Properties

Label 9216.2.a.bl.1.2
Level $9216$
Weight $2$
Character 9216.1
Self dual yes
Analytic conductor $73.590$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9216,2,Mod(1,9216)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9216, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9216.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9216 = 2^{10} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9216.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.5901305028\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{16})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1536)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.84776\) of defining polynomial
Character \(\chi\) \(=\) 9216.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.331821 q^{5} +3.08239 q^{7} +O(q^{10})\) \(q+0.331821 q^{5} +3.08239 q^{7} -3.69552 q^{11} +4.64047 q^{13} -6.52395 q^{17} +0.867091 q^{19} -4.00000 q^{23} -4.88989 q^{25} +4.89443 q^{29} +6.14386 q^{31} +1.02280 q^{35} -3.64725 q^{37} -3.92856 q^{41} -3.92856 q^{43} +1.65685 q^{47} +2.50114 q^{49} -0.564862 q^{53} -1.22625 q^{55} -6.59539 q^{59} -14.8052 q^{61} +1.53981 q^{65} -13.9864 q^{67} -7.49207 q^{71} +5.62408 q^{73} -11.3910 q^{77} +14.9040 q^{79} +9.35237 q^{83} -2.16478 q^{85} +18.1094 q^{89} +14.3037 q^{91} +0.287719 q^{95} -17.0479 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 8 q^{7} - 8 q^{13} - 16 q^{23} + 4 q^{25} + 8 q^{31} - 16 q^{35} - 8 q^{37} - 16 q^{47} + 4 q^{49} + 16 q^{55} - 16 q^{59} - 24 q^{61} + 8 q^{65} - 16 q^{67} - 16 q^{71} - 8 q^{73} - 16 q^{77} + 24 q^{79} + 8 q^{89} - 16 q^{91} - 32 q^{95} - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.331821 0.148395 0.0741975 0.997244i \(-0.476360\pi\)
0.0741975 + 0.997244i \(0.476360\pi\)
\(6\) 0 0
\(7\) 3.08239 1.16503 0.582517 0.812818i \(-0.302068\pi\)
0.582517 + 0.812818i \(0.302068\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.69552 −1.11424 −0.557120 0.830432i \(-0.688094\pi\)
−0.557120 + 0.830432i \(0.688094\pi\)
\(12\) 0 0
\(13\) 4.64047 1.28703 0.643517 0.765432i \(-0.277475\pi\)
0.643517 + 0.765432i \(0.277475\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −6.52395 −1.58229 −0.791145 0.611629i \(-0.790514\pi\)
−0.791145 + 0.611629i \(0.790514\pi\)
\(18\) 0 0
\(19\) 0.867091 0.198924 0.0994622 0.995041i \(-0.468288\pi\)
0.0994622 + 0.995041i \(0.468288\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) −4.88989 −0.977979
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.89443 0.908873 0.454436 0.890779i \(-0.349841\pi\)
0.454436 + 0.890779i \(0.349841\pi\)
\(30\) 0 0
\(31\) 6.14386 1.10347 0.551735 0.834020i \(-0.313966\pi\)
0.551735 + 0.834020i \(0.313966\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.02280 0.172885
\(36\) 0 0
\(37\) −3.64725 −0.599605 −0.299802 0.954001i \(-0.596921\pi\)
−0.299802 + 0.954001i \(0.596921\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.92856 −0.613538 −0.306769 0.951784i \(-0.599248\pi\)
−0.306769 + 0.951784i \(0.599248\pi\)
\(42\) 0 0
\(43\) −3.92856 −0.599100 −0.299550 0.954081i \(-0.596836\pi\)
−0.299550 + 0.954081i \(0.596836\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.65685 0.241677 0.120839 0.992672i \(-0.461442\pi\)
0.120839 + 0.992672i \(0.461442\pi\)
\(48\) 0 0
\(49\) 2.50114 0.357306
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −0.564862 −0.0775897 −0.0387949 0.999247i \(-0.512352\pi\)
−0.0387949 + 0.999247i \(0.512352\pi\)
\(54\) 0 0
\(55\) −1.22625 −0.165348
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −6.59539 −0.858646 −0.429323 0.903151i \(-0.641248\pi\)
−0.429323 + 0.903151i \(0.641248\pi\)
\(60\) 0 0
\(61\) −14.8052 −1.89562 −0.947809 0.318839i \(-0.896707\pi\)
−0.947809 + 0.318839i \(0.896707\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.53981 0.190989
\(66\) 0 0
\(67\) −13.9864 −1.70871 −0.854357 0.519687i \(-0.826049\pi\)
−0.854357 + 0.519687i \(0.826049\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −7.49207 −0.889145 −0.444573 0.895743i \(-0.646644\pi\)
−0.444573 + 0.895743i \(0.646644\pi\)
\(72\) 0 0
\(73\) 5.62408 0.658248 0.329124 0.944287i \(-0.393247\pi\)
0.329124 + 0.944287i \(0.393247\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −11.3910 −1.29813
