Properties

Label 3072.2.d.j.1537.3
Level 30723072
Weight 22
Character 3072.1537
Analytic conductor 24.53024.530
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3072,2,Mod(1537,3072)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3072, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3072.1537");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 3072=2103 3072 = 2^{10} \cdot 3
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3072.d (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 24.530043500924.5300435009
Analytic rank: 00
Dimension: 88
Coefficient field: Q(ζ16)\Q(\zeta_{16})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8+1 x^{8} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 25 2^{5}
Twist minimal: no (minimal twist has level 1536)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 1537.3
Root 0.3826830.923880i0.382683 - 0.923880i of defining polynomial
Character χ\chi == 3072.1537
Dual form 3072.2.d.j.1537.6

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.00000iq30.331821iq5+3.08239q71.00000q93.69552iq114.64047iq130.331821q15+6.52395q17+0.867091iq193.08239iq21+4.00000q23+4.88989q25+1.00000iq27+4.89443iq296.14386q313.69552q331.02280iq353.64725iq374.64047q393.92856q41+3.92856iq43+0.331821iq45+1.65685q47+2.50114q496.52395iq51+0.564862iq531.22625q55+0.867091q576.59539iq59+14.8052iq613.08239q631.53981q6513.9864iq674.00000iq69+7.49207q715.62408q734.88989iq7511.3910iq7714.9040q79+1.00000q819.35237iq832.16478iq85+4.89443q87+18.1094q8914.3037iq91+6.14386iq93+0.287719q9517.0479q97+3.69552iq99+O(q100)q-1.00000i q^{3} -0.331821i q^{5} +3.08239 q^{7} -1.00000 q^{9} -3.69552i q^{11} -4.64047i q^{13} -0.331821 q^{15} +6.52395 q^{17} +0.867091i q^{19} -3.08239i q^{21} +4.00000 q^{23} +4.88989 q^{25} +1.00000i q^{27} +4.89443i q^{29} -6.14386 q^{31} -3.69552 q^{33} -1.02280i q^{35} -3.64725i q^{37} -4.64047 q^{39} -3.92856 q^{41} +3.92856i q^{43} +0.331821i q^{45} +1.65685 q^{47} +2.50114 q^{49} -6.52395i q^{51} +0.564862i q^{53} -1.22625 q^{55} +0.867091 q^{57} -6.59539i q^{59} +14.8052i q^{61} -3.08239 q^{63} -1.53981 q^{65} -13.9864i q^{67} -4.00000i q^{69} +7.49207 q^{71} -5.62408 q^{73} -4.88989i q^{75} -11.3910i q^{77} -14.9040 q^{79} +1.00000 q^{81} -9.35237i q^{83} -2.16478i q^{85} +4.89443 q^{87} +18.1094 q^{89} -14.3037i q^{91} +6.14386i q^{93} +0.287719 q^{95} -17.0479 q^{97} +3.69552i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+16q78q9+32q238q2516q31+16q3932q47+8q49+32q5516q6316q65+32q71+16q7348q79+8q81+16q8964q95+32q97+O(q100) 8 q + 16 q^{7} - 8 q^{9} + 32 q^{23} - 8 q^{25} - 16 q^{31} + 16 q^{39} - 32 q^{47} + 8 q^{49} + 32 q^{55} - 16 q^{63} - 16 q^{65} + 32 q^{71} + 16 q^{73} - 48 q^{79} + 8 q^{81} + 16 q^{89} - 64 q^{95}+ \cdots - 32 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3072Z)×\left(\mathbb{Z}/3072\mathbb{Z}\right)^\times.

nn 10251025 20472047 20532053
χ(n)\chi(n) 11 11 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 − 1.00000i − 0.577350i
44 0 0
55 − 0.331821i − 0.148395i −0.997244 0.0741975i 0.976360π-0.976360\pi
0.997244 0.0741975i 0.0236395π-0.0236395\pi
66 0 0
77 3.08239 1.16503 0.582517 0.812818i 0.302068π-0.302068\pi
0.582517 + 0.812818i 0.302068π0.302068\pi
88 0 0
99 −1.00000 −0.333333
1010 0 0
1111 − 3.69552i − 1.11424i −0.830432 0.557120i 0.811906π-0.811906\pi
0.830432 0.557120i 0.188094π-0.188094\pi
1212 0 0
1313 − 4.64047i − 1.28703i −0.765432 0.643517i 0.777475π-0.777475\pi
0.765432 0.643517i 0.222525π-0.222525\pi
1414 0 0
1515 −0.331821 −0.0856759
1616 0 0
1717 6.52395 1.58229 0.791145 0.611629i 0.209486π-0.209486\pi
0.791145 + 0.611629i 0.209486π0.209486\pi
1818 0 0
1919 0.867091i 0.198924i 0.995041 + 0.0994622i 0.0317122π0.0317122\pi
−0.995041 + 0.0994622i 0.968288π0.968288\pi
2020 0 0
2121 − 3.08239i − 0.672633i
2222 0 0
2323 4.00000 0.834058 0.417029 0.908893i 0.363071π-0.363071\pi
0.417029 + 0.908893i 0.363071π0.363071\pi
2424 0 0
2525 4.88989 0.977979
2626 0 0
2727 1.00000i 0.192450i
2828 0 0
2929 4.89443i 0.908873i 0.890779 + 0.454436i 0.150159π0.150159\pi
−0.890779 + 0.454436i 0.849841π0.849841\pi
3030 0 0
3131 −6.14386 −1.10347 −0.551735 0.834020i 0.686034π-0.686034\pi
−0.551735 + 0.834020i 0.686034π0.686034\pi
3232 0 0
3333 −3.69552 −0.643307
3434 0 0
3535 − 1.02280i − 0.172885i
3636 0 0
3737 − 3.64725i − 0.599605i −0.954001 0.299802i 0.903079π-0.903079\pi
0.954001 0.299802i 0.0969208π-0.0969208\pi
3838 0 0
3939 −4.64047 −0.743069
4040 0 0
4141 −3.92856 −0.613538 −0.306769 0.951784i 0.599248π-0.599248\pi
−0.306769 + 0.951784i 0.599248π0.599248\pi
4242 0 0
4343 3.92856i 0.599100i 0.954081 + 0.299550i 0.0968365π0.0968365\pi
−0.954081 + 0.299550i 0.903164π0.903164\pi
4444 0 0
4545 0.331821i 0.0494650i
