi\)
0.941316 0.337526i \(-0.109590\pi\)
\(80\) 0 0
\(81\) 7.00000 + 5.65685i 0.777778 + 0.628539i
\(82\) 0 0
\(83\) 8.48528 + 8.48528i 0.931381 + 0.931381i 0.997792 0.0664117i \(-0.0211551\pi\)
−0.0664117 + 0.997792i \(0.521155\pi\)
\(84\) 0 0
\(85\) 2.00000 + 4.00000i 0.216930 + 0.433861i
\(86\) 0 0
\(87\) −1.24264 + 7.24264i −0.133225 + 0.776493i
\(88\) 0 0
\(89\) 8.48528 0.899438 0.449719 0.893170i \(-0.351524\pi\)
0.449719 + 0.893170i \(0.351524\pi\)
\(90\) 0 0
\(91\) 24.0000 2.51588
\(92\) 0 0
\(93\) 1.75736 10.2426i 0.182230 1.06211i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −5.00000 5.00000i −0.507673 0.507673i 0.406138 0.913812i \(-0.366875\pi\)
−0.913812 + 0.406138i \(0.866875\pi\)
\(98\) 0 0
\(99\) −4.24264 + 12.0000i −0.426401 + 1.20605i
\(100\) 0 0
\(101\) 9.89949i 0.985037i 0.870302 + 0.492518i \(0.163924\pi\)
−0.870302 + 0.492518i \(0.836076\pi\)
\(102\) 0 0
\(103\) 3.00000 3.00000i 0.295599 0.295599i −0.543688 0.839287i \(-0.682973\pi\)
0.839287 + 0.543688i \(0.182973\pi\)
\(104\) 0 0
\(105\) 4.75736 + 15.7279i 0.464271 + 1.53489i
\(106\) 0 0
\(107\) −8.48528 + 8.48528i −0.820303 + 0.820303i −0.986151 0.165848i \(-0.946964\pi\)
0.165848 + 0.986151i \(0.446964\pi\)
\(108\) 0 0
\(109\) 2.00000i 0.191565i −0.995402 0.0957826i \(-0.969465\pi\)
0.995402 0.0957826i \(-0.0305354\pi\)
\(110\) 0 0
\(111\) 4.00000 2.82843i 0.379663 0.268462i
\(112\) 0 0
\(113\) −1.41421 1.41421i −0.133038 0.133038i 0.637452 0.770490i \(-0.279988\pi\)
−0.770490 + 0.637452i \(0.779988\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 15.3137 7.31371i 1.41575 0.676153i
\(118\) 0 0
\(119\) −8.48528 −0.777844
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 9.19239 6.36396i 0.822192 0.569210i
\(126\) 0 0
\(127\) 3.00000 + 3.00000i 0.266207 + 0.266207i 0.827570 0.561363i \(-0.189723\pi\)
−0.561363 + 0.827570i \(0.689723\pi\)
\(128\) 0 0
\(129\) −8.48528 12.0000i −0.747087 1.05654i
\(130\) 0 0
\(131\) 12.7279i 1.11204i 0.831168 + 0.556022i \(0.187673\pi\)
−0.831168 + 0.556022i \(0.812327\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 7.82843 + 8.58579i 0.673764 + 0.738947i
\(136\) 0 0
\(137\) 7.07107 7.07107i 0.604122 0.604122i −0.337282 0.941404i \(-0.609507\pi\)
0.941404 + 0.337282i \(0.109507\pi\)
\(138\) 0 0
\(139\) 12.0000i 1.01783i −0.860818 0.508913i \(-0.830047\pi\)
0.860818 0.508913i \(-0.169953\pi\)
\(140\) 0 0
\(141\) −12.0000 16.9706i −1.01058 1.42918i
\(142\) 0 0
\(143\) 16.9706 + 16.9706i 1.41915 + 1.41915i
\(144\) 0 0
\(145\) −3.00000 + 9.00000i −0.249136 + 0.747409i
\(146\) 0 0
\(147\) −18.7782 3.22183i −1.54880 0.265732i
\(148\) 0 0
\(149\) 1.41421 0.115857 0.0579284 0.998321i \(-0.481550\pi\)
0.0579284 + 0.998321i \(0.481550\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) −5.41421 + 2.58579i −0.437713 + 0.209048i
\(154\) 0 0
\(155\) 4.24264 12.7279i 0.340777 1.02233i
\(156\) 0 0
\(157\) 8.00000 + 8.00000i 0.638470 + 0.638470i 0.950178 0.311708i \(-0.100901\pi\)
−0.311708 + 0.950178i \(0.600901\pi\)
\(158\) 0 0
\(159\) 5.65685 4.00000i 0.448618 0.317221i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −12.0000 + 12.0000i −0.939913 + 0.939913i −0.998294 0.0583818i \(-0.981406\pi\)
0.0583818 + 0.998294i \(0.481406\pi\)
\(164\) 0 0
\(165\) −7.75736 + 14.4853i −0.603910 + 1.12768i
\(166\) 0 0
\(167\) 8.48528 8.48528i 0.656611 0.656611i −0.297966 0.954577i \(-0.596308\pi\)
0.954577 + 0.297966i \(0.0963081\pi\)
\(168\) 0 0
\(169\) 19.0000i 1.46154i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 9.89949 + 9.89949i 0.752645 + 0.752645i 0.974972 0.222327i \(-0.0713654\pi\)
−0.222327 + 0.974972i \(0.571365\pi\)
\(174\) 0 0
\(175\) 3.00000 + 21.0000i 0.226779 + 1.58745i
\(176\) 0 0
\(177\) 1.24264 7.24264i 0.0934026 0.544390i
\(178\) 0 0
\(179\) −21.2132 −1.58555 −0.792775 0.609515i \(-0.791364\pi\)
−0.792775 + 0.609515i \(0.791364\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 0 0
\(183\) 1.75736 10.2426i 0.129908 0.757158i
\(184\) 0 0
\(185\) 5.65685 2.82843i 0.415900 0.207950i
\(186\) 0 0
\(187\) −6.00000 6.00000i −0.438763 0.438763i
\(188\) 0 0
\(189\) −21.2132 + 6.00000i −1.54303 + 0.436436i
\(190\) 0 0
\(191\) 8.48528i 0.613973i −0.951714 0.306987i \(-0.900679\pi\)
0.951714 0.306987i \(-0.0993207\pi\)
\(192\) 0 0