\(78\) 0 0
\(79\) 14.9040 1.67683 0.838417 0.545029i \(-0.183481\pi\)
0.838417 + 0.545029i \(0.183481\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 9.35237 1.02656 0.513278 0.858222i \(-0.328431\pi\)
0.513278 + 0.858222i \(0.328431\pi\)
\(84\) 0 0
\(85\) −2.16478 −0.234804
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 18.1094 1.91959 0.959794 0.280705i \(-0.0905683\pi\)
0.959794 + 0.280705i \(0.0905683\pi\)
\(90\) 0 0
\(91\) 14.3037 1.49944
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.287719 0.0295194
\(96\) 0 0
\(97\) −17.0479 −1.73095 −0.865476 0.500951i \(-0.832984\pi\)
−0.865476 + 0.500951i \(0.832984\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −12.1535 −1.20931 −0.604657 0.796486i \(-0.706690\pi\)
−0.604657 + 0.796486i \(0.706690\pi\)
\(102\) 0 0
\(103\) 17.1043 1.68534 0.842668 0.538433i \(-0.180984\pi\)
0.842668 + 0.538433i \(0.180984\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −18.3752 −1.77640 −0.888198 0.459462i \(-0.848042\pi\)
−0.888198 + 0.459462i \(0.848042\pi\)
\(108\) 0 0
\(109\) −7.84482 −0.751397 −0.375699 0.926742i \(-0.622597\pi\)
−0.375699 + 0.926742i \(0.622597\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −3.65685 −0.344008 −0.172004 0.985096i \(-0.555024\pi\)
−0.172004 + 0.985096i \(0.555024\pi\)
\(114\) 0 0
\(115\) −1.32729 −0.123770
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −20.1094 −1.84342
\(120\) 0 0
\(121\) 2.65685 0.241532
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −3.28168 −0.293522
\(126\) 0 0
\(127\) −0.638213 −0.0566322 −0.0283161 0.999599i \(-0.509015\pi\)
−0.0283161 + 0.999599i \(0.509015\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −9.51397 −0.831240 −0.415620 0.909538i \(-0.636435\pi\)
−0.415620 + 0.909538i \(0.636435\pi\)
\(132\) 0 0
\(133\) 2.67271 0.231754
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 13.9150 1.18884 0.594419 0.804156i \(-0.297382\pi\)
0.594419 + 0.804156i \(0.297382\pi\)
\(138\) 0 0
\(139\) −0.0773278 −0.00655886 −0.00327943 0.999995i \(-0.501044\pi\)
−0.00327943 + 0.999995i \(0.501044\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −17.1489 −1.43407
\(144\) 0 0
\(145\) 1.62408 0.134872
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −13.9887 −1.14600 −0.572998 0.819556i \(-0.694220\pi\)
−0.572998 + 0.819556i \(0.694220\pi\)
\(150\) 0 0
\(151\) −18.5828 −1.51225 −0.756123 0.654430i \(-0.772909\pi\)
−0.756123 + 0.654430i \(0.772909\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.03866 0.163749
\(156\) 0 0
\(157\) 5.30411 0.423314 0.211657 0.977344i \(-0.432114\pi\)
0.211657 + 0.977344i \(0.432114\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −12.3296 −0.971706
\(162\) 0 0
\(163\) −13.3060 −1.04221 −0.521104 0.853493i \(-0.674480\pi\)
−0.521104 + 0.853493i \(0.674480\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 15.9310 1.23278 0.616389 0.787442i \(-0.288595\pi\)
0.616389 + 0.787442i \(0.288595\pi\)
\(168\) 0 0
\(169\) 8.53392 0.656455
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −19.7229 −1.49950 −0.749751 0.661721i \(-0.769827\pi\)
−0.749751 + 0.661721i \(0.769827\pi\)
\(174\) 0 0
\(175\) −15.0726 −1.13938
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 5.98642 0.447446 0.223723 0.974653i \(-0.428179\pi\)
0.223723 + 0.974653i \(0.428179\pi\)
\(180\) 0 0
\(181\) −9.81204 −0.729323 −0.364662 0.931140i \(-0.618815\pi\)
−0.364662 + 0.931140i \(0.618815\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1.21024 −0.0889784
\(186\) 0 0
\(187\) 24.1094 1.76305
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −19.2900 −1.39578 −0.697888 0.716207i \(-0.745877\pi\)
−0.697888 + 0.716207i \(0.745877\pi\)
\(192\) 0 0
\(193\) −0.155713 −0.0112084 −0.00560422 0.999984i \(-0.501784\pi\)
−0.00560422 + 0.999984i \(0.501784\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 13.2014 0.940557 0.470279 0.882518i \(-0.344153\pi\)
0.470279 + 0.882518i \(0.344153\pi\)
\(198\) 0 0
\(199\) 23.1144 1.63854 0.819269 0.573409i \(-0.194380\pi\)
0.819269 + 0.573409i \(0.194380\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 15.0866 1.05887
\(204\) 0 0
\(205\) −1.30358 −0.0910459