4646 0 0
4747 1.65685 0.241677 0.120839 0.992672i 0.461442π-0.461442\pi
0.120839 + 0.992672i 0.461442π0.461442\pi
4848 0 0
4949 2.50114 0.357306
5050 0 0
5151 − 6.52395i − 0.913535i
5252 0 0
5353 0.564862i 0.0775897i 0.999247 + 0.0387949i 0.0123519π0.0123519\pi
−0.999247 + 0.0387949i 0.987648π0.987648\pi
5454 0 0
5555 −1.22625 −0.165348
5656 0 0
5757 0.867091 0.114849
5858 0 0
5959 − 6.59539i − 0.858646i −0.903151 0.429323i 0.858752π-0.858752\pi
0.903151 0.429323i 0.141248π-0.141248\pi
6060 0 0
6161 14.8052i 1.89562i 0.318839 + 0.947809i 0.396707π0.396707\pi
−0.318839 + 0.947809i 0.603293π0.603293\pi
6262 0 0
6363 −3.08239 −0.388345
6464 0 0
6565 −1.53981 −0.190989
6666 0 0
6767 − 13.9864i − 1.70871i −0.519687 0.854357i 0.673951π-0.673951\pi
0.519687 0.854357i 0.326049π-0.326049\pi
6868 0 0
6969 − 4.00000i − 0.481543i
7070 0 0
7171 7.49207 0.889145 0.444573 0.895743i 0.353356π-0.353356\pi
0.444573 + 0.895743i 0.353356π0.353356\pi
7272 0 0
7373 −5.62408 −0.658248 −0.329124 0.944287i 0.606753π-0.606753\pi
−0.329124 + 0.944287i 0.606753π0.606753\pi
7474 0 0
7575 − 4.88989i − 0.564636i
7676 0 0
7777 − 11.3910i − 1.29813i
7878 0 0
7979 −14.9040 −1.67683 −0.838417 0.545029i 0.816519π-0.816519\pi
−0.838417 + 0.545029i 0.816519π0.816519\pi
8080 0 0
8181 1.00000 0.111111
8282 0 0
8383 − 9.35237i − 1.02656i −0.858222 0.513278i 0.828431π-0.828431\pi
0.858222 0.513278i 0.171569π-0.171569\pi
8484 0 0
8585 − 2.16478i − 0.234804i
8686 0 0
8787 4.89443 0.524738
8888 0 0
8989 18.1094 1.91959 0.959794 0.280705i 0.0905683π-0.0905683\pi
0.959794 + 0.280705i 0.0905683π0.0905683\pi
9090 0 0
9191 − 14.3037i − 1.49944i
9292 0 0
9393 6.14386i 0.637089i
9494 0 0
9595 0.287719 0.0295194
9696 0 0
9797 −17.0479 −1.73095 −0.865476 0.500951i 0.832984π-0.832984\pi
−0.865476 + 0.500951i 0.832984π0.832984\pi
9898 0 0
9999 3.69552i 0.371414i
100100 0 0
101101 12.1535i 1.20931i 0.796486 + 0.604657i 0.206690π0.206690\pi
−0.796486 + 0.604657i 0.793310π0.793310\pi
102102 0 0
103103 17.1043 1.68534 0.842668 0.538433i 0.180984π-0.180984\pi
0.842668 + 0.538433i 0.180984π0.180984\pi
104104 0 0
105105 −1.02280 −0.0998154
106106 0 0
107107 − 18.3752i − 1.77640i −0.459462 0.888198i 0.651958π-0.651958\pi
0.459462 0.888198i 0.348042π-0.348042\pi
108108 0 0
109109 7.84482i 0.751397i 0.926742 + 0.375699i 0.122597π0.122597\pi
−0.926742 + 0.375699i 0.877403π0.877403\pi
110110 0 0
111111 −3.64725 −0.346182
112112 0 0
113113 3.65685 0.344008 0.172004 0.985096i 0.444976π-0.444976\pi
0.172004 + 0.985096i 0.444976π0.444976\pi
114114 0 0
115115 − 1.32729i − 0.123770i
116116 0 0
117117 4.64047i 0.429011i
118118 0 0
119119 20.1094 1.84342
120120 0 0
121121 −2.65685 −0.241532
122122 0 0
123123 3.92856i 0.354226i
124124 0 0
125125 − 3.28168i − 0.293522i
126126 0 0
127127 0.638213 0.0566322 0.0283161 0.999599i 0.490985π-0.490985\pi
0.0283161 + 0.999599i 0.490985π0.490985\pi
128128 0 0
129129 3.92856 0.345890
130130 0 0
131131 9.51397i 0.831240i 0.909538 + 0.415620i 0.136435π0.136435\pi
−0.909538 + 0.415620i 0.863565π0.863565\pi
132132 0 0
133133 2.67271i 0.231754i
134134 0 0
135135 0.331821 0.0285586
136136 0 0
137137 13.9150 1.18884 0.594419 0.804156i 0.297382π-0.297382\pi
0.594419 + 0.804156i 0.297382π0.297382\pi
138138 0 0
139139 0.0773278i 0.00655886i 0.999995 + 0.00327943i 0.00104388π0.00104388\pi
−0.999995 + 0.00327943i 0.998956π0.998956\pi
140140 0 0
141141 − 1.65685i − 0.139532i
142142 0 0
143143 −17.1489 −1.43407
144144 0 0
145145 1.62408 0.134872
146146 0 0
147147 − 2.50114i − 0.206291i
148148 0 0
149149 13.9887i 1.14600i 0.819556 + 0.572998i 0.194220π0.194220\pi
−0.819556 + 0.572998i 0.805780π0.805780\pi
150150 0 0
151151 −18.5828 −1.51225 −0.756123 0.654430i 0.772909π-0.772909\pi
−0.756123 + 0.654430i 0.772909π0.772909\pi
152152 0 0
153153 −6.52395 −0.527430
154154 0 0
155155 2.03866i 0.163749i
156156 0 0
157157 − 5.30411i − 0.423314i −0.977344 0.211657i 0.932114π-0.932114\pi
0.977344 0.211657i 0.0678860π-0.0678860\pi
158158 0 0
159159 0.564862 0.0447964
160160 0 0
161161 12.3296 0.971706
162162 0 0
163163 − 13.3060i − 1.04221i −0.853493 0.521104i 0.825520π-0.825520\pi
0.853493 0.521104i 0.174480π-0.174480\pi
164164 0 0
165165 1.22625i 0.0954636i
166166 0 0
167167 −15.9310 −1.23278 −0.616389 0.787442i 0.711405π-0.711405\pi
−0.616389 + 0.787442i 0.711405π0.711405\pi
168168 0 0
169169 −8.53392 −0.656455
170170 0 0
171171 − 0.867091i − 0.0663081i
172172 0 0
173173 − 19.7229i − 1.49950i −0.661721 0.749751i 0.730173π-0.730173\pi
0.661721 0.749751i 0.269827π-0.269827\pi
174174 0 0
175175 15.0726 1.13938
176176 0 0
177177 −6.59539 −0.495740
178178 0 0
179179 − 5.98642i − 0.447446i −0.974653 0.223723i 0.928179π-0.928179\pi