\(193\) 17.0000 17.0000i 1.22369 1.22369i 0.257375 0.966312i \(-0.417142\pi\)
0.966312 0.257375i \(-0.0828576\pi\)
\(194\) 0 0
\(195\) 20.9706 6.34315i 1.50173 0.454242i
\(196\) 0 0
\(197\) −5.65685 + 5.65685i −0.403034 + 0.403034i −0.879301 0.476267i \(-0.841990\pi\)
0.476267 + 0.879301i \(0.341990\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −12.7279 12.7279i −0.893325 0.893325i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) 0 0
\(213\) 14.4853 + 2.48528i 0.992515 + 0.170289i
\(214\) 0 0
\(215\) −8.48528 16.9706i −0.578691 1.15738i
\(216\) 0 0
\(217\) 18.0000 + 18.0000i 1.22192 + 1.22192i
\(218\) 0 0
\(219\) −7.07107 10.0000i −0.477818 0.675737i
\(220\) 0 0
\(221\) 11.3137i 0.761042i
\(222\) 0 0
\(223\) −3.00000 + 3.00000i −0.200895 + 0.200895i −0.800383 0.599489i \(-0.795371\pi\)
0.599489 + 0.800383i \(0.295371\pi\)
\(224\) 0 0
\(225\) 8.31371 + 12.4853i 0.554247 + 0.832352i
\(226\) 0 0
\(227\) 12.7279 12.7279i 0.844782 0.844782i −0.144695 0.989476i \(-0.546220\pi\)
0.989476 + 0.144695i \(0.0462199\pi\)
\(228\) 0 0
\(229\) 6.00000i 0.396491i −0.980152 0.198246i \(-0.936476\pi\)
0.980152 0.198246i \(-0.0635244\pi\)
\(230\) 0 0
\(231\) −18.0000 25.4558i −1.18431 1.67487i
\(232\) 0 0
\(233\) −18.3848 18.3848i −1.20443 1.20443i −0.972806 0.231621i \(-0.925597\pi\)
−0.231621 0.972806i \(-0.574403\pi\)
\(234\) 0 0
\(235\) −12.0000 24.0000i −0.782794 1.56559i
\(236\) 0 0
\(237\) 10.2426 + 1.75736i 0.665331 + 0.114153i
\(238\) 0 0
\(239\) 25.4558 1.64660 0.823301 0.567605i \(-0.192130\pi\)
0.823301 + 0.567605i \(0.192130\pi\)
\(240\) 0 0
\(241\) −12.0000 −0.772988 −0.386494 0.922292i \(-0.626314\pi\)
−0.386494 + 0.922292i \(0.626314\pi\)
\(242\) 0 0
\(243\) −11.7071 + 10.2929i −0.751011 + 0.660289i
\(244\) 0 0
\(245\) −23.3345 7.77817i −1.49079 0.496929i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −16.9706 + 12.0000i −1.07547 + 0.760469i
\(250\) 0 0
\(251\) 4.24264i 0.267793i 0.990995 + 0.133897i \(0.0427490\pi\)
−0.990995 + 0.133897i \(0.957251\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −7.41421 + 2.24264i −0.464296 + 0.140440i
\(256\) 0 0
\(257\) −15.5563 + 15.5563i −0.970378 + 0.970378i −0.999574 0.0291953i \(-0.990706\pi\)
0.0291953 + 0.999574i \(0.490706\pi\)
\(258\) 0 0
\(259\) 12.0000i 0.745644i
\(260\) 0 0
\(261\) −12.0000 4.24264i −0.742781 0.262613i
\(262\) 0 0
\(263\) 8.48528 + 8.48528i 0.523225 + 0.523225i 0.918544 0.395319i \(-0.129366\pi\)
−0.395319 + 0.918544i \(0.629366\pi\)
\(264\) 0 0
\(265\) 8.00000 4.00000i 0.491436 0.245718i
\(266\) 0 0
\(267\) −2.48528 + 14.4853i −0.152097 + 0.886485i
\(268\) 0 0
\(269\) 18.3848 1.12094 0.560470 0.828175i \(-0.310621\pi\)
0.560470 + 0.828175i \(0.310621\pi\)
\(270\) 0 0
\(271\) −24.0000 −1.45790 −0.728948 0.684569i \(-0.759990\pi\)
−0.728948 + 0.684569i \(0.759990\pi\)
\(272\) 0 0
\(273\) −7.02944 + 40.9706i −0.425441 + 2.47965i
\(274\) 0 0
\(275\) −12.7279 + 16.9706i −0.767523 + 1.02336i
\(276\) 0 0
\(277\) −22.0000 22.0000i −1.32185 1.32185i −0.912276 0.409576i \(-0.865677\pi\)
−0.409576 0.912276i \(-0.634323\pi\)
\(278\) 0 0
\(279\) 16.9706 + 6.00000i 1.01600 + 0.359211i
\(280\) 0 0
\(281\) 8.48528i 0.506189i 0.967442 + 0.253095i \(0.0814484\pi\)
−0.967442 + 0.253095i \(0.918552\pi\)
\(282\) 0 0
\(283\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 13.0000i 0.764706i
\(290\) 0 0
\(291\) 10.0000 7.07107i 0.586210 0.414513i
\(292\) 0 0
\(293\) −22.6274 22.6274i −1.32191 1.32191i −0.912231 0.409677i \(-0.865641\pi\)
−0.409677 0.912231i \(-0.634359\pi\)
\(294\) 0 0
\(295\) 3.00000 9.00000i 0.174667 0.524000i
\(296\) 0 0
\(297\) −19.2426 10.7574i −1.11657 0.624205i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 36.0000 2.07501
\(302\) 0 0
\(303\) −16.8995 2.89949i −0.970851 0.166572i
\(304\) 0 0
\(305\) 4.24264 12.7279i 0.242933 0.728799i
\(306\) 0 0
\(307\) −18.0000 18.0000i −1.02731 1.02731i −0.999616 0.0276979i \(-0.991182\pi\)
−0.0276979 0.999616i \(-0.508818\pi\)
\(308\) 0 0
\(309\) 4.24264 + 6.00000i 0.241355 + 0.341328i
\(310\) 0 0
\(311\) 8.48528i 0.481156i −0.970630 0.240578i \(-0.922663\pi\)
0.970630 0.240578i \(-0.0773370\pi\)
\(312\) 0 0
\(313\) 17.0000 17.0000i 0.960897 0.960897i −0.0383669 0.999264i \(-0.512216\pi\)
0.999264 + 0.0383669i \(0.0122156\pi\)
\(314\) 0 0
\(315\) −28.2426 + 3.51472i −1.59129 + 0.198032i