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −3.20435 −0.221650
\(210\) 0 0
\(211\) 3.39104 0.233449 0.116724 0.993164i \(-0.462761\pi\)
0.116724 + 0.993164i \(0.462761\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1.30358 −0.0889034
\(216\) 0 0
\(217\) 18.9378 1.28558
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −30.2741 −2.03646
\(222\) 0 0
\(223\) 10.5326 0.705316 0.352658 0.935752i \(-0.385278\pi\)
0.352658 + 0.935752i \(0.385278\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 23.4753 1.55811 0.779055 0.626955i \(-0.215699\pi\)
0.779055 + 0.626955i \(0.215699\pi\)
\(228\) 0 0
\(229\) 3.13932 0.207452 0.103726 0.994606i \(-0.466923\pi\)
0.103726 + 0.994606i \(0.466923\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 8.98414 0.588571 0.294285 0.955718i \(-0.404918\pi\)
0.294285 + 0.955718i \(0.404918\pi\)
\(234\) 0 0
\(235\) 0.549780 0.0358637
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.69870 0.109880 0.0549400 0.998490i \(-0.482503\pi\)
0.0549400 + 0.998490i \(0.482503\pi\)
\(240\) 0 0
\(241\) −14.3288 −0.923001 −0.461500 0.887140i \(-0.652689\pi\)
−0.461500 + 0.887140i \(0.652689\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0.829932 0.0530224
\(246\) 0 0
\(247\) 4.02371 0.256022
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 11.6955 0.738215 0.369107 0.929387i \(-0.379663\pi\)
0.369107 + 0.929387i \(0.379663\pi\)
\(252\) 0 0
\(253\) 14.7821 0.929341
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −3.98642 −0.248666 −0.124333 0.992241i \(-0.539679\pi\)
−0.124333 + 0.992241i \(0.539679\pi\)
\(258\) 0 0
\(259\) −11.2423 −0.698560
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −11.8635 −0.731534 −0.365767 0.930706i \(-0.619193\pi\)
−0.365767 + 0.930706i \(0.619193\pi\)
\(264\) 0 0
\(265\) −0.187433 −0.0115139
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 21.3880 1.30405 0.652026 0.758197i \(-0.273919\pi\)
0.652026 + 0.758197i \(0.273919\pi\)
\(270\) 0 0
\(271\) 12.0530 0.732165 0.366082 0.930582i \(-0.380699\pi\)
0.366082 + 0.930582i \(0.380699\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 18.0707 1.08970
\(276\) 0 0
\(277\) 4.81432 0.289265 0.144632 0.989485i \(-0.453800\pi\)
0.144632 + 0.989485i \(0.453800\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −18.5754 −1.10812 −0.554059 0.832477i \(-0.686922\pi\)
−0.554059 + 0.832477i \(0.686922\pi\)
\(282\) 0 0
\(283\) 1.40461 0.0834956 0.0417478 0.999128i \(-0.486707\pi\)
0.0417478 + 0.999128i \(0.486707\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −12.1094 −0.714793
\(288\) 0 0
\(289\) 25.5619 1.50364
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −27.8786 −1.62868 −0.814342 0.580386i \(-0.802902\pi\)
−0.814342 + 0.580386i \(0.802902\pi\)
\(294\) 0 0
\(295\) −2.18849 −0.127419
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −18.5619 −1.07346
\(300\) 0 0
\(301\) −12.1094 −0.697972
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −4.91270 −0.281300
\(306\) 0 0
\(307\) 17.4548 0.996197 0.498099 0.867120i \(-0.334032\pi\)
0.498099 + 0.867120i \(0.334032\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0.466081 0.0264290 0.0132145 0.999913i \(-0.495794\pi\)
0.0132145 + 0.999913i \(0.495794\pi\)
\(312\) 0 0
\(313\) 2.49886 0.141244 0.0706219 0.997503i \(-0.477502\pi\)
0.0706219 + 0.997503i \(0.477502\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −10.7425 −0.603358 −0.301679 0.953410i \(-0.597547\pi\)
−0.301679 + 0.953410i \(0.597547\pi\)
\(318\) 0 0
\(319\) −18.0875 −1.01270
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −5.65685 −0.314756
\(324\) 0 0
\(325\) −22.6914 −1.25869
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 5.10707 0.281562
\(330\) 0 0
\(331\) 5.26810 0.289561 0.144781 0.989464i \(-0.453752\pi\)
0.144781 + 0.989464i \(0.453752\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −4.64099 −0.253565
\(336\) 0 0
\(337\) −27.4740 −1.49660 −0.748302 0.663359i \(-0.769130\pi\)
−0.748302 + 0.663359i \(0.769130\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −22.7047 −1.22953
\(342\) 0 0
\(343\) −13.8672 −0.748761
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 8.08427 0.433986 0.216993 0.976173i \(-0.430375\pi\)