0.974653 0.223723i 0.0718211π-0.0718211\pi
180180 0 0
181181 − 9.81204i − 0.729323i −0.931140 0.364662i 0.881185π-0.881185\pi
0.931140 0.364662i 0.118815π-0.118815\pi
182182 0 0
183183 14.8052 1.09444
184184 0 0
185185 −1.21024 −0.0889784
186186 0 0
187187 − 24.1094i − 1.76305i
188188 0 0
189189 3.08239i 0.224211i
190190 0 0
191191 −19.2900 −1.39578 −0.697888 0.716207i 0.745877π-0.745877\pi
−0.697888 + 0.716207i 0.745877π0.745877\pi
192192 0 0
193193 −0.155713 −0.0112084 −0.00560422 0.999984i 0.501784π-0.501784\pi
−0.00560422 + 0.999984i 0.501784π0.501784\pi
194194 0 0
195195 1.53981i 0.110268i
196196 0 0
197197 − 13.2014i − 0.940557i −0.882518 0.470279i 0.844153π-0.844153\pi
0.882518 0.470279i 0.155847π-0.155847\pi
198198 0 0
199199 23.1144 1.63854 0.819269 0.573409i 0.194380π-0.194380\pi
0.819269 + 0.573409i 0.194380π0.194380\pi
200200 0 0
201201 −13.9864 −0.986526
202202 0 0
203203 15.0866i 1.05887i
204204 0 0
205205 1.30358i 0.0910459i
206206 0 0
207207 −4.00000 −0.278019
208208 0 0
209209 3.20435 0.221650
210210 0 0
211211 3.39104i 0.233449i 0.993164 + 0.116724i 0.0372394π0.0372394\pi
−0.993164 + 0.116724i 0.962761π0.962761\pi
212212 0 0
213213 − 7.49207i − 0.513348i
214214 0 0
215215 1.30358 0.0889034
216216 0 0
217217 −18.9378 −1.28558
218218 0 0
219219 5.62408i 0.380040i
220220 0 0
221221 − 30.2741i − 2.03646i
222222 0 0
223223 −10.5326 −0.705316 −0.352658 0.935752i 0.614722π-0.614722\pi
−0.352658 + 0.935752i 0.614722π0.614722\pi
224224 0 0
225225 −4.88989 −0.325993
226226 0 0
227227 − 23.4753i − 1.55811i −0.626955 0.779055i 0.715699π-0.715699\pi
0.626955 0.779055i 0.284301π-0.284301\pi
228228 0 0
229229 3.13932i 0.207452i 0.994606 + 0.103726i 0.0330766π0.0330766\pi
−0.994606 + 0.103726i 0.966923π0.966923\pi
230230 0 0
231231 −11.3910 −0.749475
232232 0 0
233233 8.98414 0.588571 0.294285 0.955718i 0.404918π-0.404918\pi
0.294285 + 0.955718i 0.404918π0.404918\pi
234234 0 0
235235 − 0.549780i − 0.0358637i
236236 0 0
237237 14.9040i 0.968121i
238238 0 0
239239 1.69870 0.109880 0.0549400 0.998490i 0.482503π-0.482503\pi
0.0549400 + 0.998490i 0.482503π0.482503\pi
240240 0 0
241241 −14.3288 −0.923001 −0.461500 0.887140i 0.652689π-0.652689\pi
−0.461500 + 0.887140i 0.652689π0.652689\pi
242242 0 0
243243 − 1.00000i − 0.0641500i
244244 0 0
245245 − 0.829932i − 0.0530224i
246246 0 0
247247 4.02371 0.256022
248248 0 0
249249 −9.35237 −0.592683
250250 0 0
251251 11.6955i 0.738215i 0.929387 + 0.369107i 0.120337π0.120337\pi
−0.929387 + 0.369107i 0.879663π0.879663\pi
252252 0 0
253253 − 14.7821i − 0.929341i
254254 0 0
255255 −2.16478 −0.135564
256256 0 0
257257 3.98642 0.248666 0.124333 0.992241i 0.460321π-0.460321\pi
0.124333 + 0.992241i 0.460321π0.460321\pi
258258 0 0
259259 − 11.2423i − 0.698560i
260260 0 0
261261 − 4.89443i − 0.302958i
262262 0 0
263263 11.8635 0.731534 0.365767 0.930706i 0.380807π-0.380807\pi
0.365767 + 0.930706i 0.380807π0.380807\pi
264264 0 0
265265 0.187433 0.0115139
266266 0 0
267267 − 18.1094i − 1.10827i
268268 0 0
269269 21.3880i 1.30405i 0.758197 + 0.652026i 0.226081π0.226081\pi
−0.758197 + 0.652026i 0.773919π0.773919\pi
270270 0 0
271271 −12.0530 −0.732165 −0.366082 0.930582i 0.619301π-0.619301\pi
−0.366082 + 0.930582i 0.619301π0.619301\pi
272272 0 0
273273 −14.3037 −0.865701
274274 0 0
275275 − 18.0707i − 1.08970i
276276 0 0
277277 4.81432i 0.289265i 0.989485 + 0.144632i 0.0461999π0.0461999\pi
−0.989485 + 0.144632i 0.953800π0.953800\pi
278278 0 0
279279 6.14386 0.367823
280280 0 0
281281 −18.5754 −1.10812 −0.554059 0.832477i 0.686922π-0.686922\pi
−0.554059 + 0.832477i 0.686922π0.686922\pi
282282 0 0
283283 − 1.40461i − 0.0834956i −0.999128 0.0417478i 0.986707π-0.986707\pi
0.999128 0.0417478i 0.0132926π-0.0132926\pi
284284 0 0
285285 − 0.287719i − 0.0170430i
286286 0 0
287287 −12.1094 −0.714793
288288 0 0
289289 25.5619 1.50364
290290 0 0
291291 17.0479i 0.999365i
292292 0 0
293293 27.8786i 1.62868i 0.580386 + 0.814342i 0.302902π0.302902\pi
−0.580386 + 0.814342i 0.697098π0.697098\pi
294294 0 0
295295 −2.18849 −0.127419
296296 0 0
297297 3.69552 0.214436
298298 0 0
299299 − 18.5619i − 1.07346i
300300 0 0
301301 12.1094i 0.697972i
302302 0 0
303303 12.1535 0.698198
304304 0 0
305305 4.91270 0.281300
306306 0 0
307307 17.4548i 0.996197i 0.867120 + 0.498099i 0.165968π0.165968\pi
−0.867120 + 0.498099i 0.834032π0.834032\pi
308308 0 0
309309 − 17.1043i − 0.973029i
310310 0 0
311311 −0.466081 −0.0264290 −0.0132145 0.999913i 0.504206π-0.504206\pi
−0.0132145 + 0.999913i 0.504206π0.504206\pi
312312 0 0
313313 −2.49886 −0.141244 −0.0706219 0.997503i 0.522498π-0.522498\pi
−0.0706219 + 0.997503i 0.522498π0.522498\pi
314314 0 0
315315 1.02280i 0.0576285i
316316 0 0
317317 − 10.7425i − 0.603358i −0.953410 0.301679i 0.902453π-0.902453\pi