\(316\) 0 0
\(317\) 9.89949 9.89949i 0.556011 0.556011i −0.372158 0.928169i \(-0.621382\pi\)
0.928169 + 0.372158i \(0.121382\pi\)
\(318\) 0 0
\(319\) 18.0000i 1.00781i
\(320\) 0 0
\(321\) −12.0000 16.9706i −0.669775 0.947204i
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 28.0000 4.00000i 1.55316 0.221880i
\(326\) 0 0
\(327\) 3.41421 + 0.585786i 0.188806 + 0.0323941i
\(328\) 0 0
\(329\) 50.9117 2.80685
\(330\) 0 0
\(331\) 12.0000 0.659580 0.329790 0.944054i \(-0.393022\pi\)
0.329790 + 0.944054i \(0.393022\pi\)
\(332\) 0 0
\(333\) 3.65685 + 7.65685i 0.200394 + 0.419593i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 7.00000 + 7.00000i 0.381314 + 0.381314i 0.871576 0.490261i \(-0.163099\pi\)
−0.490261 + 0.871576i \(0.663099\pi\)
\(338\) 0 0
\(339\) 2.82843 2.00000i 0.153619 0.108625i
\(340\) 0 0
\(341\) 25.4558i 1.37851i
\(342\) 0 0
\(343\) 12.0000 12.0000i 0.647939 0.647939i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 12.7279 12.7279i 0.683271 0.683271i −0.277465 0.960736i \(-0.589494\pi\)
0.960736 + 0.277465i \(0.0894943\pi\)
\(348\) 0 0
\(349\) 18.0000i 0.963518i −0.876304 0.481759i \(-0.839998\pi\)
0.876304 0.481759i \(-0.160002\pi\)
\(350\) 0 0
\(351\) 8.00000 + 28.2843i 0.427008 + 1.50970i
\(352\) 0 0
\(353\) 1.41421 + 1.41421i 0.0752710 + 0.0752710i 0.743740 0.668469i \(-0.233050\pi\)
−0.668469 + 0.743740i \(0.733050\pi\)
\(354\) 0 0
\(355\) 18.0000 + 6.00000i 0.955341 + 0.318447i
\(356\) 0 0
\(357\) 2.48528 14.4853i 0.131535 0.766642i
\(358\) 0 0
\(359\) −16.9706 −0.895672 −0.447836 0.894116i \(-0.647805\pi\)
−0.447836 + 0.894116i \(0.647805\pi\)
\(360\) 0 0
\(361\) 19.0000 1.00000
\(362\) 0 0
\(363\) 2.05025 11.9497i 0.107610 0.627199i
\(364\) 0 0
\(365\) −7.07107 14.1421i −0.370117 0.740233i
\(366\) 0 0
\(367\) 15.0000 + 15.0000i 0.782994 + 0.782994i 0.980335 0.197341i \(-0.0632307\pi\)
−0.197341 + 0.980335i \(0.563231\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 16.9706i 0.881068i
\(372\) 0 0
\(373\) −20.0000 + 20.0000i −1.03556 + 1.03556i −0.0362168 + 0.999344i \(0.511531\pi\)
−0.999344 + 0.0362168i \(0.988469\pi\)
\(374\) 0 0
\(375\) 8.17157 + 17.5563i 0.421978 + 0.906606i
\(376\) 0 0
\(377\) −16.9706 + 16.9706i −0.874028 + 0.874028i
\(378\) 0 0
\(379\) 36.0000i 1.84920i 0.380945 + 0.924598i \(0.375599\pi\)
−0.380945 + 0.924598i \(0.624401\pi\)
\(380\) 0 0
\(381\) −6.00000 + 4.24264i −0.307389 + 0.217357i
\(382\) 0 0
\(383\) −25.4558 25.4558i −1.30073 1.30073i −0.927898 0.372835i \(-0.878386\pi\)
−0.372835 0.927898i \(-0.621614\pi\)
\(384\) 0 0
\(385\) −18.0000 36.0000i −0.917365 1.83473i
\(386\) 0 0
\(387\) 22.9706 10.9706i 1.16766 0.557665i
\(388\) 0 0
\(389\) 15.5563 0.788738 0.394369 0.918952i \(-0.370963\pi\)
0.394369 + 0.918952i \(0.370963\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −21.7279 3.72792i −1.09603 0.188049i
\(394\) 0 0
\(395\) 12.7279 + 4.24264i 0.640411 + 0.213470i
\(396\) 0 0
\(397\) −14.0000 14.0000i −0.702640 0.702640i 0.262337 0.964976i \(-0.415507\pi\)
−0.964976 + 0.262337i \(0.915507\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 14.1421i 0.706225i −0.935581 0.353112i \(-0.885123\pi\)
0.935581 0.353112i \(-0.114877\pi\)
\(402\) 0 0
\(403\) 24.0000 24.0000i 1.19553 1.19553i
\(404\) 0 0
\(405\) −16.9497 + 10.8492i −0.842240 + 0.539103i
\(406\) 0 0
\(407\) −8.48528 + 8.48528i −0.420600 + 0.420600i
\(408\) 0 0
\(409\) 32.0000i 1.58230i 0.611623 + 0.791149i \(0.290517\pi\)
−0.611623 + 0.791149i \(0.709483\pi\)
\(410\) 0 0
\(411\) 10.0000 + 14.1421i 0.493264 + 0.697580i
\(412\) 0 0
\(413\) 12.7279 + 12.7279i 0.626300 + 0.626300i
\(414\) 0 0
\(415\) −24.0000 + 12.0000i −1.17811 + 0.589057i
\(416\) 0 0
\(417\) 20.4853 + 3.51472i 1.00317 + 0.172117i
\(418\) 0 0
\(419\) 29.6985 1.45087 0.725433 0.688293i \(-0.241640\pi\)
0.725433 + 0.688293i \(0.241640\pi\)
\(420\) 0 0
\(421\) 6.00000 0.292422 0.146211 0.989253i \(-0.453292\pi\)
0.146211 + 0.989253i \(0.453292\pi\)
\(422\) 0 0
\(423\) 32.4853 15.5147i 1.57949 0.754351i
\(424\) 0 0
\(425\) −9.89949 + 1.41421i −0.480196 + 0.0685994i
\(426\) 0 0
\(427\) 18.0000 + 18.0000i 0.871081 + 0.871081i
\(428\) 0 0
\(429\) −33.9411 + 24.0000i −1.63869 + 1.15873i
\(430\) 0 0
\(431\) 16.9706i 0.817443i 0.912659 + 0.408722i \(0.134025\pi\)
−0.912659 + 0.408722i \(0.865975\pi\)
\(432\) 0 0
