L(s) = 1 | + 8·7-s − 8·13-s − 16·23-s − 8·25-s + 8·31-s − 8·37-s − 16·47-s + 20·49-s − 16·59-s − 24·61-s − 16·67-s − 16·71-s − 8·73-s + 24·79-s + 8·89-s − 64·91-s − 16·97-s − 16·101-s + 24·103-s − 16·107-s − 24·109-s + 8·113-s − 28·121-s − 16·125-s + 127-s + 131-s + 137-s + ⋯ |
L(s) = 1 | + 3.02·7-s − 2.21·13-s − 3.33·23-s − 8/5·25-s + 1.43·31-s − 1.31·37-s − 2.33·47-s + 20/7·49-s − 2.08·59-s − 3.07·61-s − 1.95·67-s − 1.89·71-s − 0.936·73-s + 2.70·79-s + 0.847·89-s − 6.70·91-s − 1.62·97-s − 1.59·101-s + 2.36·103-s − 1.54·107-s − 2.29·109-s + 0.752·113-s − 2.54·121-s − 1.43·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + ⋯ |
Λ(s)=(=((240⋅38)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((240⋅38)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
240⋅38
|
Sign: |
1
|
Analytic conductor: |
2.93277×107 |
Root analytic conductor: |
8.57846 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
4
|
Selberg data: |
(8, 240⋅38, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−5.86350100999126382601908699032, −5.53872470122145378045055269994, −5.24564869021528211073373915546, −5.17929021222829505231545324668, −4.92753807539620679524477719051, −4.78028828485817050373696020885, −4.73546622840489348481698698930, −4.66872830113867590151973803393, −4.41005038419679448614121496755, −4.13557026154887687313426407861, −3.98339193367130843221693356100, −3.96867063721958662060878579118, −3.61888793136333424851096845837, −3.20972975765980126726721990679, −3.09561240874680195913430193185, −2.95494517854485938188432057147, −2.80296239696175813493460893133, −2.23073696435743740634222633343, −2.10084358229669943227593659841, −2.08783694473472480641157552017, −2.05054507156803413785585931403, −1.49887224021910274400914658027, −1.39770654515595401705486031378, −1.38354991528801901104336646350, −1.10320239994262060691076389474, 0, 0, 0, 0,
1.10320239994262060691076389474, 1.38354991528801901104336646350, 1.39770654515595401705486031378, 1.49887224021910274400914658027, 2.05054507156803413785585931403, 2.08783694473472480641157552017, 2.10084358229669943227593659841, 2.23073696435743740634222633343, 2.80296239696175813493460893133, 2.95494517854485938188432057147, 3.09561240874680195913430193185, 3.20972975765980126726721990679, 3.61888793136333424851096845837, 3.96867063721958662060878579118, 3.98339193367130843221693356100, 4.13557026154887687313426407861, 4.41005038419679448614121496755, 4.66872830113867590151973803393, 4.73546622840489348481698698930, 4.78028828485817050373696020885, 4.92753807539620679524477719051, 5.17929021222829505231545324668, 5.24564869021528211073373915546, 5.53872470122145378045055269994, 5.86350100999126382601908699032