0.953410 0.301679i 0.0975470π-0.0975470\pi
318318 0 0
319319 18.0875 1.01270
320320 0 0
321321 −18.3752 −1.02560
322322 0 0
323323 5.65685i 0.314756i
324324 0 0
325325 − 22.6914i − 1.25869i
326326 0 0
327327 7.84482 0.433819
328328 0 0
329329 5.10707 0.281562
330330 0 0
331331 − 5.26810i − 0.289561i −0.989464 0.144781i 0.953752π-0.953752\pi
0.989464 0.144781i 0.0462476π-0.0462476\pi
332332 0 0
333333 3.64725i 0.199868i
334334 0 0
335335 −4.64099 −0.253565
336336 0 0
337337 −27.4740 −1.49660 −0.748302 0.663359i 0.769130π-0.769130\pi
−0.748302 + 0.663359i 0.769130π0.769130\pi
338338 0 0
339339 − 3.65685i − 0.198613i
340340 0 0
341341 22.7047i 1.22953i
342342 0 0
343343 −13.8672 −0.748761
344344 0 0
345345 −1.32729 −0.0714586
346346 0 0
347347 8.08427i 0.433986i 0.976173 + 0.216993i 0.0696249π0.0696249\pi
−0.976173 + 0.216993i 0.930375π0.930375\pi
348348 0 0
349349 4.97454i 0.266281i 0.991097 + 0.133140i 0.0425062π0.0425062\pi
−0.991097 + 0.133140i 0.957494π0.957494\pi
350350 0 0
351351 4.64047 0.247690
352352 0 0
353353 23.0799 1.22842 0.614210 0.789143i 0.289475π-0.289475\pi
0.614210 + 0.789143i 0.289475π0.289475\pi
354354 0 0
355355 − 2.48603i − 0.131945i
356356 0 0
357357 − 20.1094i − 1.06430i
358358 0 0
359359 −29.2583 −1.54419 −0.772097 0.635505i 0.780792π-0.780792\pi
−0.772097 + 0.635505i 0.780792π0.780792\pi
360360 0 0
361361 18.2482 0.960429
362362 0 0
363363 2.65685i 0.139449i
364364 0 0
365365 1.86619i 0.0976808i
366366 0 0
367367 13.1698 0.687461 0.343730 0.939068i 0.388309π-0.388309\pi
0.343730 + 0.939068i 0.388309π0.388309\pi
368368 0 0
369369 3.92856 0.204513
370370 0 0
371371 1.74113i 0.0903947i
372372 0 0
373373 15.2905i 0.791714i 0.918312 + 0.395857i 0.129552π0.129552\pi
−0.918312 + 0.395857i 0.870448π0.870448\pi
374374 0 0
375375 −3.28168 −0.169465
376376 0 0
377377 22.7124 1.16975
378378 0 0
379379 6.41459i 0.329495i 0.986336 + 0.164748i 0.0526810π0.0526810\pi
−0.986336 + 0.164748i 0.947319π0.947319\pi
380380 0 0
381381 − 0.638213i − 0.0326966i
382382 0 0
383383 34.0721 1.74100 0.870501 0.492167i 0.163795π-0.163795\pi
0.870501 + 0.492167i 0.163795π0.163795\pi
384384 0 0
385385 −3.77979 −0.192636
386386 0 0
387387 − 3.92856i − 0.199700i
388388 0 0
389389 32.5185i 1.64875i 0.566041 + 0.824377i 0.308474π0.308474\pi
−0.566041 + 0.824377i 0.691526π0.691526\pi
390390 0 0
391391 26.0958 1.31972
392392 0 0
393393 9.51397 0.479916
394394 0 0
395395 4.94548i 0.248834i
396396 0 0
397397 4.48926i 0.225309i 0.993634 + 0.112655i 0.0359354π0.0359354\pi
−0.993634 + 0.112655i 0.964065π0.964065\pi
398398 0 0
399399 2.67271 0.133803
400400 0 0
401401 −3.21024 −0.160312 −0.0801558 0.996782i 0.525542π-0.525542\pi
−0.0801558 + 0.996782i 0.525542π0.525542\pi
402402 0 0
403403 28.5104i 1.42020i
404404 0 0
405405 − 0.331821i − 0.0164883i
406406 0 0
407407 −13.4785 −0.668104
408408 0 0
409409 −14.0456 −0.694511 −0.347255 0.937771i 0.612886π-0.612886\pi
−0.347255 + 0.937771i 0.612886π0.612886\pi
410410 0 0
411411 − 13.9150i − 0.686375i
412412 0 0
413413 − 20.3296i − 1.00035i
414414 0 0
415415 −3.10332 −0.152336
416416 0 0
417417 0.0773278 0.00378676
418418 0 0
419419 26.9437i 1.31628i 0.752894 + 0.658142i 0.228657π0.228657\pi
−0.752894 + 0.658142i 0.771343π0.771343\pi
420420 0 0
421421 − 5.72188i − 0.278867i −0.990231 0.139434i 0.955472π-0.955472\pi
0.990231 0.139434i 0.0445282π-0.0445282\pi
422422 0 0
423423 −1.65685 −0.0805590
424424 0 0
425425 31.9014 1.54745
426426 0 0
427427 45.6356i 2.20846i
428428 0 0
429429 17.1489i 0.827958i
430430 0 0
431431 27.9547 1.34653 0.673265 0.739401i 0.264891π-0.264891\pi
0.673265 + 0.739401i 0.264891π0.264891\pi
432432 0 0
433433 −1.81151 −0.0870556 −0.0435278 0.999052i 0.513860π-0.513860\pi
−0.0435278 + 0.999052i 0.513860π0.513860\pi
434434 0 0
435435 − 1.62408i − 0.0778685i
436436 0 0
437437 3.46836i 0.165914i
438438 0 0
439439 4.45985 0.212857 0.106429 0.994320i 0.466058π-0.466058\pi
0.106429 + 0.994320i 0.466058π0.466058\pi
440440 0 0
441441 −2.50114 −0.119102
442442 0 0
443443 2.62047i 0.124502i 0.998061 + 0.0622512i 0.0198280π0.0198280\pi
−0.998061 + 0.0622512i 0.980172π0.980172\pi
444444 0 0
445445 − 6.00907i − 0.284857i
446446 0 0
447447 13.9887 0.661642
448448 0 0
449449 27.9787 1.32040 0.660199 0.751091i 0.270472π-0.270472\pi
0.660199 + 0.751091i 0.270472π0.270472\pi
450450 0 0
451451 14.5181i 0.683629i
452452 0 0
453453 18.5828i 0.873095i
454454 0 0
455455 −4.74628 −0.222509
456456 0 0
457457 14.3933 0.673291 0.336646 0.941631i 0.390708π-0.390708\pi
0.336646 + 0.941631i 0.390708π0.390708\pi
458458 0 0
459459 6.52395i 0.304512i
460460 0 0
461461 7.78841i 0.362743i 0.983415 + 0.181371i 0.0580536π0.0580536\pi