\(433\) 7.00000 7.00000i 0.336399 0.336399i −0.518611 0.855010i \(-0.673551\pi\)
0.855010 + 0.518611i \(0.173551\pi\)
\(434\) 0 0
\(435\) −14.4853 7.75736i −0.694516 0.371937i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 24.0000i 1.14546i 0.819745 + 0.572729i \(0.194115\pi\)
−0.819745 + 0.572729i \(0.805885\pi\)
\(440\) 0 0
\(441\) 11.0000 31.1127i 0.523810 1.48156i
\(442\) 0 0
\(443\) −12.7279 12.7279i −0.604722 0.604722i 0.336840 0.941562i \(-0.390642\pi\)
−0.941562 + 0.336840i \(0.890642\pi\)
\(444\) 0 0
\(445\) −6.00000 + 18.0000i −0.284427 + 0.853282i
\(446\) 0 0
\(447\) −0.414214 + 2.41421i −0.0195916 + 0.114188i
\(448\) 0 0
\(449\) −31.1127 −1.46830 −0.734150 0.678988i \(-0.762419\pi\)
−0.734150 + 0.678988i \(0.762419\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −16.9706 + 50.9117i −0.795592 + 2.38678i
\(456\) 0 0
\(457\) −7.00000 7.00000i −0.327446 0.327446i 0.524168 0.851615i \(-0.324376\pi\)
−0.851615 + 0.524168i \(0.824376\pi\)
\(458\) 0 0
\(459\) −2.82843 10.0000i −0.132020 0.466760i
\(460\) 0 0
\(461\) 15.5563i 0.724531i −0.932075 0.362266i \(-0.882003\pi\)
0.932075 0.362266i \(-0.117997\pi\)
\(462\) 0 0
\(463\) 15.0000 15.0000i 0.697109 0.697109i −0.266677 0.963786i \(-0.585926\pi\)
0.963786 + 0.266677i \(0.0859256\pi\)
\(464\) 0 0
\(465\) 20.4853 + 10.9706i 0.949982 + 0.508748i
\(466\) 0 0
\(467\) −8.48528 + 8.48528i −0.392652 + 0.392652i −0.875632 0.482980i \(-0.839555\pi\)
0.482980 + 0.875632i \(0.339555\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −16.0000 + 11.3137i −0.737241 + 0.521308i
\(472\) 0 0
\(473\) 25.4558 + 25.4558i 1.17046 + 1.17046i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 5.17157 + 10.8284i 0.236790 + 0.495800i
\(478\) 0 0
\(479\) 8.48528 0.387702 0.193851 0.981031i \(-0.437902\pi\)
0.193851 + 0.981031i \(0.437902\pi\)
\(480\) 0 0
\(481\) 16.0000 0.729537
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 14.1421 7.07107i 0.642161 0.321081i
\(486\) 0 0
\(487\) 3.00000 + 3.00000i 0.135943 + 0.135943i 0.771804 0.635861i \(-0.219355\pi\)
−0.635861 + 0.771804i \(0.719355\pi\)
\(488\) 0 0
\(489\) −16.9706 24.0000i −0.767435 1.08532i
\(490\) 0 0
\(491\) 12.7279i 0.574403i 0.957870 + 0.287202i \(0.0927249\pi\)
−0.957870 + 0.287202i \(0.907275\pi\)
\(492\) 0 0
\(493\) 6.00000 6.00000i 0.270226 0.270226i
\(494\) 0 0
\(495\) −22.4558 17.4853i −1.00932 0.785905i
\(496\) 0 0
\(497\) −25.4558 + 25.4558i −1.14185 + 1.14185i
\(498\) 0 0
\(499\) 24.0000i 1.07439i 0.843459 + 0.537194i \(0.180516\pi\)
−0.843459 + 0.537194i \(0.819484\pi\)
\(500\) 0 0
\(501\) 12.0000 + 16.9706i 0.536120 + 0.758189i
\(502\) 0 0
\(503\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(504\) 0 0
\(505\) −21.0000 7.00000i −0.934488 0.311496i
\(506\) 0 0
\(507\) 32.4350 + 5.56497i 1.44049 + 0.247149i
\(508\) 0 0
\(509\) −12.7279 −0.564155 −0.282078 0.959392i \(-0.591024\pi\)
−0.282078 + 0.959392i \(0.591024\pi\)
\(510\) 0 0
\(511\) 30.0000 1.32712
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 4.24264 + 8.48528i 0.186953 + 0.373906i
\(516\) 0 0
\(517\) 36.0000 + 36.0000i 1.58328 + 1.58328i
\(518\) 0 0
\(519\) −19.7990 + 14.0000i −0.869079 + 0.614532i
\(520\) 0 0
\(521\) 31.1127i 1.36307i 0.731785 + 0.681536i \(0.238688\pi\)
−0.731785 + 0.681536i \(0.761312\pi\)
\(522\) 0 0
\(523\) −12.0000 + 12.0000i −0.524723 + 0.524723i −0.918994 0.394271i \(-0.870997\pi\)
0.394271 + 0.918994i \(0.370997\pi\)
\(524\) 0 0
\(525\) −36.7279 1.02944i −1.60294 0.0449283i
\(526\) 0 0
\(527\) −8.48528 + 8.48528i −0.369625 + 0.369625i
\(528\) 0 0
\(529\) 23.0000i 1.00000i
\(530\) 0 0
\(531\) 12.0000 + 4.24264i 0.520756 + 0.184115i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −12.0000 24.0000i −0.518805 1.03761i
\(536\) 0 0
\(537\) 6.21320 36.2132i 0.268120 1.56272i
\(538\) 0 0
\(539\) 46.6690 2.01018
\(540\) 0 0
\(541\) −2.00000 −0.0859867 −0.0429934 0.999075i \(-0.513689\pi\)
−0.0429934 + 0.999075i \(0.513689\pi\)
\(542\) 0 0
\(543\) −0.585786 + 3.41421i −0.0251385 + 0.146518i
\(544\) 0 0
\(545\) 4.24264 + 1.41421i 0.181735 + 0.0605783i
\(546\) 0 0
\(547\) 18.0000 + 18.0000i 0.769624 + 0.769624i 0.978040 0.208416i \(-0.0668307\pi\)
−0.208416 + 0.978040i \(0.566831\pi\)
\(548\) 0 0
\(549\) 16.9706 + 6.00000i 0.724286 + 0.256074i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −18.0000 + 18.0000i −0.765438 + 0.765438i