0.216993 + 0.976173i \(0.430375\pi\)
\(348\) 0 0
\(349\) −4.97454 −0.266281 −0.133140 0.991097i \(-0.542506\pi\)
−0.133140 + 0.991097i \(0.542506\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −23.0799 −1.22842 −0.614210 0.789143i \(-0.710525\pi\)
−0.614210 + 0.789143i \(0.710525\pi\)
\(354\) 0 0
\(355\) −2.48603 −0.131945
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 29.2583 1.54419 0.772097 0.635505i \(-0.219208\pi\)
0.772097 + 0.635505i \(0.219208\pi\)
\(360\) 0 0
\(361\) −18.2482 −0.960429
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.86619 0.0976808
\(366\) 0 0
\(367\) −13.1698 −0.687461 −0.343730 0.939068i \(-0.611691\pi\)
−0.343730 + 0.939068i \(0.611691\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1.74113 −0.0903947
\(372\) 0 0
\(373\) 15.2905 0.791714 0.395857 0.918312i \(-0.370448\pi\)
0.395857 + 0.918312i \(0.370448\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 22.7124 1.16975
\(378\) 0 0
\(379\) −6.41459 −0.329495 −0.164748 0.986336i \(-0.552681\pi\)
−0.164748 + 0.986336i \(0.552681\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 34.0721 1.74100 0.870501 0.492167i \(-0.163795\pi\)
0.870501 + 0.492167i \(0.163795\pi\)
\(384\) 0 0
\(385\) −3.77979 −0.192636
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −32.5185 −1.64875 −0.824377 0.566041i \(-0.808474\pi\)
−0.824377 + 0.566041i \(0.808474\pi\)
\(390\) 0 0
\(391\) 26.0958 1.31972
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 4.94548 0.248834
\(396\) 0 0
\(397\) −4.48926 −0.225309 −0.112655 0.993634i \(-0.535935\pi\)
−0.112655 + 0.993634i \(0.535935\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3.21024 0.160312 0.0801558 0.996782i \(-0.474458\pi\)
0.0801558 + 0.996782i \(0.474458\pi\)
\(402\) 0 0
\(403\) 28.5104 1.42020
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 13.4785 0.668104
\(408\) 0 0
\(409\) 14.0456 0.694511 0.347255 0.937771i \(-0.387114\pi\)
0.347255 + 0.937771i \(0.387114\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −20.3296 −1.00035
\(414\) 0 0
\(415\) 3.10332 0.152336
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −26.9437 −1.31628 −0.658142 0.752894i \(-0.728657\pi\)
−0.658142 + 0.752894i \(0.728657\pi\)
\(420\) 0 0
\(421\) −5.72188 −0.278867 −0.139434 0.990231i \(-0.544528\pi\)
−0.139434 + 0.990231i \(0.544528\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 31.9014 1.54745
\(426\) 0 0
\(427\) −45.6356 −2.20846
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 27.9547 1.34653 0.673265 0.739401i \(-0.264891\pi\)
0.673265 + 0.739401i \(0.264891\pi\)
\(432\) 0 0
\(433\) −1.81151 −0.0870556 −0.0435278 0.999052i \(-0.513860\pi\)
−0.0435278 + 0.999052i \(0.513860\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −3.46836 −0.165914
\(438\) 0 0
\(439\) 4.45985 0.212857 0.106429 0.994320i \(-0.466058\pi\)
0.106429 + 0.994320i \(0.466058\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.62047 0.124502 0.0622512 0.998061i \(-0.480172\pi\)
0.0622512 + 0.998061i \(0.480172\pi\)
\(444\) 0 0
\(445\) 6.00907 0.284857
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −27.9787 −1.32040 −0.660199 0.751091i \(-0.729528\pi\)
−0.660199 + 0.751091i \(0.729528\pi\)
\(450\) 0 0
\(451\) 14.5181 0.683629
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 4.74628 0.222509
\(456\) 0 0
\(457\) −14.3933 −0.673291 −0.336646 0.941631i \(-0.609292\pi\)
−0.336646 + 0.941631i \(0.609292\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 7.78841 0.362743 0.181371 0.983415i \(-0.441946\pi\)
0.181371 + 0.983415i \(0.441946\pi\)
\(462\) 0 0
\(463\) 15.6642 0.727977 0.363989 0.931403i \(-0.381415\pi\)
0.363989 + 0.931403i \(0.381415\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −5.27504 −0.244100 −0.122050 0.992524i \(-0.538947\pi\)
−0.122050 + 0.992524i \(0.538947\pi\)
\(468\) 0 0
\(469\) −43.1116 −1.99071
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 14.5181 0.667541
\(474\) 0 0
\(475\) −4.23998 −0.194544
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −11.9310 −0.545141 −0.272571 0.962136i \(-0.587874\pi\)
−0.272571 + 0.962136i \(0.587874\pi\)
\(480\) 0 0
\(481\) −16.9250 −0.771712
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −5.65685 −0.256865