−0.983415 + 0.181371i 0.941946π0.941946\pi
462462 0 0
463463 −15.6642 −0.727977 −0.363989 0.931403i 0.618585π-0.618585\pi
−0.363989 + 0.931403i 0.618585π0.618585\pi
464464 0 0
465465 2.03866 0.0945408
466466 0 0
467467 5.27504i 0.244100i 0.992524 + 0.122050i 0.0389468π0.0389468\pi
−0.992524 + 0.122050i 0.961053π0.961053\pi
468468 0 0
469469 − 43.1116i − 1.99071i
470470 0 0
471471 −5.30411 −0.244400
472472 0 0
473473 14.5181 0.667541
474474 0 0
475475 4.23998i 0.194544i
476476 0 0
477477 − 0.564862i − 0.0258632i
478478 0 0
479479 −11.9310 −0.545141 −0.272571 0.962136i 0.587874π-0.587874\pi
−0.272571 + 0.962136i 0.587874π0.587874\pi
480480 0 0
481481 −16.9250 −0.771712
482482 0 0
483483 − 12.3296i − 0.561015i
484484 0 0
485485 5.65685i 0.256865i
486486 0 0
487487 −37.1782 −1.68470 −0.842352 0.538928i 0.818830π-0.818830\pi
−0.842352 + 0.538928i 0.818830π0.818830\pi
488488 0 0
489489 −13.3060 −0.601719
490490 0 0
491491 25.0981i 1.13266i 0.824179 + 0.566330i 0.191637π0.191637\pi
−0.824179 + 0.566330i 0.808363π0.808363\pi
492492 0 0
493493 31.9310i 1.43810i
494494 0 0
495495 1.22625 0.0551159
496496 0 0
497497 23.0935 1.03588
498498 0 0
499499 − 32.8458i − 1.47038i −0.677861 0.735190i 0.737093π-0.737093\pi
0.677861 0.735190i 0.262907π-0.262907\pi
500500 0 0
501501 15.9310i 0.711744i
502502 0 0
503503 8.35327 0.372454 0.186227 0.982507i 0.440374π-0.440374\pi
0.186227 + 0.982507i 0.440374π0.440374\pi
504504 0 0
505505 4.03278 0.179456
506506 0 0
507507 8.53392i 0.379005i
508508 0 0
509509 9.33786i 0.413893i 0.978352 + 0.206947i 0.0663527π0.0663527\pi
−0.978352 + 0.206947i 0.933647π0.933647\pi
510510 0 0
511511 −17.3356 −0.766882
512512 0 0
513513 −0.867091 −0.0382830
514514 0 0
515515 − 5.67557i − 0.250095i
516516 0 0
517517 − 6.12293i − 0.269286i
518518 0 0
519519 −19.7229 −0.865737
520520 0 0
521521 4.38287 0.192017 0.0960084 0.995381i 0.469392π-0.469392\pi
0.0960084 + 0.995381i 0.469392π0.469392\pi
522522 0 0
523523 9.22869i 0.403542i 0.979433 + 0.201771i 0.0646697π0.0646697\pi
−0.979433 + 0.201771i 0.935330π0.935330\pi
524524 0 0
525525 − 15.0726i − 0.657821i
526526 0 0
527527 −40.0822 −1.74601
528528 0 0
529529 −7.00000 −0.304348
530530 0 0
531531 6.59539i 0.286215i
532532 0 0
533533 18.2303i 0.789644i
534534 0 0
535535 −6.09728 −0.263608
536536 0 0
537537 −5.98642 −0.258333
538538 0 0
539539 − 9.24301i − 0.398125i
540540 0 0
541541 36.9700i 1.58947i 0.606959 + 0.794733i 0.292389π0.292389\pi
−0.606959 + 0.794733i 0.707611π0.707611\pi
542542 0 0
543543 −9.81204 −0.421075
544544 0 0
545545 2.60308 0.111504
546546 0 0
547547 40.6789i 1.73930i 0.493665 + 0.869652i 0.335657π0.335657\pi
−0.493665 + 0.869652i 0.664343π0.664343\pi
548548 0 0
549549 − 14.8052i − 0.631873i
550550 0 0
551551 −4.24392 −0.180797
552552 0 0
553553 −45.9401 −1.95357
554554 0 0
555555 1.21024i 0.0513717i
556556 0 0
557557 − 39.6184i − 1.67868i −0.543603 0.839342i 0.682940π-0.682940\pi
0.543603 0.839342i 0.317060π-0.317060\pi
558558 0 0
559559 18.2303 0.771061
560560 0 0
561561 −24.1094 −1.01790
562562 0 0
563563 20.8090i 0.876993i 0.898733 + 0.438497i 0.144489π0.144489\pi
−0.898733 + 0.438497i 0.855511π0.855511\pi
564564 0 0
565565 − 1.21342i − 0.0510491i
566566 0 0
567567 3.08239 0.129448
568568 0 0
569569 15.7585 0.660632 0.330316 0.943870i 0.392845π-0.392845\pi
0.330316 + 0.943870i 0.392845π0.392845\pi
570570 0 0
571571 24.6912i 1.03329i 0.856199 + 0.516647i 0.172820π0.172820\pi
−0.856199 + 0.516647i 0.827180π0.827180\pi
572572 0 0
573573 19.2900i 0.805851i
574574 0 0
575575 19.5596 0.815691
576576 0 0
577577 −21.0924 −0.878090 −0.439045 0.898465i 0.644683π-0.644683\pi
−0.439045 + 0.898465i 0.644683π0.644683\pi
578578 0 0
579579 0.155713i 0.00647119i
580580 0 0
581581 − 28.8277i − 1.19597i
582582 0 0
583583 2.08746 0.0864536
584584 0 0
585585 1.53981 0.0636631
586586 0 0
587587 − 14.3933i − 0.594076i −0.954866 0.297038i 0.904001π-0.904001\pi
0.954866 0.297038i 0.0959988π-0.0959988\pi
588588 0 0
589589 − 5.32729i − 0.219507i
590590 0 0
591591 −13.2014 −0.543031
592592 0 0
593593 22.1931 0.911360 0.455680 0.890144i 0.349396π-0.349396\pi
0.455680 + 0.890144i 0.349396π0.349396\pi
594594 0 0
595595 − 6.67271i − 0.273555i
596596 0 0
597597 − 23.1144i − 0.946010i
598598 0 0
599599 −37.4366 −1.52962 −0.764810 0.644256i 0.777167π-0.777167\pi
−0.764810 + 0.644256i 0.777167π0.777167\pi
600600 0 0
601601 −1.68963 −0.0689215 −0.0344608 0.999406i 0.510971π-0.510971\pi
−0.0344608 + 0.999406i 0.510971π0.510971\pi
602602 0 0
603603 13.9864i 0.569571i
604604 0 0
605605 0.881601i 0.0358422i
606606 0 0
607607 36.8841 1.49708 0.748539 0.663090i 0.230755π-0.230755\pi
0.748539 + 0.663090i 0.230755π0.230755\pi
608608 0 0
609609 15.0866 0.611338
610610 0 0