\(554\) 0 0
\(555\) 3.17157 + 10.4853i 0.134626 + 0.445075i
\(556\) 0 0
\(557\) 11.3137 11.3137i 0.479377 0.479377i −0.425555 0.904932i \(-0.639921\pi\)
0.904932 + 0.425555i \(0.139921\pi\)
\(558\) 0 0
\(559\) 48.0000i 2.03018i
\(560\) 0 0
\(561\) 12.0000 8.48528i 0.506640 0.358249i
\(562\) 0 0
\(563\) −21.2132 21.2132i −0.894030 0.894030i 0.100870 0.994900i \(-0.467837\pi\)
−0.994900 + 0.100870i \(0.967837\pi\)
\(564\) 0 0
\(565\) 4.00000 2.00000i 0.168281 0.0841406i
\(566\) 0 0
\(567\) −4.02944 37.9706i −0.169220 1.59461i
\(568\) 0 0
\(569\) 2.82843 0.118574 0.0592869 0.998241i \(-0.481117\pi\)
0.0592869 + 0.998241i \(0.481117\pi\)
\(570\) 0 0
\(571\) −12.0000 −0.502184 −0.251092 0.967963i \(-0.580790\pi\)
−0.251092 + 0.967963i \(0.580790\pi\)
\(572\) 0 0
\(573\) 14.4853 + 2.48528i 0.605131 + 0.103824i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 5.00000 + 5.00000i 0.208153 + 0.208153i 0.803482 0.595329i \(-0.202978\pi\)
−0.595329 + 0.803482i \(0.702978\pi\)
\(578\) 0 0
\(579\) 24.0416 + 34.0000i 0.999136 + 1.41299i
\(580\) 0 0
\(581\) 50.9117i 2.11217i
\(582\) 0 0
\(583\) −12.0000 + 12.0000i −0.496989 + 0.496989i
\(584\) 0 0
\(585\) 4.68629 + 37.6569i 0.193754 + 1.55692i
\(586\) 0 0
\(587\) −8.48528 + 8.48528i −0.350225 + 0.350225i −0.860193 0.509968i \(-0.829657\pi\)
0.509968 + 0.860193i \(0.329657\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −8.00000 11.3137i −0.329076 0.465384i
\(592\) 0 0
\(593\) −24.0416 24.0416i −0.987271 0.987271i 0.0126486 0.999920i \(-0.495974\pi\)
−0.999920 + 0.0126486i \(0.995974\pi\)
\(594\) 0 0
\(595\) 6.00000 18.0000i 0.245976 0.737928i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 16.9706 0.693398 0.346699 0.937976i \(-0.387302\pi\)
0.346699 + 0.937976i \(0.387302\pi\)
\(600\) 0 0
\(601\) −42.0000 −1.71322 −0.856608 0.515968i \(-0.827432\pi\)
−0.856608 + 0.515968i \(0.827432\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 4.94975 14.8492i 0.201236 0.603708i
\(606\) 0 0
\(607\) 9.00000 + 9.00000i 0.365299 + 0.365299i 0.865759 0.500461i \(-0.166836\pi\)
−0.500461 + 0.865759i \(0.666836\pi\)
\(608\) 0 0
\(609\) 25.4558 18.0000i 1.03152 0.729397i
\(610\) 0 0
\(611\) 67.8823i 2.74622i
\(612\) 0 0
\(613\) −10.0000 + 10.0000i −0.403896 + 0.403896i −0.879604 0.475707i \(-0.842192\pi\)
0.475707 + 0.879604i \(0.342192\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 26.8701 26.8701i 1.08175 1.08175i 0.0854011 0.996347i \(-0.472783\pi\)
0.996347 0.0854011i \(-0.0272172\pi\)
\(618\) 0 0
\(619\) 36.0000i 1.44696i −0.690344 0.723481i \(-0.742541\pi\)
0.690344 0.723481i \(-0.257459\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −25.4558 25.4558i −1.01987 1.01987i
\(624\) 0 0
\(625\) 7.00000 + 24.0000i 0.280000 + 0.960000i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −5.65685 −0.225554
\(630\) 0 0
\(631\) −18.0000 −0.716569 −0.358284 0.933613i \(-0.616638\pi\)
−0.358284 + 0.933613i \(0.616638\pi\)
\(632\) 0 0
\(633\) 3.51472 20.4853i 0.139698 0.814217i
\(634\) 0 0
\(635\) −8.48528 + 4.24264i −0.336728 + 0.168364i
\(636\) 0 0
\(637\) −44.0000 44.0000i −1.74334 1.74334i
\(638\) 0 0
\(639\) −8.48528 + 24.0000i −0.335673 + 0.949425i
\(640\) 0 0
\(641\) 16.9706i 0.670297i 0.942165 + 0.335148i \(0.108786\pi\)
−0.942165 + 0.335148i \(0.891214\pi\)
\(642\) 0 0
\(643\) 24.0000 24.0000i 0.946468 0.946468i −0.0521706 0.998638i \(-0.516614\pi\)
0.998638 + 0.0521706i \(0.0166140\pi\)
\(644\) 0 0
\(645\) 31.4558 9.51472i 1.23857 0.374642i
\(646\) 0 0
\(647\) 16.9706 16.9706i 0.667182 0.667182i −0.289881 0.957063i \(-0.593616\pi\)
0.957063 + 0.289881i \(0.0936157\pi\)
\(648\) 0 0
\(649\) 18.0000i 0.706562i
\(650\) 0 0
\(651\) −36.0000 + 25.4558i −1.41095 + 0.997693i
\(652\) 0 0
\(653\) −7.07107 7.07107i −0.276712 0.276712i 0.555083 0.831795i \(-0.312687\pi\)
−0.831795 + 0.555083i \(0.812687\pi\)
\(654\) 0 0
\(655\) −27.0000 9.00000i −1.05498 0.351659i
\(656\) 0 0
\(657\) 19.1421 9.14214i 0.746806 0.356669i
\(658\) 0 0
\(659\) −38.1838 −1.48743 −0.743714 0.668498i \(-0.766938\pi\)
−0.743714 + 0.668498i \(0.766938\pi\)
\(660\) 0 0
\(661\) −30.0000 −1.16686 −0.583432 0.812162i \(-0.698291\pi\)
−0.583432 + 0.812162i \(0.698291\pi\)
\(662\) 0 0