\(486\) 0 0
\(487\) −37.1782 −1.68470 −0.842352 0.538928i \(-0.818830\pi\)
−0.842352 + 0.538928i \(0.818830\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 25.0981 1.13266 0.566330 0.824179i \(-0.308363\pi\)
0.566330 + 0.824179i \(0.308363\pi\)
\(492\) 0 0
\(493\) −31.9310 −1.43810
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −23.0935 −1.03588
\(498\) 0 0
\(499\) −32.8458 −1.47038 −0.735190 0.677861i \(-0.762907\pi\)
−0.735190 + 0.677861i \(0.762907\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −8.35327 −0.372454 −0.186227 0.982507i \(-0.559626\pi\)
−0.186227 + 0.982507i \(0.559626\pi\)
\(504\) 0 0
\(505\) −4.03278 −0.179456
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 9.33786 0.413893 0.206947 0.978352i \(-0.433647\pi\)
0.206947 + 0.978352i \(0.433647\pi\)
\(510\) 0 0
\(511\) 17.3356 0.766882
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 5.67557 0.250095
\(516\) 0 0
\(517\) −6.12293 −0.269286
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 4.38287 0.192017 0.0960084 0.995381i \(-0.469392\pi\)
0.0960084 + 0.995381i \(0.469392\pi\)
\(522\) 0 0
\(523\) −9.22869 −0.403542 −0.201771 0.979433i \(-0.564670\pi\)
−0.201771 + 0.979433i \(0.564670\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −40.0822 −1.74601
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −18.2303 −0.789644
\(534\) 0 0
\(535\) −6.09728 −0.263608
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −9.24301 −0.398125
\(540\) 0 0
\(541\) −36.9700 −1.58947 −0.794733 0.606959i \(-0.792389\pi\)
−0.794733 + 0.606959i \(0.792389\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −2.60308 −0.111504
\(546\) 0 0
\(547\) 40.6789 1.73930 0.869652 0.493665i \(-0.164343\pi\)
0.869652 + 0.493665i \(0.164343\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 4.24392 0.180797
\(552\) 0 0
\(553\) 45.9401 1.95357
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −39.6184 −1.67868 −0.839342 0.543603i \(-0.817060\pi\)
−0.839342 + 0.543603i \(0.817060\pi\)
\(558\) 0 0
\(559\) −18.2303 −0.771061
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −20.8090 −0.876993 −0.438497 0.898733i \(-0.644489\pi\)
−0.438497 + 0.898733i \(0.644489\pi\)
\(564\) 0 0
\(565\) −1.21342 −0.0510491
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 15.7585 0.660632 0.330316 0.943870i \(-0.392845\pi\)
0.330316 + 0.943870i \(0.392845\pi\)
\(570\) 0 0
\(571\) −24.6912 −1.03329 −0.516647 0.856199i \(-0.672820\pi\)
−0.516647 + 0.856199i \(0.672820\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 19.5596 0.815691
\(576\) 0 0
\(577\) −21.0924 −0.878090 −0.439045 0.898465i \(-0.644683\pi\)
−0.439045 + 0.898465i \(0.644683\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 28.8277 1.19597
\(582\) 0 0
\(583\) 2.08746 0.0864536
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −14.3933 −0.594076 −0.297038 0.954866i \(-0.595999\pi\)
−0.297038 + 0.954866i \(0.595999\pi\)
\(588\) 0 0
\(589\) 5.32729 0.219507
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −22.1931 −0.911360 −0.455680 0.890144i \(-0.650604\pi\)
−0.455680 + 0.890144i \(0.650604\pi\)
\(594\) 0 0
\(595\) −6.67271 −0.273555
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 37.4366 1.52962 0.764810 0.644256i \(-0.222833\pi\)
0.764810 + 0.644256i \(0.222833\pi\)
\(600\) 0 0
\(601\) 1.68963 0.0689215 0.0344608 0.999406i \(-0.489029\pi\)
0.0344608 + 0.999406i \(0.489029\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0.881601 0.0358422
\(606\) 0 0
\(607\) −36.8841 −1.49708 −0.748539 0.663090i \(-0.769245\pi\)
−0.748539 + 0.663090i \(0.769245\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 7.68857 0.311046
\(612\) 0 0
\(613\) −13.4598 −0.543637 −0.271819 0.962349i \(-0.587625\pi\)
−0.271819 + 0.962349i \(0.587625\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 20.3160 0.817891 0.408946 0.912559i \(-0.365897\pi\)
0.408946 + 0.912559i \(0.365897\pi\)
\(618\) 0 0
\(619\) 39.0279 1.56867 0.784333 0.620340i \(-0.213006\pi\)
0.784333 + 0.620340i \(0.213006\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 55.8201 2.23639
\(624\) 0 0
\(625\) 23.3605 0.934422
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 23.7945 0.948748