611611 − 7.68857i − 0.311046i
612612 0 0
613613 − 13.4598i − 0.543637i −0.962349 0.271819i 0.912375π-0.912375\pi
0.962349 0.271819i 0.0876250π-0.0876250\pi
614614 0 0
615615 1.30358 0.0525654
616616 0 0
617617 20.3160 0.817891 0.408946 0.912559i 0.365897π-0.365897\pi
0.408946 + 0.912559i 0.365897π0.365897\pi
618618 0 0
619619 − 39.0279i − 1.56867i −0.620340 0.784333i 0.713006π-0.713006\pi
0.620340 0.784333i 0.286994π-0.286994\pi
620620 0 0
621621 4.00000i 0.160514i
622622 0 0
623623 55.8201 2.23639
624624 0 0
625625 23.3605 0.934422
626626 0 0
627627 − 3.20435i − 0.127969i
628628 0 0
629629 − 23.7945i − 0.948748i
630630 0 0
631631 −0.629888 −0.0250755 −0.0125377 0.999921i 0.503991π-0.503991\pi
−0.0125377 + 0.999921i 0.503991π0.503991\pi
632632 0 0
633633 3.39104 0.134782
634634 0 0
635635 − 0.211773i − 0.00840394i
636636 0 0
637637 − 11.6065i − 0.459865i
638638 0 0
639639 −7.49207 −0.296382
640640 0 0
641641 3.52166 0.139097 0.0695486 0.997579i 0.477844π-0.477844\pi
0.0695486 + 0.997579i 0.477844π0.477844\pi
642642 0 0
643643 9.83765i 0.387959i 0.981006 + 0.193980i 0.0621396π0.0621396\pi
−0.981006 + 0.193980i 0.937860π0.937860\pi
644644 0 0
645645 − 1.30358i − 0.0513284i
646646 0 0
647647 30.7549 1.20910 0.604550 0.796567i 0.293353π-0.293353\pi
0.604550 + 0.796567i 0.293353π0.293353\pi
648648 0 0
649649 −24.3734 −0.956739
650650 0 0
651651 18.9378i 0.742230i
652652 0 0
653653 − 9.22745i − 0.361098i −0.983566 0.180549i 0.942213π-0.942213\pi
0.983566 0.180549i 0.0577874π-0.0577874\pi
654654 0 0
655655 3.15694 0.123352
656656 0 0
657657 5.62408 0.219416
658658 0 0
659659 46.5619i 1.81379i 0.421354 + 0.906896i 0.361555π0.361555\pi
−0.421354 + 0.906896i 0.638445π0.638445\pi
660660 0 0
661661 − 27.9315i − 1.08641i −0.839600 0.543205i 0.817211π-0.817211\pi
0.839600 0.543205i 0.182789π-0.182789\pi
662662 0 0
663663 −30.2741 −1.17575
664664 0 0
665665 0.886864 0.0343911
666666 0 0
667667 19.5777i 0.758052i
668668 0 0
669669 10.5326i 0.407214i
670670 0 0
671671 54.7131 2.11217
672672 0 0
673673 6.34315 0.244510 0.122255 0.992499i 0.460987π-0.460987\pi
0.122255 + 0.992499i 0.460987π0.460987\pi
674674 0 0
675675 4.88989i 0.188212i
676676 0 0
677677 − 31.4918i − 1.21033i −0.796101 0.605164i 0.793108π-0.793108\pi
0.796101 0.605164i 0.206892π-0.206892\pi
678678 0 0
679679 −52.5483 −2.01662
680680 0 0
681681 −23.4753 −0.899576
682682 0 0
683683 28.0069i 1.07166i 0.844327 + 0.535828i 0.180000π0.180000\pi
−0.844327 + 0.535828i 0.820000π0.820000\pi
684684 0 0
685685 − 4.61729i − 0.176418i
686686 0 0
687687 3.13932 0.119773
688688 0 0
689689 2.62122 0.0998606
690690 0 0
691691 38.2264i 1.45420i 0.686531 + 0.727101i 0.259133π0.259133\pi
−0.686531 + 0.727101i 0.740867π0.740867\pi
692692 0 0
693693 11.3910i 0.432710i
694694 0 0
695695 0.0256590 0.000973301 0
696696 0 0
697697 −25.6297 −0.970794
698698 0 0
699699 − 8.98414i − 0.339811i
700700 0 0
701701 − 9.03731i − 0.341335i −0.985329 0.170667i 0.945408π-0.945408\pi
0.985329 0.170667i 0.0545923π-0.0545923\pi
702702 0 0
703703 3.16250 0.119276
704704 0 0
705705 −0.549780 −0.0207059
706706 0 0
707707 37.4617i 1.40889i
708708 0 0
709709 39.9270i 1.49949i 0.661726 + 0.749745i 0.269824π0.269824\pi
−0.661726 + 0.749745i 0.730176π0.730176\pi
710710 0 0
711711 14.9040 0.558945
712712 0 0
713713 −24.5754 −0.920357
714714 0 0
715715 5.69038i 0.212808i
716716 0 0
717717 − 1.69870i − 0.0634393i
718718 0 0
719719 29.3036 1.09284 0.546420 0.837512i 0.315990π-0.315990\pi
0.546420 + 0.837512i 0.315990π0.315990\pi
720720 0 0
721721 52.7221 1.96348
722722 0 0
723723 14.3288i 0.532895i
724724 0 0
725725 23.9332i 0.888859i
726726 0 0
727727 −12.6201 −0.468052 −0.234026 0.972230i 0.575190π-0.575190\pi
−0.234026 + 0.972230i 0.575190π0.575190\pi
728728 0 0
729729 −1.00000 −0.0370370
730730 0 0
731731 25.6297i 0.947949i
732732 0 0
733733 9.92140i 0.366455i 0.983071 + 0.183228i 0.0586545π0.0586545\pi
−0.983071 + 0.183228i 0.941345π0.941345\pi
734734 0 0
735735 −0.829932 −0.0306125
736736 0 0
737737 −51.6871 −1.90392
738738 0 0
739739 − 20.0592i − 0.737889i −0.929451 0.368945i 0.879719π-0.879719\pi
0.929451 0.368945i 0.120281π-0.120281\pi
740740 0 0
741741 − 4.02371i − 0.147815i
742742 0 0
743743 11.0969 0.407107 0.203554 0.979064i 0.434751π-0.434751\pi
0.203554 + 0.979064i 0.434751π0.434751\pi
744744 0 0
745745 4.64174 0.170060
746746 0 0
747747 9.35237i 0.342185i
748748 0 0
749749 − 56.6395i − 2.06956i
750750 0 0
751751 37.3294 1.36217 0.681084 0.732205i 0.261509π-0.261509\pi
0.681084 + 0.732205i 0.261509π0.261509\pi
752752 0 0
753753 11.6955 0.426208
754754 0 0
755755 6.16617i 0.224410i
756756 0 0
757757 26.7362i 0.971745i 0.874030 + 0.485873i 0.161498π0.161498\pi
−0.874030 + 0.485873i 0.838502π0.838502\pi