\(663\) −19.3137 3.31371i −0.750082 0.128694i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −4.24264 6.00000i −0.164030 0.231973i
\(670\) 0 0
\(671\) 25.4558i 0.982712i
\(672\) 0 0
\(673\) −11.0000 + 11.0000i −0.424019 + 0.424019i −0.886585 0.462566i \(-0.846929\pi\)
0.462566 + 0.886585i \(0.346929\pi\)
\(674\) 0 0
\(675\) −23.7487 + 10.5355i −0.914089 + 0.405513i
\(676\) 0 0
\(677\) −26.8701 + 26.8701i −1.03270 + 1.03270i −0.0332533 + 0.999447i \(0.510587\pi\)
−0.999447 + 0.0332533i \(0.989413\pi\)
\(678\) 0 0
\(679\) 30.0000i 1.15129i
\(680\) 0 0
\(681\) 18.0000 + 25.4558i 0.689761 + 0.975470i
\(682\) 0 0
\(683\) 8.48528 + 8.48528i 0.324680 + 0.324680i 0.850559 0.525879i \(-0.176264\pi\)
−0.525879 + 0.850559i \(0.676264\pi\)
\(684\) 0 0
\(685\) 10.0000 + 20.0000i 0.382080 + 0.764161i
\(686\) 0 0
\(687\) 10.2426 + 1.75736i 0.390781 + 0.0670474i
\(688\) 0 0
\(689\) 22.6274 0.862036
\(690\) 0 0
\(691\) −48.0000 −1.82601 −0.913003 0.407953i \(-0.866243\pi\)
−0.913003 + 0.407953i \(0.866243\pi\)
\(692\) 0 0
\(693\) 48.7279 23.2721i 1.85102 0.884033i
\(694\) 0 0
\(695\) 25.4558 + 8.48528i 0.965595 + 0.321865i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 36.7696 26.0000i 1.39075 0.983410i
\(700\) 0 0
\(701\) 29.6985i 1.12170i 0.827919 + 0.560848i \(0.189525\pi\)
−0.827919 + 0.560848i \(0.810475\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 44.4853 13.4558i 1.67541 0.506776i
\(706\) 0 0
\(707\) 29.6985 29.6985i 1.11693 1.11693i
\(708\) 0 0
\(709\) 30.0000i 1.12667i −0.826227 0.563337i \(-0.809517\pi\)
0.826227 0.563337i \(-0.190483\pi\)
\(710\) 0 0
\(711\) −6.00000 + 16.9706i −0.225018 + 0.636446i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −48.0000 + 24.0000i −1.79510 + 0.897549i
\(716\) 0 0
\(717\) −7.45584 + 43.4558i −0.278444 + 1.62289i
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) −18.0000 −0.670355
\(722\) 0 0
\(723\) 3.51472 20.4853i 0.130714 0.761856i
\(724\) 0 0
\(725\) −16.9706 12.7279i −0.630271 0.472703i
\(726\) 0 0
\(727\) −33.0000 33.0000i −1.22390 1.22390i −0.966233 0.257669i \(-0.917046\pi\)
−0.257669 0.966233i \(-0.582954\pi\)
\(728\) 0 0
\(729\) −14.1421 23.0000i −0.523783 0.851852i
\(730\) 0 0
\(731\) 16.9706i 0.627679i
\(732\) 0 0
\(733\) −2.00000 + 2.00000i −0.0738717 + 0.0738717i −0.743077 0.669206i \(-0.766635\pi\)
0.669206 + 0.743077i \(0.266635\pi\)
\(734\) 0 0
\(735\) 20.1127 37.5563i 0.741868 1.38529i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 12.0000i 0.441427i 0.975339 + 0.220714i \(0.0708386\pi\)
−0.975339 + 0.220714i \(0.929161\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −16.9706 16.9706i −0.622590 0.622590i 0.323603 0.946193i \(-0.395106\pi\)
−0.946193 + 0.323603i \(0.895106\pi\)
\(744\) 0 0
\(745\) −1.00000 + 3.00000i −0.0366372 + 0.109911i
\(746\) 0 0
\(747\) −15.5147 32.4853i −0.567654 1.18857i
\(748\) 0 0
\(749\) 50.9117 1.86027
\(750\) 0 0
\(751\) 6.00000 0.218943 0.109472 0.993990i \(-0.465084\pi\)
0.109472 + 0.993990i \(0.465084\pi\)
\(752\) 0 0
\(753\) −7.24264 1.24264i −0.263936 0.0452843i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 26.0000 + 26.0000i 0.944986 + 0.944986i 0.998564 0.0535776i \(-0.0170625\pi\)
−0.0535776 + 0.998564i \(0.517062\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 36.7696i 1.33290i 0.745552 + 0.666448i \(0.232186\pi\)
−0.745552 + 0.666448i \(0.767814\pi\)
\(762\) 0 0
\(763\) −6.00000 + 6.00000i −0.217215 + 0.217215i
\(764\) 0 0
\(765\) −1.65685 13.3137i −0.0599037 0.481358i
\(766\) 0 0
\(767\) 16.9706 16.9706i 0.612772 0.612772i
\(768\) 0 0
\(769\) 42.0000i 1.51456i 0.653091 + 0.757279i \(0.273472\pi\)
−0.653091 + 0.757279i \(0.726528\pi\)
\(770\) 0 0
\(771\) −22.0000 31.1127i −0.792311 1.12050i
\(772\) 0 0
\(773\) −26.8701 26.8701i −0.966449 0.966449i 0.0330063 0.999455i \(-0.489492\pi\)
−0.999455 + 0.0330063i \(0.989492\pi\)
\(774\) 0 0
\(775\) 24.0000 + 18.0000i 0.862105 + 0.646579i
\(776\) 0 0
\(777\) −20.4853 3.51472i −0.734905 0.126090i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −36.0000 −1.28818
\(782\) 0 0
\(783\) 10.7574 19.2426i 0.384437 0.687676i
\(784\) 0 0
\(785\) −22.6274 + 11.3137i −0.807607 + 0.403804i
\(786\) 0 0
\(787\) −24.0000 24.0000i −0.855508 0.855508i 0.135297 0.990805i \(-0.456801\pi\)
−0.990805 + 0.135297i \(0.956801\pi\)
\(788\) 0 0
\(789\) −16.9706 + 12.0000i −0.604168 + 0.427211i