\(630\) 0 0
\(631\) −0.629888 −0.0250755 −0.0125377 0.999921i \(-0.503991\pi\)
−0.0125377 + 0.999921i \(0.503991\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −0.211773 −0.00840394
\(636\) 0 0
\(637\) 11.6065 0.459865
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −3.52166 −0.139097 −0.0695486 0.997579i \(-0.522156\pi\)
−0.0695486 + 0.997579i \(0.522156\pi\)
\(642\) 0 0
\(643\) 9.83765 0.387959 0.193980 0.981006i \(-0.437860\pi\)
0.193980 + 0.981006i \(0.437860\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −30.7549 −1.20910 −0.604550 0.796567i \(-0.706647\pi\)
−0.604550 + 0.796567i \(0.706647\pi\)
\(648\) 0 0
\(649\) 24.3734 0.956739
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −9.22745 −0.361098 −0.180549 0.983566i \(-0.557787\pi\)
−0.180549 + 0.983566i \(0.557787\pi\)
\(654\) 0 0
\(655\) −3.15694 −0.123352
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −46.5619 −1.81379 −0.906896 0.421354i \(-0.861555\pi\)
−0.906896 + 0.421354i \(0.861555\pi\)
\(660\) 0 0
\(661\) −27.9315 −1.08641 −0.543205 0.839600i \(-0.682789\pi\)
−0.543205 + 0.839600i \(0.682789\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0.886864 0.0343911
\(666\) 0 0
\(667\) −19.5777 −0.758052
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 54.7131 2.11217
\(672\) 0 0
\(673\) 6.34315 0.244510 0.122255 0.992499i \(-0.460987\pi\)
0.122255 + 0.992499i \(0.460987\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 31.4918 1.21033 0.605164 0.796101i \(-0.293108\pi\)
0.605164 + 0.796101i \(0.293108\pi\)
\(678\) 0 0
\(679\) −52.5483 −2.01662
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 28.0069 1.07166 0.535828 0.844327i \(-0.320000\pi\)
0.535828 + 0.844327i \(0.320000\pi\)
\(684\) 0 0
\(685\) 4.61729 0.176418
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −2.62122 −0.0998606
\(690\) 0 0
\(691\) 38.2264 1.45420 0.727101 0.686531i \(-0.240867\pi\)
0.727101 + 0.686531i \(0.240867\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −0.0256590 −0.000973301 0
\(696\) 0 0
\(697\) 25.6297 0.970794
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −9.03731 −0.341335 −0.170667 0.985329i \(-0.554592\pi\)
−0.170667 + 0.985329i \(0.554592\pi\)
\(702\) 0 0
\(703\) −3.16250 −0.119276
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −37.4617 −1.40889
\(708\) 0 0
\(709\) 39.9270 1.49949 0.749745 0.661726i \(-0.230176\pi\)
0.749745 + 0.661726i \(0.230176\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −24.5754 −0.920357
\(714\) 0 0
\(715\) −5.69038 −0.212808
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 29.3036 1.09284 0.546420 0.837512i \(-0.315990\pi\)
0.546420 + 0.837512i \(0.315990\pi\)
\(720\) 0 0
\(721\) 52.7221 1.96348
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −23.9332 −0.888859
\(726\) 0 0
\(727\) −12.6201 −0.468052 −0.234026 0.972230i \(-0.575190\pi\)
−0.234026 + 0.972230i \(0.575190\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 25.6297 0.947949
\(732\) 0 0
\(733\) −9.92140 −0.366455 −0.183228 0.983071i \(-0.558655\pi\)
−0.183228 + 0.983071i \(0.558655\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 51.6871 1.90392
\(738\) 0 0
\(739\) −20.0592 −0.737889 −0.368945 0.929451i \(-0.620281\pi\)
−0.368945 + 0.929451i \(0.620281\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −11.0969 −0.407107 −0.203554 0.979064i \(-0.565249\pi\)
−0.203554 + 0.979064i \(0.565249\pi\)
\(744\) 0 0
\(745\) −4.64174 −0.170060
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −56.6395 −2.06956
\(750\) 0 0
\(751\) −37.3294 −1.36217 −0.681084 0.732205i \(-0.738491\pi\)
−0.681084 + 0.732205i \(0.738491\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −6.16617 −0.224410
\(756\) 0 0
\(757\) 26.7362 0.971745 0.485873 0.874030i \(-0.338502\pi\)
0.485873 + 0.874030i \(0.338502\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 27.1767 0.985155 0.492578 0.870269i \(-0.336055\pi\)
0.492578 + 0.870269i \(0.336055\pi\)
\(762\) 0 0
\(763\) −24.1808 −0.875404
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −30.6057 −1.10511
\(768\) 0 0
\(769\) −8.34877 −0.301064 −0.150532 0.988605i \(-0.548099\pi\)