758758 0 0
759759 −14.7821 −0.536555
760760 0 0
761761 27.1767 0.985155 0.492578 0.870269i 0.336055π-0.336055\pi
0.492578 + 0.870269i 0.336055π0.336055\pi
762762 0 0
763763 24.1808i 0.875404i
764764 0 0
765765 2.16478i 0.0782679i
766766 0 0
767767 −30.6057 −1.10511
768768 0 0
769769 −8.34877 −0.301064 −0.150532 0.988605i 0.548099π-0.548099\pi
−0.150532 + 0.988605i 0.548099π0.548099\pi
770770 0 0
771771 − 3.98642i − 0.143568i
772772 0 0
773773 20.7289i 0.745567i 0.927918 + 0.372783i 0.121597π0.121597\pi
−0.927918 + 0.372783i 0.878403π0.878403\pi
774774 0 0
775775 −30.0428 −1.07917
776776 0 0
777777 −11.2423 −0.403314
778778 0 0
779779 − 3.40642i − 0.122048i
780780 0 0
781781 − 27.6871i − 0.990722i
782782 0 0
783783 −4.89443 −0.174913
784784 0 0
785785 −1.76002 −0.0628177
786786 0 0
787787 − 21.7129i − 0.773982i −0.922084 0.386991i 0.873514π-0.873514\pi
0.922084 0.386991i 0.126486π-0.126486\pi
788788 0 0
789789 − 11.8635i − 0.422351i
790790 0 0
791791 11.2719 0.400781
792792 0 0
793793 68.7032 2.43972
794794 0 0
795795 − 0.187433i − 0.00664757i
796796 0 0
797797 27.5528i 0.975971i 0.872852 + 0.487985i 0.162268π0.162268\pi
−0.872852 + 0.487985i 0.837732π0.837732\pi
798798 0 0
799799 10.8092 0.382403
800800 0 0
801801 −18.1094 −0.639863
802802 0 0
803803 20.7839i 0.733447i
804804 0 0
805805 − 4.09121i − 0.144196i
806806 0 0
807807 21.3880 0.752895
808808 0 0
809809 −18.8535 −0.662854 −0.331427 0.943481i 0.607530π-0.607530\pi
−0.331427 + 0.943481i 0.607530π0.607530\pi
810810 0 0
811811 − 6.78796i − 0.238357i −0.992873 0.119179i 0.961974π-0.961974\pi
0.992873 0.119179i 0.0380262π-0.0380262\pi
812812 0 0
813813 12.0530i 0.422716i
814814 0 0
815815 −4.41522 −0.154658
816816 0 0
817817 −3.40642 −0.119175
818818 0 0
819819 14.3037i 0.499813i
820820 0 0
821821 − 16.0169i − 0.558995i −0.960146 0.279498i 0.909832π-0.909832\pi
0.960146 0.279498i 0.0901679π-0.0901679\pi
822822 0 0
823823 28.5609 0.995570 0.497785 0.867301i 0.334147π-0.334147\pi
0.497785 + 0.867301i 0.334147π0.334147\pi
824824 0 0
825825 −18.0707 −0.629141
826826 0 0
827827 − 19.1388i − 0.665521i −0.943011 0.332761i 0.892020π-0.892020\pi
0.943011 0.332761i 0.107980π-0.107980\pi
828828 0 0
829829 36.0907i 1.25348i 0.779228 + 0.626741i 0.215611π0.215611\pi
−0.779228 + 0.626741i 0.784389π0.784389\pi
830830 0 0
831831 4.81432 0.167007
832832 0 0
833833 16.3173 0.565361
834834 0 0
835835 5.28624i 0.182938i
836836 0 0
837837 − 6.14386i − 0.212363i
838838 0 0
839839 −18.8767 −0.651697 −0.325849 0.945422i 0.605650π-0.605650\pi
−0.325849 + 0.945422i 0.605650π0.605650\pi
840840 0 0
841841 5.04455 0.173950
842842 0 0
843843 18.5754i 0.639772i
844844 0 0
845845 2.83174i 0.0974147i
846846 0 0
847847 −8.18947 −0.281393
848848 0 0
849849 −1.40461 −0.0482062
850850 0 0
851851 − 14.5890i − 0.500105i
852852 0 0
853853 26.3018i 0.900557i 0.892888 + 0.450279i 0.148675π0.148675\pi
−0.892888 + 0.450279i 0.851325π0.851325\pi
854854 0 0
855855 −0.287719 −0.00983979
856856 0 0
857857 24.8671 0.849444 0.424722 0.905324i 0.360372π-0.360372\pi
0.424722 + 0.905324i 0.360372π0.360372\pi
858858 0 0
859859 15.5990i 0.532231i 0.963941 + 0.266115i 0.0857402π0.0857402\pi
−0.963941 + 0.266115i 0.914260π0.914260\pi
860860 0 0
861861 12.1094i 0.412686i
862862 0 0
863863 −43.8654 −1.49320 −0.746598 0.665275i 0.768314π-0.768314\pi
−0.746598 + 0.665275i 0.768314π0.768314\pi
864864 0 0
865865 −6.54447 −0.222519
866866 0 0
867867 − 25.5619i − 0.868126i
868868 0 0
869869 55.0781i 1.86840i
870870 0 0
871871 −64.9035 −2.19917
872872 0 0
873873 17.0479 0.576984
874874 0 0
875875 − 10.1154i − 0.341964i
876876 0 0
877877 − 45.5410i − 1.53781i −0.639364 0.768905i 0.720802π-0.720802\pi
0.639364 0.768905i 0.279198π-0.279198\pi
878878 0 0
879879 27.8786 0.940321
880880 0 0
881881 −19.8589 −0.669064 −0.334532 0.942384i 0.608578π-0.608578\pi
−0.334532 + 0.942384i 0.608578π0.608578\pi
882882 0 0
883883 − 25.2740i − 0.850537i −0.905067 0.425269i 0.860180π-0.860180\pi
0.905067 0.425269i 0.139820π-0.139820\pi
884884 0 0
885885 2.18849i 0.0735653i
886886 0 0
887887 2.07012 0.0695079 0.0347539 0.999396i 0.488935π-0.488935\pi
0.0347539 + 0.999396i 0.488935π0.488935\pi
888888 0 0
889889 1.96722 0.0659785
890890 0 0
891891 − 3.69552i − 0.123805i
892892 0 0
893893 1.43664i 0.0480754i
894894 0 0
895895 −1.98642 −0.0663988
896896 0 0
897897 −18.5619 −0.619763
898898 0 0
899899 − 30.0707i − 1.00291i
900900 0 0
901901 3.68513i 0.122769i
902902 0 0
903903 12.1094 0.402974
904904 0 0
905905 −3.25584 −0.108228
906906 0 0
907907 8.10347i 0.269071i 0.990909 + 0.134536i 0.0429543π0.0429543\pi
−0.990909 + 0.134536i 0.957046π0.957046\pi
908908 0 0
909909 − 12.1535i − 0.403105i
910910 0 0