\(790\) 0 0
\(791\) 8.48528i 0.301702i
\(792\) 0 0
\(793\) 24.0000 24.0000i 0.852265 0.852265i
\(794\) 0 0
\(795\) 4.48528 + 14.8284i 0.159077 + 0.525910i
\(796\) 0 0
\(797\) 1.41421 1.41421i 0.0500940 0.0500940i −0.681616 0.731710i \(-0.738723\pi\)
0.731710 + 0.681616i \(0.238723\pi\)
\(798\) 0 0
\(799\) 24.0000i 0.849059i
\(800\) 0 0
\(801\) −24.0000 8.48528i −0.847998 0.299813i
\(802\) 0 0
\(803\) 21.2132 + 21.2132i 0.748598 + 0.748598i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −5.38478 + 31.3848i −0.189553 + 1.10480i
\(808\) 0 0
\(809\) −33.9411 −1.19331 −0.596653 0.802499i \(-0.703503\pi\)
−0.596653 + 0.802499i \(0.703503\pi\)
\(810\) 0 0
\(811\) 24.0000 0.842754 0.421377 0.906886i \(-0.361547\pi\)
0.421377 + 0.906886i \(0.361547\pi\)
\(812\) 0 0
\(813\) 7.02944 40.9706i 0.246533 1.43690i
\(814\) 0 0
\(815\) −16.9706 33.9411i −0.594453 1.18891i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −67.8823 24.0000i −2.37200 0.838628i
\(820\) 0 0
\(821\) 21.2132i 0.740346i −0.928963 0.370173i \(-0.879298\pi\)
0.928963 0.370173i \(-0.120702\pi\)
\(822\) 0 0
\(823\) −27.0000 + 27.0000i −0.941161 + 0.941161i −0.998363 0.0572018i \(-0.981782\pi\)
0.0572018 + 0.998363i \(0.481782\pi\)
\(824\) 0 0
\(825\) −25.2426 26.6985i −0.878836 0.929522i
\(826\) 0 0
\(827\) −21.2132 + 21.2132i −0.737655 + 0.737655i −0.972124 0.234468i \(-0.924665\pi\)
0.234468 + 0.972124i \(0.424665\pi\)
\(828\) 0 0
\(829\) 38.0000i 1.31979i 0.751356 + 0.659897i \(0.229400\pi\)
−0.751356 + 0.659897i \(0.770600\pi\)
\(830\) 0 0
\(831\) 44.0000 31.1127i 1.52634 1.07929i
\(832\) 0 0
\(833\) 15.5563 + 15.5563i 0.538996 + 0.538996i
\(834\) 0 0
\(835\) 12.0000 + 24.0000i 0.415277 + 0.830554i
\(836\) 0 0
\(837\) −15.2132 + 27.2132i −0.525845 + 0.940626i
\(838\) 0 0
\(839\) 33.9411 1.17178 0.585889 0.810391i \(-0.300745\pi\)
0.585889 + 0.810391i \(0.300745\pi\)
\(840\) 0 0
\(841\) −11.0000 −0.379310
\(842\) 0 0
\(843\) −14.4853 2.48528i −0.498900 0.0855976i
\(844\) 0 0
\(845\) 40.3051 + 13.4350i 1.38654 + 0.462179i
\(846\) 0 0
\(847\) 21.0000 + 21.0000i 0.721569 + 0.721569i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −22.0000 + 22.0000i −0.753266 + 0.753266i −0.975087 0.221822i \(-0.928800\pi\)
0.221822 + 0.975087i \(0.428800\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −9.89949 + 9.89949i −0.338160 + 0.338160i −0.855675 0.517514i \(-0.826857\pi\)
0.517514 + 0.855675i \(0.326857\pi\)
\(858\) 0 0
\(859\) 36.0000i 1.22830i −0.789188 0.614152i \(-0.789498\pi\)
0.789188 0.614152i \(-0.210502\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(864\) 0 0
\(865\) −28.0000 + 14.0000i −0.952029 + 0.476014i
\(866\) 0 0
\(867\) −22.1924 3.80761i −0.753693 0.129313i
\(868\) 0 0
\(869\) −25.4558 −0.863530
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 9.14214 + 19.1421i 0.309414 + 0.647863i
\(874\) 0 0
\(875\) −46.6690 8.48528i −1.57770 0.286855i
\(876\) 0 0
\(877\) −4.00000 4.00000i −0.135070 0.135070i 0.636339 0.771409i \(-0.280448\pi\)
−0.771409 + 0.636339i \(0.780448\pi\)
\(878\) 0 0
\(879\) 45.2548 32.0000i 1.52641 1.07933i
\(880\) 0 0
\(881\) 25.4558i 0.857629i 0.903393 + 0.428815i \(0.141069\pi\)
−0.903393 + 0.428815i \(0.858931\pi\)
\(882\) 0 0
\(883\) 12.0000 12.0000i 0.403832 0.403832i −0.475749 0.879581i \(-0.657823\pi\)
0.879581 + 0.475749i \(0.157823\pi\)
\(884\) 0 0
\(885\) 14.4853 + 7.75736i 0.486917 + 0.260761i
\(886\) 0 0
\(887\) 16.9706 16.9706i 0.569816 0.569816i −0.362261 0.932077i \(-0.617995\pi\)
0.932077 + 0.362261i \(0.117995\pi\)
\(888\) 0 0
\(889\) 18.0000i 0.603701i
\(890\) 0 0
\(891\) 24.0000 29.6985i 0.804030 0.994937i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 15.0000 45.0000i 0.501395 1.50418i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −25.4558 −0.849000
\(900\) 0 0
\(901\) −8.00000 −0.266519
\(902\) 0 0
\(903\) −10.5442 + 61.4558i −0.350888 + 2.04512i
\(904\) 0 0
\(905\) −1.41421 + 4.24264i −0.0470100 + 0.141030i
\(906\) 0 0
\(907\) 6.00000 + 6.00000i 0.199227 + 0.199227i 0.799668 0.600442i \(-0.205009\pi\)
−0.600442 + 0.799668i \(0.705009\pi\)
\(908\) 0 0
\(909\) 9.89949 28.0000i 0.328346 0.928701i
\(910\) 0 0
\(911\) 33.9411i 1.12452i −0.826961 0.562260i \(-0.809932\pi\)
0.826961 0.562260i \(-0.190068\pi\)
\(912\) 0 0
\(913\) 36.0000 36.0000i 1.19143 1.19143i