−0.150532 + 0.988605i \(0.548099\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −20.7289 −0.745567 −0.372783 0.927918i \(-0.621597\pi\)
−0.372783 + 0.927918i \(0.621597\pi\)
\(774\) 0 0
\(775\) −30.0428 −1.07917
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −3.40642 −0.122048
\(780\) 0 0
\(781\) 27.6871 0.990722
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1.76002 0.0628177
\(786\) 0 0
\(787\) −21.7129 −0.773982 −0.386991 0.922084i \(-0.626486\pi\)
−0.386991 + 0.922084i \(0.626486\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −11.2719 −0.400781
\(792\) 0 0
\(793\) −68.7032 −2.43972
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 27.5528 0.975971 0.487985 0.872852i \(-0.337732\pi\)
0.487985 + 0.872852i \(0.337732\pi\)
\(798\) 0 0
\(799\) −10.8092 −0.382403
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −20.7839 −0.733447
\(804\) 0 0
\(805\) −4.09121 −0.144196
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −18.8535 −0.662854 −0.331427 0.943481i \(-0.607530\pi\)
−0.331427 + 0.943481i \(0.607530\pi\)
\(810\) 0 0
\(811\) 6.78796 0.238357 0.119179 0.992873i \(-0.461974\pi\)
0.119179 + 0.992873i \(0.461974\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −4.41522 −0.154658
\(816\) 0 0
\(817\) −3.40642 −0.119175
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 16.0169 0.558995 0.279498 0.960146i \(-0.409832\pi\)
0.279498 + 0.960146i \(0.409832\pi\)
\(822\) 0 0
\(823\) 28.5609 0.995570 0.497785 0.867301i \(-0.334147\pi\)
0.497785 + 0.867301i \(0.334147\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −19.1388 −0.665521 −0.332761 0.943011i \(-0.607980\pi\)
−0.332761 + 0.943011i \(0.607980\pi\)
\(828\) 0 0
\(829\) −36.0907 −1.25348 −0.626741 0.779228i \(-0.715611\pi\)
−0.626741 + 0.779228i \(0.715611\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −16.3173 −0.565361
\(834\) 0 0
\(835\) 5.28624 0.182938
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 18.8767 0.651697 0.325849 0.945422i \(-0.394350\pi\)
0.325849 + 0.945422i \(0.394350\pi\)
\(840\) 0 0
\(841\) −5.04455 −0.173950
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 2.83174 0.0974147
\(846\) 0 0
\(847\) 8.18947 0.281393
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 14.5890 0.500105
\(852\) 0 0
\(853\) 26.3018 0.900557 0.450279 0.892888i \(-0.351325\pi\)
0.450279 + 0.892888i \(0.351325\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 24.8671 0.849444 0.424722 0.905324i \(-0.360372\pi\)
0.424722 + 0.905324i \(0.360372\pi\)
\(858\) 0 0
\(859\) −15.5990 −0.532231 −0.266115 0.963941i \(-0.585740\pi\)
−0.266115 + 0.963941i \(0.585740\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −43.8654 −1.49320 −0.746598 0.665275i \(-0.768314\pi\)
−0.746598 + 0.665275i \(0.768314\pi\)
\(864\) 0 0
\(865\) −6.54447 −0.222519
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −55.0781 −1.86840
\(870\) 0 0
\(871\) −64.9035 −2.19917
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −10.1154 −0.341964
\(876\) 0 0
\(877\) 45.5410 1.53781 0.768905 0.639364i \(-0.220802\pi\)
0.768905 + 0.639364i \(0.220802\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 19.8589 0.669064 0.334532 0.942384i \(-0.391422\pi\)
0.334532 + 0.942384i \(0.391422\pi\)
\(882\) 0 0
\(883\) −25.2740 −0.850537 −0.425269 0.905067i \(-0.639820\pi\)
−0.425269 + 0.905067i \(0.639820\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −2.07012 −0.0695079 −0.0347539 0.999396i \(-0.511065\pi\)
−0.0347539 + 0.999396i \(0.511065\pi\)
\(888\) 0 0
\(889\) −1.96722 −0.0659785
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1.43664 0.0480754
\(894\) 0 0
\(895\) 1.98642 0.0663988
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 30.0707 1.00291
\(900\) 0 0
\(901\) 3.68513 0.122769
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −3.25584 −0.108228
\(906\) 0 0
\(907\) −8.10347 −0.269071 −0.134536 0.990909i \(-0.542954\pi\)
−0.134536 + 0.990909i \(0.542954\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −6.23034 −0.206420 −0.103210 0.994660i \(-0.532911\pi\)
−0.103210 + 0.994660i \(0.532911\pi\)
\(912\) 0 0
\(913\) −34.5619 −1.14383
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −29.3258 −0.968423
\(918\) 0 0
\(919\) 15.1680 0.500348 0.250174 0.968201i \(-0.419512\pi\)