911911 −6.23034 −0.206420 −0.103210 0.994660i 0.532911π-0.532911\pi
−0.103210 + 0.994660i 0.532911π0.532911\pi
912912 0 0
913913 −34.5619 −1.14383
914914 0 0
915915 − 4.91270i − 0.162409i
916916 0 0
917917 29.3258i 0.968423i
918918 0 0
919919 15.1680 0.500348 0.250174 0.968201i 0.419512π-0.419512\pi
0.250174 + 0.968201i 0.419512π0.419512\pi
920920 0 0
921921 17.4548 0.575155
922922 0 0
923923 − 34.7667i − 1.14436i
924924 0 0
925925 − 17.8347i − 0.586401i
926926 0 0
927927 −17.1043 −0.561779
928928 0 0
929929 −9.16951 −0.300842 −0.150421 0.988622i 0.548063π-0.548063\pi
−0.150421 + 0.988622i 0.548063π0.548063\pi
930930 0 0
931931 2.16872i 0.0710768i
932932 0 0
933933 0.466081i 0.0152588i
934934 0 0
935935 −8.00000 −0.261628
936936 0 0
937937 19.3183 0.631101 0.315550 0.948909i 0.397811π-0.397811\pi
0.315550 + 0.948909i 0.397811π0.397811\pi
938938 0 0
939939 2.49886i 0.0815472i
940940 0 0
941941 − 10.4385i − 0.340285i −0.985419 0.170142i 0.945577π-0.945577\pi
0.985419 0.170142i 0.0544228π-0.0544228\pi
942942 0 0
943943 −15.7142 −0.511726
944944 0 0
945945 1.02280 0.0332718
946946 0 0
947947 36.2640i 1.17842i 0.807979 + 0.589211i 0.200561π0.200561\pi
−0.807979 + 0.589211i 0.799439π0.799439\pi
948948 0 0
949949 26.0983i 0.847188i
950950 0 0
951951 −10.7425 −0.348349
952952 0 0
953953 −47.9271 −1.55251 −0.776255 0.630419i 0.782883π-0.782883\pi
−0.776255 + 0.630419i 0.782883π0.782883\pi
954954 0 0
955955 6.40083i 0.207126i
956956 0 0
957957 − 18.0875i − 0.584684i
958958 0 0
959959 42.8914 1.38504
960960 0 0
961961 6.74701 0.217646
962962 0 0
963963 18.3752i 0.592132i
964964 0 0
965965 0.0516688i 0.00166328i
966966 0 0
967967 20.7211 0.666346 0.333173 0.942866i 0.391881π-0.391881\pi
0.333173 + 0.942866i 0.391881π0.391881\pi
968968 0 0
969969 5.65685 0.181724
970970 0 0
971971 38.0888i 1.22233i 0.791504 + 0.611164i 0.209299π0.209299\pi
−0.791504 + 0.611164i 0.790701π0.790701\pi
972972 0 0
973973 0.238354i 0.00764129i
974974 0 0
975975 −22.6914 −0.726706
976976 0 0
977977 42.7363 1.36726 0.683628 0.729831i 0.260401π-0.260401\pi
0.683628 + 0.729831i 0.260401π0.260401\pi
978978 0 0
979979 − 66.9235i − 2.13888i
980980 0 0
981981 − 7.84482i − 0.250466i
982982 0 0
983983 −42.0031 −1.33969 −0.669845 0.742501i 0.733639π-0.733639\pi
−0.669845 + 0.742501i 0.733639π0.733639\pi
984984 0 0
985985 −4.38049 −0.139574
986986 0 0
987987 − 5.10707i − 0.162560i
988988 0 0
989989 15.7142i 0.499684i
990990 0 0
991991 −11.1918 −0.355518 −0.177759 0.984074i 0.556885π-0.556885\pi
−0.177759 + 0.984074i 0.556885π0.556885\pi
992992 0 0
993993 −5.26810 −0.167178
994994 0 0
995995 − 7.66986i − 0.243151i
996996 0 0
997997 − 52.3230i − 1.65709i −0.559924 0.828544i 0.689170π-0.689170\pi
0.559924 0.828544i 0.310830π-0.310830\pi
998998 0 0
999999 3.64725 0.115394
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3072.2.d.j.1537.3 8
4.3 odd 2 3072.2.d.e.1537.7 8
8.3 odd 2 3072.2.d.e.1537.2 8
8.5 even 2 inner 3072.2.d.j.1537.6 8
16.3 odd 4 3072.2.a.m.1.3 4
16.5 even 4 3072.2.a.j.1.2 4
16.11 odd 4 3072.2.a.s.1.2 4
16.13 even 4 3072.2.a.p.1.3 4
32.3 odd 8 1536.2.j.j.385.1 yes 8
32.5 even 8 1536.2.j.i.1153.3 yes 8
32.11 odd 8 1536.2.j.e.1153.4 yes 8
32.13 even 8 1536.2.j.f.385.2 yes 8
32.19 odd 8 1536.2.j.e.385.4 8
32.21 even 8 1536.2.j.f.1153.2 yes 8
32.27 odd 8 1536.2.j.j.1153.1 yes 8
32.29 even 8 1536.2.j.i.385.3 yes 8
48.5 odd 4 9216.2.a.ba.1.3 4
48.11 even 4 9216.2.a.bm.1.3 4
48.29 odd 4 9216.2.a.z.1.2 4
48.35 even 4 9216.2.a.bl.1.2 4
96.5 odd 8 4608.2.k.bc.1153.3 8
96.11 even 8 4608.2.k.bh.1153.2 8
96.29 odd 8 4608.2.k.bc.3457.3 8
96.35 even 8 4608.2.k.be.3457.3 8
96.53 odd 8 4608.2.k.bj.1153.2 8
96.59 even 8 4608.2.k.be.1153.3 8
96.77 odd 8 4608.2.k.bj.3457.2 8
96.83 even 8 4608.2.k.bh.3457.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1536.2.j.e.385.4 8 32.19 odd 8
1536.2.j.e.1153.4 yes 8 32.11 odd 8
1536.2.j.f.385.2 yes 8 32.13 even 8
1536.2.j.f.1153.2 yes 8 32.21 even 8
1536.2.j.i.385.3 yes 8 32.29 even 8
1536.2.j.i.1153.3 yes 8 32.5 even 8
1536.2.j.j.385.1 yes 8 32.3 odd 8
1536.2.j.j.1153.1 yes 8 32.27 odd 8
3072.2.a.j.1.2 4 16.5 even 4
3072.2.a.m.1.3 4 16.3 odd 4
3072.2.a.p.1.3 4 16.13 even 4
3072.2.a.s.1.2 4 16.11 odd 4
3072.2.d.e.1537.2 8 8.3 odd 2
3072.2.d.e.1537.7 8 4.3 odd 2
3072.2.d.j.1537.3 8 1.1 even 1 trivial
3072.2.d.j.1537.6 8 8.5 even 2 inner
4608.2.k.bc.1153.3 8 96.5 odd 8
4608.2.k.bc.3457.3 8 96.29 odd 8
4608.2.k.be.1153.3 8 96.59 even 8
4608.2.k.be.3457.3 8 96.35 even 8
4608.2.k.bh.1153.2 8 96.11 even 8
4608.2.k.bh.3457.2 8 96.83 even 8
4608.2.k.bj.1153.2 8 96.53 odd 8
4608.2.k.bj.3457.2 8 96.77 odd 8
9216.2.a.z.1.2 4 48.29 odd 4
9216.2.a.ba.1.3 4 48.5 odd 4
9216.2.a.bl.1.2 4 48.35 even 4
9216.2.a.bm.1.3 4 48.11 even 4