\(914\) 0 0
\(915\) 20.4853 + 10.9706i 0.677223 + 0.362676i
\(916\) 0 0
\(917\) 38.1838 38.1838i 1.26094 1.26094i
\(918\) 0 0
\(919\) 42.0000i 1.38545i 0.721201 + 0.692726i \(0.243591\pi\)
−0.721201 + 0.692726i \(0.756409\pi\)
\(920\) 0 0
\(921\) 36.0000 25.4558i 1.18624 0.838799i
\(922\) 0 0
\(923\) 33.9411 + 33.9411i 1.11719 + 1.11719i
\(924\) 0 0
\(925\) 2.00000 + 14.0000i 0.0657596 + 0.460317i
\(926\) 0 0
\(927\) −11.4853 + 5.48528i −0.377226 + 0.180160i
\(928\) 0 0
\(929\) −2.82843 −0.0927977 −0.0463988 0.998923i \(-0.514775\pi\)
−0.0463988 + 0.998923i \(0.514775\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 14.4853 + 2.48528i 0.474227 + 0.0813645i
\(934\) 0 0
\(935\) 16.9706 8.48528i 0.554997 0.277498i
\(936\) 0 0
\(937\) 11.0000 + 11.0000i 0.359354 + 0.359354i 0.863575 0.504221i \(-0.168220\pi\)
−0.504221 + 0.863575i \(0.668220\pi\)
\(938\) 0 0
\(939\) 24.0416 + 34.0000i 0.784569 + 1.10955i
\(940\) 0 0
\(941\) 1.41421i 0.0461020i −0.999734 0.0230510i \(-0.992662\pi\)
0.999734 0.0230510i \(-0.00733802\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 2.27208 49.2426i 0.0739107 1.60186i
\(946\) 0 0
\(947\) −21.2132 + 21.2132i −0.689336 + 0.689336i −0.962085 0.272749i \(-0.912067\pi\)
0.272749 + 0.962085i \(0.412067\pi\)
\(948\) 0 0
\(949\) 40.0000i 1.29845i
\(950\) 0 0
\(951\) 14.0000 + 19.7990i 0.453981 + 0.642026i
\(952\) 0 0
\(953\) 24.0416 + 24.0416i 0.778785 + 0.778785i 0.979624 0.200839i \(-0.0643669\pi\)
−0.200839 + 0.979624i \(0.564367\pi\)
\(954\) 0 0
\(955\) 18.0000 + 6.00000i 0.582466 + 0.194155i
\(956\) 0 0
\(957\) 30.7279 + 5.27208i 0.993293 + 0.170422i
\(958\) 0 0
\(959\) −42.4264 −1.37002
\(960\) 0 0
\(961\) 5.00000 0.161290
\(962\) 0 0
\(963\) 32.4853 15.5147i 1.04682 0.499955i
\(964\) 0 0
\(965\) 24.0416 + 48.0833i 0.773927 + 1.54785i
\(966\) 0 0
\(967\) −15.0000 15.0000i −0.482367 0.482367i 0.423520 0.905887i \(-0.360795\pi\)
−0.905887 + 0.423520i \(0.860795\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 46.6690i 1.49768i 0.662750 + 0.748841i \(0.269389\pi\)
−0.662750 + 0.748841i \(0.730611\pi\)
\(972\) 0 0
\(973\) −36.0000 + 36.0000i −1.15411 + 1.15411i
\(974\) 0 0
\(975\) −1.37258 + 48.9706i −0.0439578 + 1.56831i
\(976\) 0 0
\(977\) 32.5269 32.5269i 1.04063 1.04063i 0.0414892 0.999139i \(-0.486790\pi\)
0.999139 0.0414892i \(-0.0132102\pi\)
\(978\) 0 0
\(979\) 36.0000i 1.15056i
\(980\) 0 0
\(981\) −2.00000 + 5.65685i −0.0638551 + 0.180609i
\(982\) 0 0
\(983\) 33.9411 + 33.9411i 1.08255 + 1.08255i 0.996271 + 0.0862831i \(0.0274990\pi\)
0.0862831 + 0.996271i \(0.472501\pi\)
\(984\) 0 0
\(985\) −8.00000 16.0000i −0.254901 0.509802i
\(986\) 0 0
\(987\) −14.9117 + 86.9117i −0.474644 + 2.76643i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 48.0000 1.52477 0.762385 0.647124i \(-0.224028\pi\)
0.762385 + 0.647124i \(0.224028\pi\)
\(992\) 0 0
\(993\) −3.51472 + 20.4853i −0.111536 + 0.650081i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −28.0000 28.0000i −0.886769 0.886769i 0.107442 0.994211i \(-0.465734\pi\)
−0.994211 + 0.107442i \(0.965734\pi\)
\(998\) 0 0
\(999\) −14.1421 + 4.00000i −0.447437 + 0.126554i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 480.2.v.a.257.2 yes 4
3.2 odd 2 inner 480.2.v.a.257.1 4
4.3 odd 2 480.2.v.b.257.1 yes 4
5.3 odd 4 inner 480.2.v.a.353.1 yes 4
8.3 odd 2 960.2.v.d.257.2 4
8.5 even 2 960.2.v.j.257.1 4
12.11 even 2 480.2.v.b.257.2 yes 4
15.8 even 4 inner 480.2.v.a.353.2 yes 4
20.3 even 4 480.2.v.b.353.2 yes 4
24.5 odd 2 960.2.v.j.257.2 4
24.11 even 2 960.2.v.d.257.1 4
40.3 even 4 960.2.v.d.833.1 4
40.13 odd 4 960.2.v.j.833.2 4
60.23 odd 4 480.2.v.b.353.1 yes 4
120.53 even 4 960.2.v.j.833.1 4
120.83 odd 4 960.2.v.d.833.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
480.2.v.a.257.1 4 3.2 odd 2 inner
480.2.v.a.257.2 yes 4 1.1 even 1 trivial
480.2.v.a.353.1 yes 4 5.3 odd 4 inner
480.2.v.a.353.2 yes 4 15.8 even 4 inner
480.2.v.b.257.1 yes 4 4.3 odd 2
480.2.v.b.257.2 yes 4 12.11 even 2
480.2.v.b.353.1 yes 4 60.23 odd 4
480.2.v.b.353.2 yes 4 20.3 even 4
960.2.v.d.257.1 4 24.11 even 2
960.2.v.d.257.2 4 8.3 odd 2
960.2.v.d.833.1 4 40.3 even 4
960.2.v.d.833.2 4 120.83 odd 4
960.2.v.j.257.1 4 8.5 even 2
960.2.v.j.257.2 4 24.5 odd 2
960.2.v.j.833.1 4 120.53 even 4
960.2.v.j.833.2 4 40.13 odd 4