0.250174 + 0.968201i \(0.419512\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −34.7667 −1.14436
\(924\) 0 0
\(925\) 17.8347 0.586401
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 9.16951 0.300842 0.150421 0.988622i \(-0.451937\pi\)
0.150421 + 0.988622i \(0.451937\pi\)
\(930\) 0 0
\(931\) 2.16872 0.0710768
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 8.00000 0.261628
\(936\) 0 0
\(937\) −19.3183 −0.631101 −0.315550 0.948909i \(-0.602189\pi\)
−0.315550 + 0.948909i \(0.602189\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −10.4385 −0.340285 −0.170142 0.985419i \(-0.554423\pi\)
−0.170142 + 0.985419i \(0.554423\pi\)
\(942\) 0 0
\(943\) 15.7142 0.511726
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −36.2640 −1.17842 −0.589211 0.807979i \(-0.700561\pi\)
−0.589211 + 0.807979i \(0.700561\pi\)
\(948\) 0 0
\(949\) 26.0983 0.847188
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −47.9271 −1.55251 −0.776255 0.630419i \(-0.782883\pi\)
−0.776255 + 0.630419i \(0.782883\pi\)
\(954\) 0 0
\(955\) −6.40083 −0.207126
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 42.8914 1.38504
\(960\) 0 0
\(961\) 6.74701 0.217646
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −0.0516688 −0.00166328
\(966\) 0 0
\(967\) 20.7211 0.666346 0.333173 0.942866i \(-0.391881\pi\)
0.333173 + 0.942866i \(0.391881\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 38.0888 1.22233 0.611164 0.791504i \(-0.290701\pi\)
0.611164 + 0.791504i \(0.290701\pi\)
\(972\) 0 0
\(973\) −0.238354 −0.00764129
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −42.7363 −1.36726 −0.683628 0.729831i \(-0.739599\pi\)
−0.683628 + 0.729831i \(0.739599\pi\)
\(978\) 0 0
\(979\) −66.9235 −2.13888
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 42.0031 1.33969 0.669845 0.742501i \(-0.266361\pi\)
0.669845 + 0.742501i \(0.266361\pi\)
\(984\) 0 0
\(985\) 4.38049 0.139574
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 15.7142 0.499684
\(990\) 0 0
\(991\) 11.1918 0.355518 0.177759 0.984074i \(-0.443115\pi\)
0.177759 + 0.984074i \(0.443115\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 7.66986 0.243151
\(996\) 0 0
\(997\) −52.3230 −1.65709 −0.828544 0.559924i \(-0.810830\pi\)
−0.828544 + 0.559924i \(0.810830\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9216.2.a.bl.1.2 4
3.2 odd 2 3072.2.a.m.1.3 4
4.3 odd 2 9216.2.a.z.1.2 4
8.3 odd 2 9216.2.a.ba.1.3 4
8.5 even 2 9216.2.a.bm.1.3 4
12.11 even 2 3072.2.a.p.1.3 4
24.5 odd 2 3072.2.a.s.1.2 4
24.11 even 2 3072.2.a.j.1.2 4
32.3 odd 8 4608.2.k.bc.1153.3 8
32.5 even 8 4608.2.k.bh.3457.2 8
32.11 odd 8 4608.2.k.bc.3457.3 8
32.13 even 8 4608.2.k.bh.1153.2 8
32.19 odd 8 4608.2.k.bj.1153.2 8
32.21 even 8 4608.2.k.be.3457.3 8
32.27 odd 8 4608.2.k.bj.3457.2 8
32.29 even 8 4608.2.k.be.1153.3 8
48.5 odd 4 3072.2.d.e.1537.7 8
48.11 even 4 3072.2.d.j.1537.3 8
48.29 odd 4 3072.2.d.e.1537.2 8
48.35 even 4 3072.2.d.j.1537.6 8
96.5 odd 8 1536.2.j.e.385.4 8
96.11 even 8 1536.2.j.i.385.3 yes 8
96.29 odd 8 1536.2.j.j.1153.1 yes 8
96.35 even 8 1536.2.j.i.1153.3 yes 8
96.53 odd 8 1536.2.j.j.385.1 yes 8
96.59 even 8 1536.2.j.f.385.2 yes 8
96.77 odd 8 1536.2.j.e.1153.4 yes 8
96.83 even 8 1536.2.j.f.1153.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1536.2.j.e.385.4 8 96.5 odd 8
1536.2.j.e.1153.4 yes 8 96.77 odd 8
1536.2.j.f.385.2 yes 8 96.59 even 8
1536.2.j.f.1153.2 yes 8 96.83 even 8
1536.2.j.i.385.3 yes 8 96.11 even 8
1536.2.j.i.1153.3 yes 8 96.35 even 8
1536.2.j.j.385.1 yes 8 96.53 odd 8
1536.2.j.j.1153.1 yes 8 96.29 odd 8
3072.2.a.j.1.2 4 24.11 even 2
3072.2.a.m.1.3 4 3.2 odd 2
3072.2.a.p.1.3 4 12.11 even 2
3072.2.a.s.1.2 4 24.5 odd 2
3072.2.d.e.1537.2 8 48.29 odd 4
3072.2.d.e.1537.7 8 48.5 odd 4
3072.2.d.j.1537.3 8 48.11 even 4
3072.2.d.j.1537.6 8 48.35 even 4
4608.2.k.bc.1153.3 8 32.3 odd 8
4608.2.k.bc.3457.3 8 32.11 odd 8
4608.2.k.be.1153.3 8 32.29 even 8
4608.2.k.be.3457.3 8 32.21 even 8
4608.2.k.bh.1153.2 8 32.13 even 8
4608.2.k.bh.3457.2 8 32.5 even 8
4608.2.k.bj.1153.2 8 32.19 odd 8
4608.2.k.bj.3457.2 8 32.27 odd 8
9216.2.a.z.1.2 4 4.3 odd 2
9216.2.a.ba.1.3 4 8.3 odd 2
9216.2.a.bl.1.2 4 1.1 even 1 trivial
9216.2.a.bm.1.3 4 8.5 even 2